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B.P. 89, Sidi Bel-Abbès, 22000, Algérie

E-mail: benchohra@univ-sba.dz
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ABSTRACT. In this paper we discuss the existence of solutions for an integral equation of mixed

type. We rely on a generalization on Fréchet spaces of a Krasnosel’skii type fixed point theorem

due to Avramescu and on a nonlinear alternative of Leray-Schauder type for contraction maps in

Fréchet spaces due to Frigon and Granas.
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1. INTRODUCTION

This paper is concerned with the existence of solutions for the following integral

equation,

y(t) = f(t) +

∫ t

0

g(t, s, y(s))

(t− s)1−α
ds+

∫

∞

0

h(t, s, y(s))

(t− s)1−α
ds, t ∈ [0,+∞), (1.1)

where f : R+ → R
d, g : D × R

d → R
d, h : R+ × R+ × R

d → R
d are continuous func-

tions, and D := {(t, s) ∈ R+ × R+, s ≤ t}, d > 1 and α ∈ (0, 1). Integral equations

arise naturally in many applications in describing numerous real world problems; see

for instance the books by Agarwal et al. [2], Agarwal and O’Regan [3], Corduneanu

[11], Deimling [12], and O’Regan and Meehan [20] and the references therein. Also

quadratic integral equations have many useful applications in describing numerous

events and problems of the real world. For example, quadratic integral equations are

often applicable in the theory of radiative transfer, kinetic theory of gases, in the

theory of neutron transport and in traffic theory. Especially, the so-called quadratic

integral equation of Chandrasekher type can be very often encountered in many appli-

cations; see for instance the book by Chandrasekher [10] and the research papers by

Banas et al. [4, 5], Benchohra and Darwish [6], Burton and Zhang [8], Darwish [13],

Hu et al. [15], Kelley [17], Leggett [18], and Stuart [21] and the references therein.
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2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which

are used throughout this paper.

Definition 2.1 ([16, 19]). The fractional (arbitrary) order integral of the function

h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ ϕα](t), where

ϕα(t) =
tα−1

Γ(α)
for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, where δ is

the delta function.

Consider the functional space

Cc := {y : R+ → R
d| y is continuous},

equipped with the numerable families of seminorms

‖y‖n := sup
t∈[0,n]

‖y(t)‖.

This family of semi norms determines on Cc a structure of a Fréchet space (i.e., a

linear, metrisable, and complete space), its topology being the one of the uniform

convergence on compact subsets of R+. We also mention that a family A ⊂ Cc is

relatively compact if and only if for each n ≥ 1, the restrictions to [0, n] of all functions

from A form an equicontinuous and uniformly bounded set.

Definition 2.2 ([1])). The operator H : Cc → Cc is called a contraction if there is a

sequence Ln ∈ [0, 1), such that

‖Hy −Hx‖n ≤ Ln‖y − x‖n, ∀y, x ∈ Cc, ∀n ≥ 1.

Proposition 2.3 ([9]). Every contraction admits a unique fixed point.

Theorem 2.4 (Nonlinear Alternative of Avramescu, [1]). Let X be a Fréchet space

and let A,B : X → X be two operators satisfying the following hypotheses:

(i) A is contraction;

(ii) B is compact operator.

Then either one of the following statements holds:

(S1) The operator A+B has a fixed point;

(S2) the set {x ∈ X| x = λA
(x

λ

)

+ λB(x), λ ∈ (0, 1)} is unbounded.

Theorem 2.5 ([14]). Let Ω be a closed subset of a Fréchet space X such that 0 ∈ Ω

and let F : Ω → X be a contraction such that F (Ω) bounded. Then either:
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(C1) F has a unique fixed point; or

(C2) there exist λ ∈ (0, 1), n ∈ N and u ∈ ∂Ωn such that ‖u− λF (u)‖n = 0.

3. MAIN RESULTS

In this section we present two results for Equation (1.1). The first one relies on

the nonlinear alternative due to Avramescu (Theorem 2.4) and the second one the

nonlinear alternative for contraction maps due to Frigon and Granas (Theorem 2.5).

We will admit the following hypotheses:

(h1) there exist p ∈ L1
loc(R+,R+), with p̄n = sup

t∈[0,n]

∫

∞

0

p(s)

(t− s)1−α
ds < ∞ and a

continuous nondecreasing function ψ : R+ → R+ such that

‖h(t, s, y)‖ ≤ p(s)ψ(‖y‖) for a.e. (t, s) ∈ R
+ × R

+ and each y ∈ R
d;

(h2) there exists a continuous function η : R+ → R+, such that

‖g(t, s, y)− g(t, s, x)‖ ≤ η(s)‖y − x‖ for all (t, s) ∈ D and each x, y ∈ R
d;

(h3) For each n ∈ N, there exists a constant Rn > 0 such that

lim sup
Rn−→+∞

(

1 − ‖η‖n
nα

α

)

Rn

nα

α
Rn + ‖f‖n + ‖ξ‖n + ψ(Rn)p̄n

> 1,

with nα

α
‖η‖n < 1.

Our first main result reads as follows.

Theorem 3.1. Assume that hypotheses (h1)–(h3) hold. Then equation (1.1) admits

a unique solution in Cc.

Proof. Transform Equation (1.1) into a fixed point problem. Consider the operator

H : Cc → Cc defined by

(Hy)(t) := f(t) +

∫ t

0

g(t, s, y(s))

(t− s)1−α
ds+

∫

∞

0

h(t, s, y(s))

(t− s)1−α
ds, t ∈ R+.

Clearly the fixed points of H are solutions of the Equation (1.1). For the proof, we

will apply Theorem 2.4. To this end, let us set y(t) = x(t) + ξ(t). Then we write

(1.1) as

x(t) = (Ax)(t) + (Bx)(t), (3.1)

where

(Ax)(t) := f(t) +

∫ t

0

g(t, s, x(s) + ξ(s))

(t− s)1−α
ds− ξ(t),

(Bx)(t) :=

∫

∞

0

h(t, s, x(s) + ξ(s))

(t− s)1−α
ds.

The proof will be given in several steps.

Step 1: A is a contraction mapping.
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Let y, ȳ ∈ Cc; then using (h2), for each t ∈ [0, n], n ∈ N,

‖A(y)(t) −A(ȳ)(t)‖ ≤

∫ t

0

(t− s)α−1‖g(t, s, y(s) + ξ(s)) − g(t, s, ȳ(s) + ξ(s))‖ds

≤

∫ t

0

(t− s)α−1η(s)‖y(s) − ȳ(s)‖ds

≤ ‖y − ȳ‖n

∫ t

0

(t− s)α−1η(s)ds

≤ ‖y − ȳ‖n

nα

α
‖η‖n.

So A is a contraction mapping.

Step 2: We show that B is continuous and completely continuous.

Claim 1: B is continuous.

Let (ym)m be a sequence (ym)m ⊂ Cc, ym −→ y in Cc, that is, ∀ε > 0, ∀n ≥ 1,

∃N = N(ε, n), ∀m ≥ N , ‖ym − y‖n < ε.

Let us fix n ≥ 1. From the convergence of (ym) and the continuity of ξ, there is

r ≥ 0 such that ‖ym + ξ‖n ≤ r, ‖y + ξ‖n ≤ r, ∀m. Consider ε > 0. By hypothesis

(h1), there is t0 > 0, such that
∫

∞

t0

p(s)

(t− s)1−α
ds <

ε

4ψ(r)
. (3.2)

Since h is uniformly continuous on the set ([0, n]× [0, t0])×B(r) (here B(r) := {x ∈

R
d : ‖x‖ ≤ r}), it follows that for all t ∈ [0, n], s ∈ [0, t0], and m ≥ N ,

‖h(t, s, ym(s) + ξ(s)) − h(t, s, y(s) + ξ(s))‖ <
ε

2

∫ t0

0

1

(t− s)1−α
ds

.

Therefore, for every t ∈ [0, n] and m ≥ N , we have

‖(Bym)(t) − (By)(t)‖

≤

∫ t0

0

∥

∥

∥

∥

1

(t− s)1−α
(h(t, s, ym(s) + ξ(s)) − h(t, s, y(s) + ξ(s)))

∥

∥

∥

∥

ds

+

∫

∞

t0

∥

∥

∥

∥

1

(t− s)1−α
(h(t, s, ym(s) + ξ(s)) − h(t, s, y(s) + ξ(s)))

∥

∥

∥

∥

ds

≤
ε

2
+ 2ψ(r)

∫

∞

t0

p(s)

(t− s)1−α
ds

≤
ε

2
+
ε

2
= ε.

Hence,

‖Bym − By‖n ≤ ε, ∀m ≥ N

and the continuity of B is proved.

Claim 2: B maps bounded sets into bounded sets in Cc.
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Indeed, it is enough to show that there exists a positive constant k such that for

each for each y ∈ Q = {y ∈ Cc : ∃qn > 0, ‖y‖n ≤ qn, n ≥ 1}, one has ‖By‖n ≤ k. By

(h1) for all t ∈ [0, n] and y ∈ Q, we have

‖(By)(t)‖ ≤ ψ(qn + ξn)

∫

∞

0

p(s)

(t− s)1−α
ds := l,

where

ξn = sup
t∈[0,n]

{‖ξ(t)‖}.

Thus ‖B(y)‖n ≤ l. So, {By|[0,n] : y ∈ Q} is bounded.

Claim 3: B maps bounded sets into equicontinuous sets in Cc.

Let ε > 0 be arbitrarily fixed and t0 > 0 be given by (3.2). By hypothesis (h2),

it follows that h(t, s, x) is uniformly continuous on the set

D̃ := [0, n] × [0, t0] ×B(ρn),

where

B(ρn) = {y ∈ R
d : ‖y‖ ≤ ρn},

with

ρn := q[t0]+1 + ξn.

Hence, there is a δ > 0 such that for all t1, t2 ∈ [0, n] with |t1 − t2| < δ and all

y ∈ B(ρn),

‖h(t1, s, y(s) + ξ(s)) − h(t2, s, y(s) + ξ(s)‖ <
αε

4nα
.

Now

‖(By)(t1) − (By)(t2)‖ ≤

∫ t0

0

∥

∥

∥

∥

1

(t1 − s)1−α
h(t1, s, y(s) + ξ(s))

−
1

(t2 − s)1−α
h(t2, s, y(s) + ξ(s))

∥

∥

∥

∥

ds

+ψ(ρn)

∫

∞

t0

p(s)

(t1 − s)1−α
ds+ ψ(ρn)

∫

∞

t0

p(s)

(t2 − s)1−α
ds

≤

∫ t0

0

∣

∣

∣

∣

1

(t1 − s)1−α
‖h(t1, s, y(s) + ξ(s)) − h(t2, s, y(s) + ξ(s))‖

−

∥

∥

∥

∥

(

1

(t2 − s)1−α
−

1

(t1 − s)1−α

)

h(t2, s, y(s) + ξ(s))

∥

∥

∥

∥

∣

∣

∣

∣

ds

+ψ(ρn)

∫

∞

t0

p(s)

(t1 − s)1−α
ds+ ψ(ρn)

∫

∞

t0

p(s)

(t2 − s)1−α
ds

≤

∫ t0

0

1

(t1 − s)1−α
‖h(t1, s, y(s) + ξ(s)) − h(t2, s, y(s) + ξ(s))‖ds

−

∫ t0

0

∥

∥

∥

∥

(

1

(t2 − s)1−α
−

1

(t1 − s)1−α

)

h(t2, s, y(s) + ξ(s))

∥

∥

∥

∥

ds



116 M. BENCHOHRA AND N. HAMIDI

+ψ(ρn)

∫

∞

t0

p(s)

(t1 − s)1−α
ds+ ψ(ρn)

∫

∞

t0

p(s)

(t2 − s)1−α
ds

≤
αε

4nα

∫ t0

0

1

(t1 − s)1−α
ds

−ψ(ρn)

∫ t0

0

∣

∣

∣

∣

1

(t2 − s)1−α
−

1

(t1 − s)1−α

∣

∣

∣

∣

p(s))ds

+ψ(ρn)

∫

∞

t0

p(s)

(t1 − s)1−α
ds+ ψ(ρn)

∫

∞

t0

p(s)

(t2 − s)1−α
ds

≤
αε

4nα

2nα

α
− ψ(ρn)

ε

4ψ(ρn)
+ ψ(ρn)

ε

4ψ(ρn)
+ ψ(ρn)

ε

2ψ(ρn)

≤
ε

2
+
ε

2
= ε.

Hence the set {By|[0,n], y ∈ D} is equicontinuous.

Step 3: A priori bounds on solutions.

To apply Theorem 2.4, we must check S2; i.e., it remains to show that the set

E = {y ∈ Cc : y = λA
(y

λ

)

+ λB(y), for some 0 < λ < 1}

is bounded. Let y ∈ E ; by (h1) and (h2), we have for each t ∈ [0, n]

|y(t)| ≤ λ|A
(y

λ

)

−A(0)| + λ|A(0)| + |By(t)|

≤

∫ t

0

η(s)‖y‖n(t− s)α−1ds+

∫ t

0

(t− s)α−1g(t, s, ξ(s))ds+ |f(t)| + |ξ(t)|

+

∫

∞

0

p(s)ψ(‖y‖n)(t− s)α−1ds

≤ ‖y‖n

∫ t

0

η(s)(t− s)α−1ds+

∫ t

0

(t− s)α−1g(t, s, ξ(s))ds

+|f(t)| + |ξ(t)| + ψ(‖y‖n)

∫

∞

0

p(s)(t− s)α−1ds

≤ ‖y‖n‖η‖n

nα

α
+
nα

α
‖g‖n + ‖f‖n + ‖ξ‖n + ψ(‖y‖n)p̄n.

Thus,

‖y‖n

[

1 − ‖η‖n

nα

α

]

≤
nα

α
‖g‖n + ‖f‖n + ‖ξ‖n + ψ(‖y‖n)p̄n.

[

1 − ‖η‖n
nα

α

]

‖y‖n

nα

α
‖g‖n + ‖f‖n + ‖ξ‖n + ψ(‖y‖n)p̄n

≤ 1. (3.3)

From (h3), there exists Rn > 0 such that for each y ∈ E with ‖y‖n > Rn, the condition

(3.3) is violated. Therefore,

‖y‖n ≤ Rn.

Set

Υ = {y ∈ Cc : sup{‖y(t)‖, 0 ≤ t ≤ n} ≤ Rn + 1 for all n ∈ N} .
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Clearly Υ is a closed subset of Cc. From the choice of Υ there is no y ∈ ∂Υ, such that

y = λB(y) for some λ ∈ (0, 1). Then the statement (S2) in Theorem 2.4 does not

hold. The nonlinear alternative of Avramescu implies that (S1) holds, so the operator

A+B has a fixed point y∗. Then x∗(t) = y∗(t) + ξ(t), t ∈ (0,+∞) is a fixed point of

the operator H , which is the solution of the problem (1.1).

Now we shall present our second result which will be based upon Theorem 2.5.

Before, we introduce the following assumptions:

(k1) f : [0,+∞) → R
d is a continuous function;

(k2) For all Q > 0, there exists lQ ∈ C(R,R+), such that

|g(t, s, y)−g(t, s, x)| ≤ lQ(t)‖y−x‖n, for each y, x ∈ Cc, with ‖y‖n ≤ Q, ‖x‖n ≤ Q;

(k3) There exists L ∈ L1(R+,R+) with L̄n = sup
t∈[0,n]

∫

∞

0

(t − s)α−1L(s)ds < ∞, such

that:

|h(t, s, y) − h(t, s, x)| ≤ L(t)‖y − x‖n, for each y, x ∈ Cc;

(k4) There exists a function q ∈ C(R,R+) and a continuous nondecreasing function

ϕ : R+ → (0,∞) such that :

|g(t, s, y)| ≤ q(s) ϕ(|y|), for each y ∈ Cc, and s, t ∈ (0,∞);

(k5) For each n ∈ N, there exists a constant Mn > 0, such that

Mn

‖f‖n + ϕ(‖y‖n)‖q‖n
nα

α
+ ψ(‖y‖n)pn

> 1. (3.4)

Theorem 3.2. Let the assumptions (h1), and (k1)–(k5) be satisfied. If, in addition,

(‖lMn
‖n

nα

α
+ L̄n) < 1, (3.5)

then the equation (1.1) has a unique solution.

Proof. Transform Equation (1.1) into a fixed-point problem. Consider the operator

F : Cc → Cc defined by :

(Fy)(t) = f(t)+

∫ t

0

(t−s)α−1g(t, s, y(s))ds+

∫

∞

0

(t−s)α−1h(t, s, y(s))ds, t ∈ (0,∞].

Let y be a possible solution Equation (1.1). Given n ∈ N and t ≤ n, then in view of

(k1), (k3) and (k4), we have

|y(t)| ≤ |f(t)| +

∫ t

0

(t− s)α−1|g(t, s, y(s))|ds+

∫

∞

0

(t− s)α−1|h(t, s, y(s))|ds

≤ |f(t)| +

∫ t

0

(t− s)α−1q(s)ϕ(‖y‖n)ds+

∫

∞

0

(t− s)α−1p(s)ψ(‖y‖n)ds

≤ ‖f‖n + ϕ(‖y‖n)‖q‖n

nα

α
+ ψ(‖y‖n)pn.
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Using the nondecreasing character of ϕ and ψ, we obtain

‖y‖n

‖f‖n + ϕ(‖y‖n)‖q‖n
nα

α
+ ψ(‖y‖n)pn

≤ 1.

From (3.4) it follows that for each n ∈ N

‖y‖n 6= Mn.

Now, set

Ω = {y ∈ Cc : ‖y‖n ≤Mn, for each n ∈ N}.

Clearly, Ω is a closed subset of Cc. We shall show that F : Ω → Cc is a contraction

operator. Indeed, consider y, y ∈ Ω; for each t ∈ [0, n] and n ∈ N, from (k2) − (k3)

we have

|(Fy)(t)− (Fy)(t)| ≤

∫ t

0

(t− s)α−1|g(t, s, y(s))− g(t, s, ȳ(s))|ds

+

∫

∞

0

(t− s)α−1|h(t, s, y(s)) − h(t, s, ȳ(s))|ds

≤

∫ t

0

lMn
(s)(t− s)α−1|y(s) − ȳ(s)|ds

+

∫

∞

0

L(s)(t− s)α−1|y(s) − ȳ(s)|ds

≤ ‖y − ȳ‖n‖lMn
‖n

nα

α
+ ‖y − ȳ‖nL̄n

≤ ‖y − ȳ‖n[‖lMn
‖n

nα

α
+ L̄n].

Therefore,

‖Fy −Fy‖n ≤ [‖lMn
‖n

nα

α
+ L̄n]‖y − ȳ‖n.

So by (3.5) the operator F is a contraction for all n ∈ N. From the choice of Ω there

is no y ∈ ∂Ω such that y = λ F(y) for some λ ∈ (0, 1). Then the statement (C2)

in Theorem 2.3 does not hold. The nonlinear alternative of Leray-Schauder type [14]

implies that (C1) holds, so that the operator F has a unique fixed-point y in Ω which

is a solution to Equation (1.1). This completes the proof.

Acknowledgement: The authors are grateful to the referee for his/her remarks.
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