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ABSTRACT. This paper studies existence and uniqueness results in a Banach space for a two-point

boundary value problem involving a nonlinear fractional differential equation given by

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) = γ1, αx(1) + βx′(1) = γ2.

Our results are based on contraction mapping principle and Krasnoselskii’s fixed point theorem.
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1. Introduction

Fractional differential equations arise in many engineering and scientific disci-

plines as the mathematical modelling of systems and processes in the fields of physics,

chemistry, aerodynamics, electro-dynamics of complex medium, polymer rheology,

etc. involves derivatives of fractional order. Fractional differential equations also

serve as an excellent tool for the description of hereditary properties of various ma-

terials and processes. In consequence, the subject of fractional differential equations

is gaining much importance and attention. For details, see [1–11] and the references

therein. In [1, 11], the authors have discussed the existence of positive solutions for

boundary value problem of nonlinear fractional differential equations. However, the

theory of boundary value problems for nonlinear fractional differential equations is

still in the initial stages. The recent surge in developing the theory of fractional

differential equations has motivated the present work.
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In this paper, we consider the following boundary value problem for a nonlinear

fractional differential equation with separated boundary conditions
{

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) = γ1, αx(1) + βx′(1) = γ2,
(1.1)

where cD is the Caputo’s fractional derivative, f : [0, 1] × X → X and α > 0, β ≥
0, γ1,2 are real numbers. Here, (X, ‖ · ‖) is a Banach space and C = C([0, 1], X)

denotes the Banach space of all continuous functions from [0, 1] → X endowed with

a topology of uniform convergence with the norm denoted by ‖ · ‖C.

2. Preliminaries

Let us recall some basic definitions.

Definition 2.1. For a function f : [0,∞) → R, the Caputo derivative of fractional

order q is defined as

cDqf(t) =
1

Γ(n − q)

∫ t

0

(t − s)n−q−1f (n)(s)ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

f(s)

(t − s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a function

f(t) is defined by

Dqf(t) =
1

Γ(n − q)

(

d

dt

)n ∫ t

0

f(s)

(t − s)q−n+1
ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

Remark 2.1. The definition of Riemann-Liouville fractional derivative, which did

certainly play an important role in the development of theory of fractional derivatives

and integrals, could hardly produce the physical interpretation of the initial conditions

required for the initial value problems involving fractional differential equations. The

same applies to the boundary value problems of fractional differential equations. It

was Caputo’s definition of fractional derivative which solved this problem. In fact,

the Caputo derivative becomes the conventional n−th derivative of the function as

q → n and the initial conditions for fractional differential equations retain the same

form as that of ordinary differential equations with integer derivatives. Another

difference is that the Caputo derivative for a constant is zero while the Riemann-

Liouville fractional derivative of a constant is nonzero. For more details, see [10].
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Lemma 2.1. ([11]) For q > 0, the general solution of the fractional differential

equation cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n−1 (n = [q]+1). In view of Lemma 2.1, it follows that

Iq cDqx(t) = x(t) + c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1, (2.1)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

Now, we state a known result due to Krasnoselskii which is needed to prove the

existence of at least one solution of (1.1).

Theorem 2.1. Let M be a closed convex and nonempty subset of a Banach space

X. Let A, B be the operators such that (i) Ax + By ∈ M whenever x, y ∈ M (ii) A

is compact and continuous (iii) B is a contraction mapping. Then there exists z ∈ M

such that z = Az + Bz.

Lemma 2.2. For a given ζ ∈ C[0, 1], the unique solution of the boundary value

problem






cDqx(t) = ζ(t), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) = γ1, αx(1) + βx′(1) = γ2,
(2.2)

is given by

x(t) =

∫ 1

0

G(t, s)ζ(s)ds +
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2],

where G(t, s) is the Green’s function given by

G(t, s) =







α(t−s)q−1+(β−αt)(1−s)q−1

αΓ(q)
+ β(β−αt)(1−s)q−2

α2Γ(q−1)
, s ≤ t,

(β−αt)(1−s)q−1

αΓ(q)
+ β(β−αt)(1−s)q−2

α2Γ(q−1)
, t ≤ s.

(2.3)

Proof. Using (2.1), for some constants c0, c1 ∈ R, we have

x(t) = Iqζ(t) − c0 − c1t =

∫ t

0

(t − s)q−1

Γ(q)
ζ(s)ds − c0 − c1t.

In view of the relations cDq Iqx(t) = x(t) and Iq Ipx(t) = Iq+px(t) for q, p > 0,

x ∈ L(0, 1), we obtain

x′(t) =

∫ t

0

(t − s)q−2

Γ(q − 1)
ζ(s)ds − c1.

Applying the boundary conditions for (2.2), we find that

c0 =
1

α2
[βγ2−(β+α)γ1]−

β

αΓ(q)

∫ 1

0

(1−s)q−1ζ(s)ds− β2

α2Γ(q − 1)

∫ 1

0

(1−s)q−2ζ(s)ds,

c1 =
1

α
(γ1 − γ2) +

1

Γ(q)

∫ 1

0

(1 − s)q−1ζ(s)ds +
β

αΓ(q − 1)

∫ 1

0

(1 − s)q−2ζ(s)ds.
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Thus, the unique solution of (2.2)–(2.3) is

x(t) =

∫ t

0

[
α(t − s)q−1 + (β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)
]ζ(s)ds

+

∫ 1

t

[
(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)
]ζ(s)ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2]

=

∫ 1

0

G(t, s)ζ(s)ds +
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2],

where G(t, s) is given by (2.3). This completes the proof.

3. Main results

Theorem 3.1. Let f : [0, 1] × X → X be a jointly continuous function mapping

bounded subsets of [0, 1] × X into relatively compact subsets of X, and

‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, 1], x, y ∈ X.

Then the boundary value problem (1.1) has a unique solution provided

L ≤ 1

2
[

β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
]−1.

Proof. Define ̥ : C → C by

(̥x)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds

+

∫ 1

0

[
(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)
]f(s, x(s))ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2], t ∈ [0, 1].

Setting supt∈[0,1] ‖f(t, 0)‖ = M and Choosing

r ≥ 2[M(
β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
) +

α + β

α2
(γ1 + γ2)],

we show that ̥Br ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have

‖(̥x)(t)‖ ≤ 1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s))‖ds

+

∫ 1

0

|β − αt|[ (1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)
]‖f(s, x(s))‖ds

+
α + β

α2
(|γ1| + |γ2|)

≤ 1

Γ(q)

∫ t

0

(t − s)q−1[‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖]ds
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+

∫ 1

0

|β − αt|[ (1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)
]

× [‖f(s, x(s)) − f(s, 0)‖ + ‖f(s, 0)‖]ds +
α + β

α2
(|γ1| + |γ2|)

≤ (Lr + M)[
1

Γ(q)

∫ t

0

(t − s)q−1ds

+

∫ 1

0

|β − αt|((1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)
)ds]

+
α + β

α2
(|γ1| + |γ2|)

= (Lr + M)[
tq

Γ(q + 1)
+ |β − αt|( 1

αΓ(q + 1)
+

β

α2Γ(q)
)]

+
α + β

α2
(|γ1| + |γ2|)

≤ L[
2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
]r

+M [
2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
] +

α + β

α2
(|γ1| + |γ2|) ≤ r.

Now, for x, y ∈ C and for each t ∈ [0, T ], we obtain

‖(̥x)(t) − (̥y)(t)‖

≤ 1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s)) − f(s, y(s))‖ds

+

∫ 1

0

|β − αt|[ (1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)
]‖f(s, x(s)) − f(s, y(s))‖ds

≤ L‖x − y‖C[
1

Γ(q)

∫ t

0

(t − s)q−1ds

+

∫ 1

0

|β − αt|((1 − s)q−1

αΓ(q)
+

β(1 − s)q−2

α2Γ(q − 1)
)ds

≤ L‖x − y‖C[
tq

Γ(q + 1)
+ |β − αt|( 1

αΓ(q + 1)
+

β

α2Γ(q)
)]

≤ L[
1

αΓ(q + 1)
(2α + β) +

β2 + αβ)

α2Γ(q)
]‖x − y‖C

≤ Λα,β,q,L‖x − y‖C,

where

Λα,β,q,L = L[
2α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
],

which depends only on the parameters involved in the problem. As Λα,β,γ,L,T,q < 1,

therefore ̥ is a contraction. Thus, the conclusion of the theorem follows by the

contraction mapping principle.
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Theorem 3.2. Assume that f : [0, 1] × X → X is a jointly continuous function and

maps bounded subsets of [0, 1] × X into relatively compact subsets of X. Further

(A1) ‖f(t, x) − f(t, y)‖ ≤ L‖x − y‖, ∀t ∈ [0, 1], x, y ∈ X;

(A2) ‖f(t, x)‖ ≤ µ(t), ∀(t, x) ∈ [0, 1] × X, and µ ∈ L1([0, 1], R+).

If L( α+β

αΓ(q+1)
+ β2+αβ

α2Γ(q)
) < 1, then the boundary value problem (1.1) has at least one

solution on [0, 1].

Proof. Let us fix

r ≥ ‖µ‖L1[
2α + β

αΓ(q)
+

β2 + αβ

α2Γ(q − 1)
] +

α + β

α2
(|γ1| + |γ2|),

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators Φ and Ψ on Br as

(Φx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s))ds,

(Ψx)(t) =

∫ 1

0

[

(β − αt)(1 − s)q−1

αΓ(q)
+

β(β − αt)(1 − s)q−2

α2Γ(q − 1)

]

f(s, x(s))ds

+
1

α2
[(α(1 − t) + β)γ1 + (β + αt)γ2].

For x, y ∈ Br, we find that

‖Φx + Ψy‖ ≤ ‖µ‖L1[
2α + β

αΓ(q)
+

β2 + αβ

α2Γ(q − 1)
] +

α + β

α2
(|γ1| + |γ2|) ≤ r.

Thus, Φx + Ψy ∈ Br. It follows from the assumption (A1) that Ψ is a contraction

mapping for

L(
α + β

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
) < 1.

Continuity of f implies that the operator Φ is continuous. Also, Φ is uniformly

bounded on Br as

‖Φx‖ ≤ (
‖µ‖L1

Γ(q)
.

Now we prove the compactness of the operator Φ. Setting Ω = [0, 1] × Br, we define

sup(t,x)∈Ω ‖f(t, x)‖ = fmax, and consequently we have

‖(Φx)(t1) − (Φx)(t2)‖ = ‖ 1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s))ds

+

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds‖ ≤ fmax

Γ(q + 1)
|2(t2 − t1)

q + t
q
1 − t

q
2|,

which is independent of x. So Φ is relatively compact on Br. Hence, By Arzela Ascoli

Theorem, Φ is compact on Br. Thus all the assumptions of Theorem 2.1 are satisfied

and the conclusion of Theorem 2.1 implies that the boundary value problem (1.1) has

at least one solution on [0, 1].
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Example. Consider the following boundary value problem
{

cD
3

2 x(t) = cos t
(t+5)2

|x|
1+|x|

, t ∈ [0, 1],

x(0) + x′(0) = 0, x(1) + x′(1) = 0.
(3.1)

Here, f(t, x(t)) = cos t
(t+5)2

|x|
1+|x|

, α = 1, β = 1, γ1 = 0 = γ2. As ‖f(t, x) − f(t, y)‖ ≤
1
25
‖x − y‖, therefore, (A1) is satisfied with L = 1

25
. Further,

2L(
β + 2α

αΓ(q + 1)
+

β2 + αβ

α2Γ(q)
) =

16

25
√

π
< 1.

Thus, by Theorem 3.1, the boundary value problem (3.1) has a unique solution on

[0, 1].
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