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ABSTRACT. This paper considers the size of the large fluctuations of a stochastic differential

equation with Markovian switching. We concentrate on processes which obey the Law of the Iterated

Logarithm, or obey upper and lower iterated logarithm growth bounds on their almost sure partial

maxima. The results are applied to financial market models which are subject to random regime

shifts. We prove that the security exhibits the same long–run growth properties and deviations from

the trend rate of growth as conventional geometric Brownian motion, and also that the returns,

which are non–Gaussian, still exhibit the same growth rate in their almost sure large deviations as

stationary continuous–time Gaussian processes.
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1. Introduction

We study the stochastic differential equation with Markovian switching

dX(t) = f(X(t), Y (t), t) dt + g(X(t), Y (t), t) dB(t) (1.1)

where g(x, y, t) and xf(x, y, t) are uniformly bounded above and below in (x, y, t),

and Y is an irreducible continuous–time Markov chain with finite state space S inde-

pendent of the Brownian motion B. If the lower bound on xf(x, y, t) is sufficiently
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large, we show that X obeys upper and lower laws of the iterated logarithm, in the

sense that √
K2 ≤ lim sup

t→∞

|X(t)|√
2t log log t

≤
√

K1, a.s.

where g2(x, y, t) ∈ [K2, K1]. In the case when g additionally obeys g(x, y, t) = γ(y),

it can be shown that

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗, a.s.

where σ2
∗ =

∑
j∈S

γ2(j)πj and π = (πj)j∈S is the stationary distribution of Y . The

proofs rely on time change and comparison arguments, constructing upper and lower

bounds on |X| which, under appropriate changes of time and scale, are recurrent and

stationary processes whose dynamics are not determined by Y . The large deviations

of these processes are determined by means of a classical theorem of Motoo [20].

These large deviation results are then applied to a security price model, where

the security price S obeys

dS(t) = µS(t) dt + S(t) dX(t), t ≥ 0, (1.2)

and X obeys (1.1). The problem is motivated by the observations from financial

market econometrics that security prices often move from bearish to bullish (or other)

regimes. These regimes are modelled by the presence of the Markov process Y . One of

the seminal contributions on the econometric analysis of financial times series subject

to these regime shifts is [10], and a recent monograph covering this topic, amongst

others, is [7].

The classical Geometric Brownian motion model of stock evolution assumes that

the market is informationally efficient, following forms of the Efficient Market Hypoth-

esis (EMH). A classical statement and discussion about the EMH and its ramifications

may be found in e.g., Fama [4] or the seminal volume edited by Cootner [3]. How-

ever, in recent times, econometric evidence suggesting that financial markets might

be inefficient has accumulated (see e.g., [15]). The model (1.1) is an inefficient mar-

ket model, since the increments of the cumulative returns process µt + X(t) are not

independent. However, the fact that xf(x, y, t) is uniformly bounded means that the

process X does not depart too much (in some sense) from Brownian motion, thereby

placing limits on the inefficiency of the market, particularly when the price departs

too far from its trend rate of growth. Therefore, the assumption that xf(x, y, t) be

bounded can be seen as hypothesising that the market is not “too inefficient”. Finally,

the assumption that the movement between regimes is not influenced by the stock

price or returns, is accommodated by presuming that Y and the driving Brownian

motion B are independent.

Despite the presence of regime shifts and inefficiency, we can still deduce that

the new market model enjoys some of the properties of standard Geometric Brownian
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motion models. Having established the existence of a trend rate of growth in the

price, we use results about the solution of (1.1) to show that the large deviations

of the price from this trend rate of growth obey a law of the iterated logarithm,

just as in standard models. Finally, although the returns are non–Gaussian, we can

nevertheless show that the partial maxima of the returns have the same almost sure

rate of growth as those of a stationary Gaussian process.

Recently, there has been increasing attention devoted to hybrid systems, in which

continuous dynamics are intertwined with discrete events. One of the distinct features

of such systems is that the underlying dynamics are subject to changes with respect

to certain configurations. A convenient way of modelling these dynamics is to use

continuous–time Markov chains to delineate many practical systems where they may

experience abrupt changes in their structure and parameters. Such hybrid systems

have been considered for the modelling of electric power systems by Willsky and

Levy [28] as well as for the control of a solar thermal central receiver by Sworder and

Rogers [24]. Athans [2] suggested to use hybrid systems control-related issues in Battle

Management Command, Control and Communications (BM/C3) systems. Sethi and

Zhang used Markovian structure to describe hierarchical control of manufacturing

systems [23]. Yin and Zhang examined probabilistic structure and developed a two-

time-scale approach for control of hybrid dynamic systems [25]. Optimal control

of switching diffusions and applications to manufacturing systems were studied in

Ghosh, Arapostathis, and Marcus [8] and [9]. In addition, Markovian hybrid systems

have also been used in emerging applications in financial engineering [26, 27, 29]. For

a detailed treatment of the hybrid stochastic differential equations we refer the reader

to the new book [18].

The paper is organised as follows. Notation and detailed formulation of the

equations being studied are presented in Section 2. The main results on iterated

logarithm growth rates for the solution of (1.1) are given in Section 3. In Section 4,

these results are applied to a stock price model. The proofs of all results are postponed

to the final two sections: proofs of results from Section 3 are given in Section 5, while

those from Section 4 are given in Section 6.

2. Mathematical Preliminaries

Throughout the paper we use (Ω,F , (F(t))t≥0, P) to denote the complete filtered

probability space. The set of non-negative real numbers is denoted by R+. Let L1[a, b]

be the family of Borel measurable functions h : [a, b] → R such that
∫ b

a
|h(x)| dx < ∞.

The abbreviation a.s. stands for almost surely. If a stochastic process with state

space R is the solution of an autonomous stochastic differential equation with drift

coefficient f : R → R and non-zero diffusion coefficient g : R → R, then the scale
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function p and speed measure m of this process are defined by

p(x) =

∫ x

a

e
−2

R y
a

f(u)

g2(u)
du

dy, a ∈ R, (2.1)

m(dx) =
2

g2(x)
.

1

p′(x)
dx, x > 0. (2.2)

Motoo’s theorem [20] is an important tool for determining the largest deviations for

stationary solutions of scalar autonomous stochastic differential equations. We state

it here for future use.

Theorem 2.1. Let f : (l,∞) → R and g : (l,∞) → R and X be the unique continu-

ous adapted process satisfying

dX(t) = f(X(t)) dt + g(X(t)) dB(t), t ≥ 0.

Suppose that X is a recurrent process on (l,∞) with the scale function p and speed

measure m of X, defined by (2.1) and (2.2) respectively, satisfying

p(l) = −∞, p(∞) = ∞ and m(l,∞) < ∞. (2.3)

If h : (0,∞) → (0,∞) is an increasing function with h(t) → ∞ as t → ∞, then

P

[
lim sup

t→∞

X(t)

h(t)
≥ 1

]
= 1 or 0

depending on whether
∫ ∞

c

1

p(h(t))
dt = ∞ or

∫ ∞

c

1

p(h(t))
dt < ∞

for some c ∈ R.

Before going further we clarify on our terminology; in particular when we refer to

stationarity. Econometric studies of financial markets and asset prices often concen-

trate on detecting underlying stationary processes which may drive the asset prices,

such as stock volatility or returns. The stationarity of such a process (say U) should

not be confused with the a.s. point stability of U . If we suppose that the process

U = {U(t) : t ≥ 0} is the solution of a stochastic differential equation defined on

t ≥ 0, then U would moreover be a stationary solution of the equation if

P[U(t + t1) ≤ x1, U(t + t2) ≤ x2, . . . , U(t + tn) ≤ xn]

= P[U(t1) ≤ x1, U(t2) ≤ x2, . . . , U(tn) ≤ xn]

∀ t ≥ 0, ∀n ∈ N, ∀ tj ≥ 0, xj ∈ R, j = 1 . . . , n, (2.4)

and U would be an asymptotically stationary solution if (2.4) holds with the left–hand

side replaced by the limit as t → ∞.

A very special case of a stationary solution is a point equilibrium x∗ where U(0) =

x∗ implies U(t) = x∗ for all t ≥ 0 a.s., in which case the stationary distribution of
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the process, starting from x∗, is a Dirac δ–function concentrated at x∗. Such an

equilibrium is said to be a.s. (globally) asymptotically stable if

lim
t→∞

U(t) = x∗, a.s. (2.5)

for all initial conditions U(0). In finance, and in this paper in particular, it is usual

to be concerned with stationary (or asymptotically stationary) processes rather than

with stable (or asymptotically stable) equilibria, and consequently no results about

stability in the sense of (2.5) appear in the paper. In fact, for the class of equations

studied we do not establish stationarity (or asymptotic stationarity) in the increments

of the returns. Nonetheless, we show that they enjoy recurrence and large deviation

properties like those of the stationary increments of the returns resulting from the

standard geometric Brownian motion market model. We use this as a reference against

which to compare our model.

We now state some known results on the distribution of standard Gaussian ran-

dom variables that will be useful in the sequel. Let Φ be the distribution of a

standard normal (i.e., N (0, 1)) random variable N , so that Φ(x) := P[N ≤ x] =
1√
2π

∫ x

−∞ e−u2/2du, x ∈ R. Mill’s estimate gives us that

1√
2π

x

x2 + 1
e−

x2

2 ≤ 1 − Φ(x) ≤ 1√
2π

1

x
e−

x2

2 , x > 0. (2.6)

In this paper, we consider the asymptotic behaviour of a scalar non–autonomous

stochastic differential equation with Markovian switching. Let Y be a continuous–

time Markov chain with state space S, and let B be a standard one–dimensional

Brownian motion independent of Y . To make our theory more understandable, we

assume the state space of the Markov chain is finite, say S = {1, 2, . . . , N} and the

Markov chain has its generator Γ = (γij)N×N given by

P{Y (t + ∆) = j|Y (t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while γii =

−∑j 6=i γij. It is known (see e.g. [1]) that almost every sample path of Y (t) is a right-

continuous step function with a finite number of jumps in any finite subinterval of

[0,∞). As a standing hypothesis we assume in this paper that the Markov chain is

irreducible. This is equivalent to the condition that for any i, j ∈ S, one can find finite

numbers i1, i2, . . . , ik ∈ S such that γi,i1γi1,i2 · · · γik,j > 0. Note that Γ always has an

eigenvalue 0. The algebraic interpretation of irreducibility is rank(Γ) = N −1. Under

this condition, the Markov chain has a unique stationary (probability) distribution

π = (π1, π2, . . . , πN) ∈ R1×N which can be determined by solving the following linear
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equation

πΓ = 0 subject to
N∑

j=1

πj = 1 and πj > 0 ∀j ∈ S. (2.7)

Moreover, the Markov chain has the very nice ergodic property which states that for

any mapping φ : S → R,

lim
t→∞

1

t

∫ t

0

φ(Y (s))ds =
N∑

j=1

φ(j)πj a.s. (2.8)

Let f, g : R × S × [0,∞) → R be continuous functions obeying local Lipschitz

continuity and linear growth conditions. Let X(0) = x0 and consider the stochastic

differential equation with Markovian switching given by

dX(t) = f(X(t), Y (t), t) dt + g(X(t), Y (t), t) dB(t). (2.9)

Under the above conditions, there is a unique continuous and adapted process which

satisfies (2.9) (see e.g. [18]). We make the standing assumption throughout the

paper that f and g obey these continuity and growth restrictions, and that Y is an

irreducible continuous–time Markov chain with finite state space S. For economy of

exposition these assumptions are not explicitly repeated in the statement of theorems

in this paper.

3. Statement and Discussion of Main Results

In this section we give sufficient conditions ensuring law of the iterated logarithm–

type behaviour for the solution of (2.9). All proofs are found in Section 5. The first

two theorems deal with upper and lower estimates on the asymptotic growth rate of

the partial maxima respectively.

Theorem 3.1. Let X be the unique adapted continuous solution satisfying (2.9). If

there exist positive real numbers ρ, K1 and K2 such that

xf(x, y, t) ≤ ρ, for all (x, y, t) ∈ R × S × [0,∞); (3.1a)

K2 ≤ g2(x, y, t) ≤ K1, for all (x, y, t) ∈ R × S × [0,∞) (3.1b)

then X satisfies

lim sup
t→∞

|X(t)|√
2t log log t

≤
√

K1, a.s. (3.2)

The result and hypotheses of this theorem are similar to those in a theorem in

Mao [16], in which no switching process is present. Here, in Theorem 3.1, a sharper

upper bound on the solution is obtained, at the expense of a two–sided bound on the

diffusion coefficient g. The proof in [16] employs martingale and integral inequalities,

while Theorem 3.1 is proven by means of a comparison result. An advantage of this

comparison approach is that a similar argument also yields a lower estimate on the
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large fluctuations of the solution, which we have been unable to obtain using the

methods in [16].

Theorem 3.2. Let X be the unique adapted continuous solution satisfying (2.9). If

there exist real numbers K1 and K2 such that (3.1b) holds, and there is an L ∈ R

such that

inf
(x,y,t)∈R×S×[0,∞)

xf(x, y, t)

g2(x, y, t)
=: L > −1

2
, (3.3)

then X satisfies

lim sup
t→∞

|X(t)|√
2t log log t

≥
√

K2, a.s. (3.4)

We can combine the arguments used to prove these results to obtain a general

result on the exact size of the large fluctuations, under the assumption that the

diffusion coefficient depends only on the process Y . The result plays a role later in

the paper when we consider applications of these pathwise large deviation results to

finance.

Corollary 3.3. Let X be the unique continuous adapted process satisfying the equa-

tion

dX(t) = f(X(t), Y (t), t) dt + γ(Y (t)) dB(t) (3.5)

with X(0) = x0, where γ : S → R \ {0}. If there exists a real number ρ > 0 such that

sup
(x,y,t)∈R×S×[0,∞)

xf(x, y, t)

γ2(y)
≤ ρ and inf

(x,y,t)∈R×S×[0,∞)

xf(x, y, t)

γ2(y)
> −1

2
, (3.6)

then

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗, a.s. (3.7)

where

σ2
∗ =

∑

j∈S

γ2(j)πj , (3.8)

and π is the stationary probability distribution of Y defined by (2.7).

The first condition in (3.6) is equivalent to (3.1a). The second condition is more

subtle. Although it is sufficient to establish an iterated logarithm–type result, it is

not a necessary condition to do so: Theorem 3.4 which follows justifies the second

part of this remark. However, examples of equations (2.9) exist in which the second

condition in (3.6) is false, and the solutions do not obey iterated logarithm type

growth bounds.

We supply such an example now. Suppose in (2.9) that f(x, y, t) = f(x) and

g(x, y, t) = σ 6= 0, and let f obey limx→∞ xf(x) = limx→−∞ xf(x) = L < −σ2/2.

Then, provided f is continuous, the first condition in (3.6) is true, but infx∈R xf(x) <

−σ2/2, and so the second condition in (3.6) is false. Routine calculations show that
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the conditions of Motoo’s theorem hold. Moreover, by determining the asymptotic

behaviour of the scale function, we can use Motoo’s theorem to show that

lim sup
t→∞

log |X(t)|
log t

exists a.s.

is deterministic and is strictly less than 1/2. Therefore a solution of (2.9) under

these conditions cannot obey the law of the iterated logarithm. It can be seen that

the second part of condition (3.6) is quite a sharp hypothesis, since in the case that

L > −σ2/2 we can find functions f such that the second part of (3.6) holds, and

hence the law of the iterated logarithm holds also.

We observe that (3.7) provides an exact rate of growth of the partial maxima of

|X|. This is in contrast with the results of Theorems 3.1 and 3.2, in which only bounds

on the growth rate are determined. We also notice that the presence of the switching

process Y influences the rate of growth, because the value of σ∗ in (3.8) depends

on the stationary distribution of Y . On the other hand, it is not immediately clear

from Theorems 3.1 and 3.2 that the switching process can influence the asymptotic

behaviour so directly, because the bounds on the diffusion coefficients K1 and K2 are

independent of the switching state Y .

Finally, not only is the a.s. rate of growth of the partial maxima deterministic,

but it also can be computed explicitly once the generator of Y and the diffusion

coefficient γ are known. The stronger conclusion of Corollary 3.3 relies upon the

stronger assumption that the diffusion coefficient depends only on the Markov process

Y .

In Theorem 3.1, 3.2 and in Corollary 3.3, we assume that f obeys a pointwise

bound that depends on x. We can allow f to violate such a bound, provided any

“spikes” that may be present in f are sufficiently narrow. This is achieved by the

choice of hypothesis (3.10) in the statement of Theorem 3.4 below.

Theorem 3.4. Let X be the unique continuous adapted process satisfying

dX(t) = f(X(t), Y (t), t) dt + g(X(t), Y (t), t) dB(t), (3.9)

with X(0) = x0. If there exist positive real numbers K1, K2 such that (3.1b) holds,

and there is a locally Lipschitz continuous function f̃ such that

|f(x, y, t)|
g2(x, y, t)

≤ f̃(x), f̃ ∈ L1(R; R+), (3.10)

then X almost surely obeys
√

K2e
−2 supx∈R

R x
0 (−f̃(y))dy

e−2
R ∞

0
(−f̃(y))dy

≤ lim sup
t→∞

X(t)√
2t log log t

≤
√

K1e
−2 infx∈R

R x
0 f̃(y)dy

e−2
R ∞

0
f̃(y)dy

(3.11a)

−√
K1e

−2 infx∈R

R x
0 (−f̃(y))dy

e2
R 0
−∞

(−f̃(y))dy
≤ lim inf

t→∞

X(t)√
2t log log t

≤ −√
K2e

−2 supx∈R

R x
0 f̃(y)dy

e2
R 0
−∞

f̃(y)dy
. (3.11b)
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We notice in this result that both positive and negative large fluctuations obey

an iterated logarithm growth bound: this contrasts with the results of Theorem 3.1,

3.2 and Corollary 3.3, in which the growth bounds are for the absolute value of

the process. While the estimates on the normalising constants
√

K1 and
√

K2 in

Theorems 3.1 and 3.2 are sharper than those obtained in Theorem 3.4, we are able

to dispense with the pointwise bounds required in (3.6).

4. Application to Financial Market Models

In this section, we consider the application of the results from the previous sec-

tion to a variant of Geometric Brownian motion (GBM) which involves Markovian

switching. In the first subsection, we state and discuss some properties of standard

models, and then do likewise for analogous results for the switching model. These

results concentrate on the long run growth rate, the size of the largest departures

from the trend, and the large fluctuations of the incremental returns. In the second

subsection, we specialise our results to a market in which there are only two regimes

of “high” and “low” volatility. Some conjectures are also stated and their possible

proofs outlined.

4.1. Discussion of main results. We begin by reviewing briefly some mathemat-

ical and economic properties of GBM. GBM is one of the canonical models used to

describe the stochastic evolution of asset prices (see e.g., Karatzas and Shreve [13]),

and is behind the classical Black–Scholes–Merton option pricing formula (see e.g.,

Merton [19]). This work has given rise to a great variety of alternative market models

and has lead to an explosion in the variety of financial instruments that can be priced;

a flavour of this activity can be gleaned from the popular textbook [11].

As is well–known, GBM can be characterised as the unique solution of the linear

stochastic differential equation

dS∗(t) = µS∗(t) dt + σS∗(t) dB(t), t ≥ 0 (4.1)

where S∗(0) > 0. In the context of financial economics, µ is the instantaneous mean

rate of growth of the price, and σ its instantaneous volatility. The importance of

the GBM model is embodied by the following fact: if security returns are stationary

and independent (so that the market is informationally efficient) and the stock price

process S∗ varies continuously in continuous time, then S∗ must obey (4.1). It is well–

known that the logarithm of S∗ is a Brownian motion with drift, having mean and

variance at time t of (µ− σ2

2
)t and σ2t respectively, and that S∗ grows exponentially

according to

lim
t→∞

log S∗(t)

t
= µ − 1

2
σ2, a.s. (4.2)
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Furthermore the maximum size of the large deviations from this growth trend obey

the law of the iterated logarithm:

lim sup
t→∞

| log S∗(t) − (µ − 1
2
σ2)t|√

2t log log t
= σ, a.s. (4.3)

Before discussing other properties of S∗, we explore the significance and implications

of the result (4.3) in terms of finance. Since S∗ represents the price of a risky asset,

we cannot expect that S∗ grows at exactly the rate exp[(µ − σ2/2)t] as t → ∞.

Indeed, as real stock prices experience departures from such steady growth rates (for

example in market crashes or bubbles), it is advantageous for any model of these

prices to also have this property and to be able to determine how large these bubbles

or crashes are likely to be from the perspective of both long–term investment and

portfolio management.

This leads us to consider the size of the largest fluctuations from the trend rate

of growth. We can study these large fluctuations by first removing the exponential

trend from the stock price, leaving us with the process log S∗(t)− (µ− σ2/2)t, which

gives the logarithm of the departure from the trend. The largest deviations of this

departure obey a law of the iterated logarithm, according to (4.3). In terms of the

stock price itself, roughly speaking, this means that the stock can be bigger than the

smooth exponential trend by a factor of exp[σ
√

2t log log t], or can be smaller by a

factor of exp[−σ
√

2t log log t] as t → ∞, a.s.

Moreover the ∆–increments of log S∗ are stationary and Gaussian, with the mean

and variance of the increments depending linearly on ∆. These ∆–increments, defined

by R∗
∆(t) = log(S∗(t)/S∗(t − ∆)), therefore obey

lim sup
t→∞

R∗
∆(t)√
2 log t

= σ
√

∆, a.s. (4.4)

In the following section, we propose a variant of (4.1) in which the stock price S is

the solution of a stochastic differential equation where the driving Brownian motion

in (4.1) is replaced by a semi–martingale which partly depends on a continuous–

time Markov chain. The model departs from (4.1) in that the returns are no longer

stationary nor independent. To make this precise, note that if the cumulative returns

on the security with price S = {S(t) : t ≥ 0} up to time t are defined by R(t), then

R(t) = log
(
S(t)/S(0)

)
, t ≥ 0 (4.5)

and the (log) returns of the security over the time interval [t − ∆, t] are defined by

R∆(t) = R(t) − R(t − ∆) = log(S(t)/S(t − ∆)), t ≥ ∆. (4.6)

With these definitions we show that the processes S and R∆ obey analogous properties

to (4.2), (4.3) and (4.4). Therefore, the stock price process grows exponentially,

experiences large deviations from the trend growth rate of iterated logarithm type,
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and incremental returns have the same rate of growth as those of stationary Gaussian

processes, despite R∆ being non–Gaussian. The above claims are made precise in the

following Theorems in this section, whose proofs are supplied in Section 6.

Theorem 4.1. Let Y be a continuous–time Markov process with state space S. Let

X be the unique continuous adapted process governed by

dX(t) = f(X(t), Y (t), t) dt + σ dB(t) t ≥ 0 (4.7)

with X(0) = 0. Let µ ∈ R, σ ∈ R \ {0}, and S be the unique continuous adapted

process defined by

dS(t) = µS(t) dt + S(t) dX(t) t ≥ 0 (4.8)

with S(0) = s0 > 0. Suppose that f obeys (3.6). Then:

(i)

lim
t→∞

log S(t)

t
= µ − σ2

2
, a.s.

(ii)

lim sup
t→∞

| logS(t) − (µ − σ2

2
)t|√

2t log log t
= |σ|, a.s. (4.9)

(iii) If R∆ is given by (4.6), then for each 0 < ∆ < ∞

lim sup
t→∞

|R∆(t)|√
2 log t

= |σ|
√

∆, a.s.

Despite the presence of the Markov process Y (which introduces regime shifts)

and the X–dependent drift term f in (4.7) (which introduces inefficiency), we see that

S obeys the same asymptotic properties as S∗, namely (4.2), (4.3) and (4.4). These

properties of S∗ are shared by S because condition (3.6) guarantees that f becomes

small for large values of X, thereby forcing S and S∗ to remain close, in some sense.

Indeed, if f is identically zero, we see that S and S∗ actually coincide.

On the other hand, the analysis is now more complicated because the increments

are neither independent nor Gaussian, and it is not possible to write down an explicit

formula for S in terms of B and Y . This complication is worthwhile, however, because

it stems from the addition of inefficiency and regime shifts into the market model.

We now give a result in the case when the diffusion coefficient depends on the

switching process Y . This is an important special case for two related economic rea-

sons. The first is the principal economic rationale for switching models in finance:

namely that market sentiment occasionally changes, leading to differing volatility or

growth rates. The incorporation of sentiment in this manner is one of the impor-

tant motivations behind the discipline of behavioural finance (see e.g., the survey

paper [5]). Secondly, it makes the volatility a stochastic process which cannot be ex-

plained purely in terms of the current market returns. This places the model within
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the framework of stochastic volatility (SV) models, particularly as the volatility pro-

cess is stationary and ergodic. One of the first such SV models was presented in [12],

and a recent textbook devoted to stochastic volatility models is [6]. A common fea-

ture of SV models is that the volatility is described by the stationary solution of a

stochastic differential equation which is driven by a Brownian motion which is corre-

lated with, but not equal to, the Brownian motion which drives the stock price. This

renders the market incomplete, as there are more sources of randomness than tradable

securities. In the model proposed here the volatility is also a stationary stochastic

process, but unlike processes in SV models, it can assume only finitely many values,

does not change from instant to instant, and is also uncorrelated with the Brown-

ian motion which drives the stock process. However, if employed to price options,

the model analysed here should lead to both incomplete markets and the presence

of volatility smiles. Volatility smiles have been shown to exist for other stochastic

volatility models in which the volatility assumes a finite number of values (see e.g.,

Renault and Touzi [22]).

The first result shows that when the volatility depends on the switching process

alone, there is a well–defined growth rate, and the fluctuations around this growth

rate still obey a law of the iterated logarithm.

Theorem 4.2. Let S be the unique continuous adapted process governed by (4.8) with

S(0) = s0 > 0, where X satisfies

dX(t) = f(X(t), Y (t), t) dt + γ(Y (t)) dB(t) t ≥ 0 (4.10)

with X(0) = 0 and γ : S → R \ {0}. Suppose that f obeys (3.6).

(i) If σ∗ > 0 is defined by (3.8), then

lim
t→∞

log S(t)

t
= µ − σ2

∗
2

, a.s.

(ii) If σ∗ > 0 is defined by (3.8), then

lim sup
t→∞

| log S(t) − (µt − 1
2

∫ t

0
γ2(Y (s)) ds)|√

2t log log t
= σ∗, a.s. (4.11)

Before proceeding further, we pause to examine the relevance of (4.11) and its

connection with (4.9) in Theorem 4.1. The limit in (4.11) gives, at least superficially,

a weaker result than the limit in (4.9). As explained earlier, (4.9) can be interpreted in

terms of the size of the fluctuations of the price around its deterministic exponential

rate of growth G(t) := exp[(µ−σ2/2)t]. Hence the log trend is log G(t) = (µ−σ2/2)t,

so (4.9) can be written

lim sup
t→∞

| log S(t) − log G(t)|√
2t log log t

= σ, a.s.
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Similarly, (4.11) can be written in this form with σ∗ being the limit on the right–hand

side, and the log trend, log G∗(t), in this case is stochastic and given by

log G∗(t) = µt − 1

2

∫ t

0

γ2(Y (s))ds. (4.12)

Moreover, despite G∗(t) being stochastic, we have

lim
t→∞

log G(t)

t
= µ − 1

2
σ2, lim

t→∞

log G∗(t)

t
= µ − 1

2
σ2
∗ a.s.

The fact that G∗ is stochastic does not by itself create a difficulty in (4.11) but

rather the fact that it depends on the switching process Y which cannot be observed

directly from market data. Therefore it is certainly more cumbersome, and perhaps

infeasable, to remove this stochastic growth trend as easily as in (4.9). However, it

may be possible to recover the full strength of (4.9) by introducing a deterministic log

trend log G1(t) := (µ− σ2
∗/2)t. Since the ergodic theorem for jump processes implies

lim
t→∞

1

t

∫ t

0

γ2(Y (s))ds = σ2
∗ a.s.,

if we can show that the convergence rate to the limit is so fast that

lim
t→∞

√
t log log t

{1

t

∫ t

0

γ2(Y (s))ds − σ2
∗

}
= 0 a.s., (4.13)

then (4.11) implies

lim sup
t→∞

| log S(t) − (µ − σ2
∗/2)t|√

2t log log t
= σ∗, a.s.,

and we can interpret a large value of σ∗ as giving rise to larger fluctuations from the

deterministic exponential growth trend exp[(µ − σ2
∗/2)t].

We conjecture that the rate of convergence needed in (4.13) is in fact attained

under the hypotheses of Theorem 4.2 because the jump process is irreducible and

has a finite state space. We sketch a rough and tentative proof of the steps involved.

To determine the convergence rate a.s., by means of a Borel–Cantelli argument, it is

enough to know that the convergence of
∫ t

0
γ2(Y (s))ds/t to σ2

∗ is sufficiently fast in

t as t → ∞ in, for example, the fourth moment. The idea is to consider a discrete

Markov chain embedded in the jump process, and to use analysis of the independent

excursions of the chain from each state. By irreducibility and the finiteness of the state

space, the excursion time should have finite moments and the standard Strong Law of

Large Numbers with fourth moment condition can be applied. This analysis should

establish convergence of the numbers of visits of the chain to each state as a function

of discrete time both in fourth mean and a.s. The connection between discrete–time

for the embedded chain, and continuous–time for Y , is asymptotically linear by virtue

of the independent and exponentially distributed holding time distributions for each
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state for Y . Therefore, this connection should enable us to recover the continuous–

time result (4.13). Even if correct, this outline falls far short of a proof but nonetheless

we feel adds weight to our claim.

Finally, a result can be proven about the large fluctuations of the ∆–returns,

even when the diffusion coefficient depends on X, Y and t. Once again, the large

fluctuations of the ∆–returns grow at a rate
√

∆
√

2 log t times a constant which

depends on the volatility. This rate of growth is consistent with the ∆–increments of

a stationary Gaussian process.

Theorem 4.3. Let S be the unique continuous adapted process governed by (4.8) with

S(0) = s0 > 0, where X satisfies

dX(t) = f(X(t), Y (t), t) dt + g(X(t), Y (t), t) dB(t) t ≥ 0 (4.14)

with X(0) = 0. Suppose moreover that f obeys (3.6), and g obeys (3.1b). Let ∆ > 0.

If R∆ is the process defined by (4.6), then

√
K2

√
∆ ≤ lim sup

t→∞

sup0≤δ≤∆ |Rδ(t)|√
2 log t

≤
√

K1

√
∆, a.s. (4.15)

We note that the argument used to prove these results can also be applied to an

inefficient market model in which the diffusion coefficient in X depends not only on

the Markovian switching term but also on a delay term, once that diffusion coefficient

remains bounded.

4.2. Results for a two–state volatility model. In this subsection, we explore

further the case when X is given by (4.10), in which the diffusion coefficient depends

only on the switching process Y . In this example, Y is a two-state Markov chain.

To capture this in the notation of the previous subsection we let the state space

S = {H, L} so the diffusion coefficient can take the values γ(H) = σH or γ(L) = σL.

This represents a market model where the volatility can be either “high” or “low”,

with values σH > σL > 0 respectively. The generator of Y , denoted Γ, is given by

Γ =

(
−γ1 γ1

γ2 −γ2

)

where γ1 is the rate of transition from the high state to the low state, and γ2 is the

transition rate from the low state to the high state. In a typical situation one would

have γ2 < γ1 so that the process spends more time in the low volatility state in the

long run. We give calculations and interpretations in this case and we note that this

can easily be generalised to a finite number of volatility levels. However, econometric

evidence indicates that a two–state model is very often sufficient.

Define a process R∗ such that R∗(0) = 0 and dR∗(t) = µdt + dX(t), where X

is again given by (4.10). Then we can reformulate (4.8) as dS(t) = S(t)dR∗(t). We
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call R∗ the gains process; it is intimately related to the cumulative returns R, given

by (4.5). Indeed, the increments of the gains R∗
∆(t) := R∗(t) − R∗(t − ∆) are once

again similar to Brownian motion since R∗
∆(t) = X(t) − X(t − ∆) + µ∆ and it has

already been shown that the increments of X are similar to those of Brownian motion.

Recalling Corollary 3.3 we have that

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗ a.s., where σ2
∗ =

∑

j∈S

γ2(j)πj (4.16)

and π = (πH , πL) is the stationary probability distribution of Y . Moreover, in the

situation that
∫ t

0
γ2(Y (s)) ds/t → σ2

∗ at the rate conjectured in (4.13), we have

lim sup
t→∞

| log S(t) − (µ − σ2
∗/2)t|√

2t log log t
= σ∗, a.s. (4.17)

π = (πH , πL) can be found by solving πΓ = 0 (or equivalently −πHγ1 + πLγ2 = 0)

subject to the constraint πH + πL = 1. Solving these equations we arrive at

πH =
γ2

γ1 + γ2

, πL =
γ1

γ1 + γ2

.

Thus, σ2
∗ is now simply the weighted average of the different volatility levels

σ2
∗ = σ2

H

γ2

γ1 + γ2

+ σ2
L

γ1

γ1 + γ2

.

As mentioned earlier, if γ2 < γ1 then more weight will be placed on the lower volatility

regime as more time will be spent in the low volatility state. This means that σ∗ will

be small and thus the fluctuations of |X| will be relatively small. On the other hand,

if πH is relatively close to unity then σ∗ can be quite large also and so periods in the

high volatility regime can have a big impact on the fluctuations. Moreover, if σ∗ is

large then the growth rate, given by µ−σ2
∗/2, is adversely affected. These important

features are somewhat concealed in the statement of (4.16).

Since we are considering the simpler case where the diffusion coefficient is t– and

X–independent, the conclusion (4.15) of Theorem 4.3 applies and we get

σL

√
∆ ≤ lim sup

t→∞

sup0≤δ≤∆ |Rδ(t)|√
2 log t

≤ σH

√
∆, a.s.

In fact, we conjecture that in this case (where S = {H, L} and γ(H) = σH) we have

lim sup
t→∞

|R∆(t)|√
2 log t

= σH

√
∆, a.s. (4.18)

This suggests that the “high” volatility periods are entirely responsible for the largest

fluctuations in the absolute ∆–returns. This phenomena cannot be observed from

(4.16) and (4.17) which deal with the cumulative returns, which include accumulated
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contributions from both high and low volatility periods. Note that the upper bound

obtained in (4.15) gives the inequality

lim sup
t→∞

|R∆(t)|√
2 log t

≤ σH

√
∆, a.s. (4.19)

We are lead to the conjecture (4.18) by the following argument. First, we have

R∆(t) = log(S(t)/S(t− ∆)) = X(t) − X(t − ∆) −
∫ t

t−∆

{µ − 1

2
γ2(Y (s))} ds,

so because the limits exist we have

lim sup
t→∞

|R∆(t)|√
2 log t

= lim sup
t→∞

|X(t − ∆) − X(t)|√
2 log t

, a.s.

and since

X(t) − X(t − ∆) =

∫ t

t−∆

f(X(s), Y (s), s) ds +

∫ t

t−∆

γ(Y (s)) dB(s), t ≥ ∆

we have

lim sup
t→∞

|R∆(t)|√
2 log t

= lim sup
t→∞

|
∫ t

t−∆
γ(Y (s)) dB(s)|√

2 log t
, a.s.

In particular, with Un =
∫ (n+1)∆

n∆
γ(Y (s)) dB(s) we have

lim sup
t→∞

|R∆(t)|√
2 log t

≥ lim sup
n→∞

|R∆((n + 1)∆)|√
2 log((n + 1)∆)

= lim sup
n→∞

|Un|√
2 log n

. (4.20)

Since Y is stationary, the probability that Y (n∆) = H is πH = γ2/(γ1 + γ2). Define

the event An := {Y (s) = H, for all s ∈ [n∆, (n + 1)∆]}. Then

P[An] = P[Y (n∆) = H ]P[no jump from state H for at least ∆ time units]

= γ2/(γ1 + γ2) · e−γ1∆ =: π(∆).

Note also that the process {IAn : n ≥ 1} is stationary and that Cov(IAn, IAn+m) → 0

as m → ∞ (here IC is the indicator random variable of an event C, and Cov(U, V ) is

the covariance of the random variables U and V ). Define Tn =
∑n

j=1 IAj
. Then by a

corollary of the ergodic theorem we have Tn/n → E[IA1 ] = π(∆) as n → ∞ a.s. Let

Ln = min{l ≥ n :
∑l

j=1 IAj
= n}. By definition IALn

= 1. Then if we consider the

collection of {Uj : j = 1, . . . , n} for which IAj
= 1 we have

max
1≤j≤n

|Uj| ≥ max
1≤k≤Tn

|ULk
|.

Next, if IAn = 1 then Y (s) = H for all s ∈ [n∆, (n + 1)∆], we have

Un =
∫ (n+1)∆

n∆
γ(H) dB(s) = σH(B((n + 1)∆) − B(n∆)). Hence we get

max
1≤j≤n

|Uj| ≥ max
1≤k≤Tn

|ULk
| = max

1≤k≤Tn

|σH{B((Lk + 1)∆) − B(Lk∆)}|.
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Therefore with ξ(k) := B((Lk + 1)∆) − B(Lk∆) we have

lim sup
n→∞

max1≤j≤n |Uj|√
2 log n

≥ lim sup
n→∞

max1≤k≤Tn |σHξ(k)|√
2 log Tn

·
√

log Tn

log n

= lim sup
n→∞

max1≤k≤Tn |σHξ(k)|√
2 log Tn

= σH lim sup
n→∞

max1≤k≤n |ξ(k)|√
2 log n

,

where we used the fact that Tn → ∞ as n → ∞ a.s. at the last step. Since B and

Y are independent, it follows that L = {Ln : n ≥ 1} and B are independent. Also

Lk+1 − Lk ≥ 1. Thus {ξ(k) : k ≥ 1} is a sequence of independently and identically

distributed normal random variables with mean zero and variance ∆. Therefore

lim sup
n→∞

max1≤k≤n |ξ(k)|√
2 log n

=
√

∆, a.s.

Hence

Λ := lim sup
n→∞

max1≤j≤n |Uj|√
2 log n

≥ σH

√
∆, a.s.

This implies that

lim sup
n→∞

|Un|√
2 log n

= Λ ≥ σH

√
∆, a.s. (4.21)

Combining (4.19), (4.20) and (4.21) gives (4.18).

5. Proofs of Theorems from Section 3

5.1. Proof of Theorem 3.1. Applying Itô’s formula to (2.9) we get

dX2(t) =
[
2X(t)f(X(t), Y (t), t) + g2(X(t), Y (t), t)

]
dt

+ 2X(t)g(X(t), Y (t), t) dB(t), t ≥ 0. (5.1)

Let N be the local martingale defined by N(t) =
∫ t

0
2X(s)g(X(s), Y (s), s) dB(s). It

has quadratic variation given by 〈N〉(t) =
∫ t

0
4X2(s)g2(X(s), Y (s), s) ds. Then by

Doob’s martingale representation theorem (cf. e.g., Theorem 3.4.2 in [14]), there

exists another Brownian motion β in an extended probability space with measure P̃

such that

N(t) =

∫ t

0

2|g(X(s), Y (s), s)|
√

X2(s)dβ(s) P̃-a.s.

Now let Z(t) = X2(t) and let φ(t) = 2X(t)f(X(t), Y (t), t) + g2(X(t), Y (t), t) so that

we can write equation (5.1) as

dZ(t) = φ(t) dt + 2|g(X(t), Y (t), t)|
√

Z(t) dβ(t). (5.2)

Let M(t) =
∫ t

0
|g(X(s), Y (s), s)| dβ(s), so 〈M〉(t) =

∫ t

0
g2(X(s), Y (s), s) ds. Then by

the martingale time–change theorem (cf., e.g., Theorem 3.4.6 in [14]), we may define

a new Brownian motion β̃ by β̃(〈M〉(t)) = M(t) and the stopping time τ by τ(t) =

inf{s > 0 : 〈M〉(s) > t}. Since g2(x, y, t) ≥ K2, we have τ(t) = 〈M〉−1(t). Moreover,
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M(τ(t)) = β̃(t) and we introduce the processes X̃(t) = X(τ(t)), Ỹ (t) = Y (τ(t)) and

Z̃(t) = Z(τ(t)). So now, applying this time-change to (5.2) we get:

Z̃(t) = Z(τ(t)) = Z(τ(0)) +

∫ τ(t)

0

φ(s) ds +

∫ τ(t)

0

2|g(X(s), Y (s), s)|
√

Z(s) dβ(s).

(5.3)

To deal with the stochastic integral above, we use Proposition 3.4.8 from [14], which

states that if η̃(t) = η(τ(t)) and η is Fβ–adapted, then
∫ τ(s)

0
η(u) dM(u) =∫ s

0
η̃(u) dβ̃(u). In this case, we set η(t) = 2

√
Z(t) and set M equal to the martingale

defined above. Therefore
∫ τ(t)

0

2
√

Z(s) |g(X(s), Y (s), s)| dβ(s) =

∫ τ(t)

0

2
√

Z(s) dM(s) =

∫ t

0

2

√
Z̃(s) dβ̃(s).

To deal with the Riemann integral term in (5.3), we use Problem 3.4.5 from [14],

which states that if G is a bounded measurable function, and [a, b] ⊂ [0,∞) then∫ b

a
G(s) d〈M〉(s) =

∫ 〈M〉(b)
〈M〉(a)

G(τ(s)) ds. In this case, we set

G(t) = φ(t)/g2(X(t), Y (t), t)

and as d〈M〉(t) = g2(X(t), Y (t), t) dt, we obtain
∫ τ(t)

0

φ(s) ds =

∫ τ(t)

0

G(s) d〈M〉(s) =

∫ 〈M〉(τ(t))

〈M〉(0)
G(τ(s)) ds

=

∫ t

0

φ̃(s)

g2(X̃(s), Ỹ (s), τ(s))
ds,

where φ̃(t) = φ(τ(t)). So we can now write (5.3) as:

Z̃(t) = Z̃(0) +

∫ t

0

φ̃(s)

g2(X̃(s), Ỹ (s), τ(s))
ds +

∫ t

0

2

√
Z̃(s) dβ̃(s). (5.4)

Now, using conditions (3.1a) and (3.1b), it is easy to see that the drift coefficient

of (5.4) is bounded above by (K2 + 2ρ)/K2. Define the process which is uniquely

determined by the stochastic differential equation

dU(t) = Cu dt + 2
√

|U(t)| dβ̃(t) (5.5)

with U(0) ≥ Z̃(0) ≥ 0, where Cu = (K2 + 2ρ)/K2. We will now show, using a

stochastic comparison technique, that for all t ≥ 0, Z̃(t) ≤ U(t) a.s.

First, we apply a stochastic comparison theorem (cf., e.g., Proposition 5.2.18 in

[14]) to (5.5) and to the equation dU1(t) = 2
√

|U1(t)| dβ̃(t) with U1(0) = 0; this shows

that U(t) ≥ U1(t) a.s., and since the process U1 has the unique solution U1(t) = 0, it

follows that U(t) ≥ 0 a.s. Finally, we can apply the comparison theorem to (5.4) and

(5.5) to conclude that for all t ≥ 0, Z̃(t) ≤ U(t) a.s. Now we can approximate an

upper bound for Z̃ by getting an upper bound for U . However, before we do that we

will apply a time-change and a change of scale to U to get a process with finite speed
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measure. Consider V (t) = e−tU(et − 1). By using the product rule and introducing

a new Brownian motion β̄, we can show that

dV (t) = [−V (t) + Cu] dt + 2
√

V (t) dβ̄(t). (5.6)

A scale function of V is given by pV (x) = µ
∫ x

a
ey/2y−Cu/2 dy, a > 0, for some positive

real number µ. It is easy to check that V satisfies (2.3). Hence Theorem 2.1 can be

applied to V . Now, there exists y0 > a such that for all y ≥ y0, y 7→ ey/2y−Cu/2 is

increasing. Thus for all x ≥ y0 + 1, e(x−1)/2(x − 1)−Cu/2 ≤ pV (x), then 1/pV (x) ≤
e−(x−1)/2(x − 1)Cu/2. Let β > 1 and define h(t) = 2β log t for t ≥ e(y0+1)/(2β). Hence

1

pV (h(t))
≤ e−β log t+ 1

2 (2β log t − 1)
Cu
2 ,

and so lim supt→∞ log(1/pV (h(t)))/ log t ≤ −β. So for any β − 1 > ǫ > 0, there exists

tǫ such that for all t > tǫ, log(1/pV (h(t))) ≤ (−β+ǫ) log t, which implies 1/pV (h(t)) ≤
t−β+ǫ. Since β − ǫ > 1, it follows that

∫∞
tǫ

1/pV (h(s)) ds ≤
∫∞

tǫ
1/sβ−ǫ ds < ∞. There-

fore lim supt→∞ V (t)/2 log t ≤ β a.s. Letting β ↓ 1 through the rational numbers, we

have

lim sup
t→∞

V (t)

2 log t
≤ 1, a.s.

Using the fact that V (t) = e−tU(et − 1), we find that

lim sup
t→∞

U(t)

2t log log t
≤ 1, a.s.

So

lim sup
t→∞

Z(τ(t))

2t log log t
= lim sup

t→∞

Z̃(t)

2t log log t
≤ 1, a.s.

By definition, τ(t) = 〈M〉−1(t) and τ(·) is monotone, so it follows that

lim sup
t→∞

Z(t)

2〈M〉(t) log log〈M〉(t) ≤ 1, a.s. (5.7)

Since K2t ≤ 〈M〉(t) ≤ K1t, t ≥ 0, we can show that

lim
t→∞

log log 〈M〉(t)
log log t

= 1 and
t

〈M〉(t) ≥ t

K1t
=

1

K1
, a.s. for all t > 0.

Therefore (5.7) implies lim supt→∞ Z(t)/(2t log log t) ≤ K1 a.s. By taking square

roots on both sides we get the assertion.

5.2. Proof of Theorem 3.2. Following the same argument as the previous proof,

we arrive at (5.4). Therefore

dZ̃(t) =
φ(τ(t))

g2(X̃(t), Ỹ (t), τ(t))
dt + 2

√
Z̃(t) dβ̃(t).
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By (3.3), it is easy to see that the drift coefficient of the above equation is bounded be-

low by some positive number, say Cl. Consider the process governed by the following

equation

dU(t) = Cl dt + 2
√
|U(t)| dβ̃(t)

with U(0) ≤ Z̃(0). Then it can be shown that for all t ≥ 0, Z̃(t) ≥ U(t) ≥ 0.

Applying changes in both time and scale again, let V (t) = e−tU(et − 1), to get

dV (t) = (−V (t) + Cl) dt + 2
√

V (t) dβ̄(t) t ≥ 0.

We proceed as before; the process V obeys (2.3), and so we may apply Theorem 2.1

to it. Since a scale function of V is given by pV (x) = µ
∫ x

a
e

1
2
yy−Cl/2 dy for some

positive real number µ, then by L’Hôpital’s Rule limx→∞ pV (x)/ex/2 = 0. This implies

that there exists x∗ > 0 such that for all x > x∗, pV (x) < ex/2. Hence if we let

h(t) = 2 log t, there exists t∗ > 0, such that for all t > t∗, h(t) > x∗, so pV (h(t)) < t,

thus
∫∞

t∗
1/pV (h(s)) ds >

∫∞
t∗

1/s ds = ∞. Therefore lim supt→∞ V (t)/2 log t ≥ 1

a.s. Since V (t) = e−tU(et − 1), we get lim supt→∞ U(t)/(2t log log t) ≥ 1 a.s. Since

Z̃(t) ≥ U(t), we get lim supt→∞ Z̃(t)/(2t log log t) ≥ 1 a.s. Hence, as in the previous

proof, we have

lim sup
t→∞

Z(t)

2〈M〉(t) log log〈M〉(t) ≥ 1, a.s. (5.8)

Proceeding as in the end of the last proof, we get the desired result (3.4).

5.3. Proof of Corollary 3.3. By (5.7) and (5.8), as Z(t) = X2(t), we have

lim sup
t→∞

X2(t)

2〈M〉(t) log log〈M〉(t) = 1, a.s. (5.9)

By analogy to the proof of Theorem 3.1, we have 〈M〉(t) =
∫ t

0
γ2(Y (s)) ds. From

(2.8) and (3.8), it follows that 〈M〉(t)/t → σ2
∗ a.s., which together with (5.9), proves

the result.

5.4. Proof of Theorem 3.4. For all t ≥ 0

X(t) = x0 +

∫ t

0

f(X(s), Y (s), s)ds +

∫ t

0

g(X(s), Y (s), s) dB(s).

Let M1(t) =
∫ t

0
g(X(s), Y (s), s) dB(s), so 〈M1〉(t) =

∫ t

0
g2(X(s), Y (s), s) ds. Hence

for all t ≥ 0, K2t ≤ 〈M1〉(t) ≤ K1t and limt→∞〈M1〉(t) = ∞ almost surely. Moreover

〈M1〉 is increasing on (0,∞). Again we use the time-change theorem for martingales:

for each 0 ≤ t < ∞, define the stopping time λ(t) := inf{s > 0 : 〈M1〉(s) > t}. Thus

〈M1〉(λ(t)) = t and λ(t) = 〈M1〉−1(t) . A process defined by W (t) := M(λ(t)), ∀ t ≥
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0 is a standard Brownian motion with respect to the filtration G(t) := F(λ(t)).

Therefore, as in the proof of Theorem 3.1, we get

X̃(t) := X(λ(t)) = x0 +

∫ λ(t)

0

f(X(s), Y (s), s)ds +

∫ λ(t)

0

g(X(s), Y (s), s)dB(s)

= x0 +

∫ t

0

f(X̃(s), Ỹ (s), λ(s))

g2(X̃(s), Ỹ (s), λ(s))
ds + W (t)

where Ỹ (t) := Y (λ(t)). Due to (3.10), we have

∀ (x, y, t) ∈ R × S × [0,∞), −f̃ (x) ≤ f(x, y, t)

g2(x, y, t)
≤ f̃(x).

Consider two processes Z1 and Z2 governed by the following two equations, for t ≥ 0

dZ1(t) = f̃(Z1(t)) dt + dW (t), dZ2(t) = −f̃(Z2(t)) dt + dW (t)

with Z2(0) ≤ x0 ≤ Z1(0). Then again by the comparison theorem, we can show that

for all t ≥ 0, Z2(t) ≤ X̃(t) ≤ Z1(t) a.s. Consider the scale function of Z1 defined as

the following

pZ(x) =

∫ x

0

e−2
R y
0 f̃(z)dzdy, x ∈ R.

Then pZ ∈ C 2(R; R) and for all x ∈ R, we have

p′Z(x)f̃(x) +
1

2
p′′Z(x) = 0. (5.10)

Since f̃ ∈ L1, there exist real numbers k1, k2 such that
∫∞
0

f̃(z)dz = k1 and
∫ 0

−∞ f̃(z)dz =

k2, which implies limx→∞ p′Z(x) = e−2k1 and limx→−∞ p′Z(x) = e2k2 . So pZ(∞) = ∞
and p(−∞) = −∞. Thus lim supt→∞ Z1(t) = ∞ and lim inft→∞ Z1(t) = −∞ a.s.

Also by L’Hôpital’s Rule,

lim
x→∞

pZ(x)

x
= e−2k1 , lim

x→−∞

pZ(x)

x
= e2k2. (5.11)

Let H(t) = pZ(Z1(t)). Then by Itô’s Rule and (5.10)

dH(t) = p′Z(Z1(t))dW (t), t ≥ 0,

with H(0) = pZ(Z1(0)). Now since pZ is strictly increasing, the above equation can

be written as

dH(t) = l(H(t))dW (t), t ≥ 0,

where l(x) = p′Z(p−1
Z (x)), for all x ∈ R. H is also a recurrent process on R. Moreover,

(5.11) gives

lim
t→∞

sup0≤s≤t H(s)

sup0≤s≤t Z1(s)
= e−2k1 and lim

t→∞

inf0≤s≤t H(s)

inf0≤s≤t Z1(s)
= e2k2 , a.s. (5.12)

For each t ≥ 0, define the continuous local martingale Q given by

Q(t) :=

∫ t

0

l(H(s)) dW (s),
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which has quadratic variation 〈Q〉(t) :=
∫ t

0
l2(H(s)) ds. Thus 〈Q〉′(t) > 0 for t > 0

and 〈Q〉 is an increasing function. Now

inf
x∈R

l2(x) = inf
x∈R

p′Z(p−1
Z (x))2 = inf

x∈R

e−4
R p−1

Z
(x)

0 f̃(z)dz = e−4 supx∈R

R x
0 f̃(z)dz > 0.

Similarly, supx∈R l2(x) = e−4 infx∈R

R x
0

f̃(z)dz < ∞. Let l21 = infx∈R l2(x) and l22 =

supx∈R l2(x), so for all t ≥ 0,

l21t ≤ 〈Q〉(t) ≤ l22t, (5.13)

which implies limt→∞〈Q〉(t) = ∞ almost surely. Now define, for each 0 ≤ s < ∞, the

stopping time κ(s) = inf{t ≥ 0; 〈Q〉(t) > s}. It is obvious that κ is continuous and

tends to infinity almost surely. Furthermore 〈Q〉(κ(t)) = t, and κ−1(t) = 〈Q〉(t) for

t ≥ 0. Then the time-changed process W̃ (t) := Q(κ(t)) is a standard one-dimensional

Brownian motion with respect to the filtration J (t) := G(κ(t)). Hence we have

H̃(t) := H(κ(t)) = H(κ(0)) +

∫ κ(t)

0

l(H(s))dW (s) = H̃(0) + W̃ (t)

where H̃ is J (t)-adapted. So the law of the iterated logarithm holds for H̃, that is

1 = lim sup
t→∞

H(κ(t))√
2t log log t

= lim sup
t→∞

H(t)√
2〈Q〉(t) log log 〈Q〉(t)

, a.s.

Note by (5.13) for all t ≥ 0, that log l21 + log t ≤ log 〈Q〉(t) ≤ log l22 + log t, so we have

lim
t→∞

log log 〈Q〉(t)
log log t

= 1, a.s.

which implies

lim sup
t→∞

H(t)√
2〈Q〉(t) log log t

= 1, a.s.

Similarly

lim inf
t→∞

H(t)√
2〈Q〉(t) log log t

= −1, a.s.

Now as 〈Q〉(t) ≤ l22t, we have

lim sup
t→∞

H(t)√
2t log log t

= lim sup
t→∞

√
〈Q〉(t)

t
· H(t)√

2〈Q〉(t) log log t
≤ l2, a.s.

Similarly

lim sup
t→∞

H(t)√
2t log log t

≥ l1, a.s.

and

−l2 ≤ lim inf
t→∞

H(t)√
2t log log t

≤ −l1, a.s.
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Combining the above results with (5.12), we get

e2k1l1 ≤ lim sup
t→∞

Z1(t)√
2t log log t

≤ e2k1l2, a.s.

−e−2k2l2 ≤ lim inf
t→∞

Z1(t)√
2t log log t

≤ −e−2k2l1, a.s.

which implies

lim sup
t→∞

X(λ(t))√
2t log log t

= lim sup
t→∞

X̃(t)√
2t log log t

≤ lim sup
t→∞

Z1(t)√
2t log log t

≤ e−2 infx∈R

R x
0

f̃(y) dy

e−2
R ∞

0
f̃(y) dy

, a.s.

Similarly,

lim inf
t→∞

X(λ(t))√
2t log log t

≤ −e−2 supx∈R

R x
0

f̃(y)dy

e2
R 0
−∞

f̃(y)dy
, a.s.

By an analogous argument to that given in the proof of Theorem 3.1, we get

lim sup
t→∞

X(t)√
2t log log t

≤
√

K1e
−2 infx∈R

R x
0 f̃(y) dy

e−2
R ∞

0
f̃(y)dy

, a.s.,

lim inf
t→∞

X(t)√
2t log log t

≤ −√
K2e

−2 supx∈R

R x
0 f̃(y)dy

e2
R 0
−∞

f̃(y)dy
, a.s.

By considering Z2 in a similar manner, we deduce the lower estimates on lim sup and

lim inf of X in (3.11).

6. Proofs of Theorems from Section 4

6.1. Proof of Theorem 4.1. Combining (4.8) and (4.7), we have

dS(t) = [µS(t) + f(X(t), Y (t), t)S(t)] dt + σS(t) dB(t) t ≥ 0.

Thus S(t) = s0e
(µ−σ2

2
)t+X(t), t ≥ 0, which implies log S(t)/t = log s0/t + µ − σ2/2 +

X(t)/t. Now by Corollary 3.3, we have limt→∞ X(t)/t = 0, a.s. Therefore by letting

t → ∞, the second part of the conclusion is obtained. Since X(t) = log S(t)− log s0−
(µ − σ2

2
)t, t ≥ 0, also by Corollary 3.3, we get the third part of the conclusion. For

the first part, we observe that the assertion is equivalent to

lim sup
t→∞

|X∆(t)|√
2 log t

= |σ|
√

∆, a.s.

where X∆(t) =
∫ t

t−∆
f(X(s), Y (s), s) ds + σ(B(t) − B(t − ∆)). Now since for all

(x, y, t) ∈ R × S × R+, −ρ/|x| < f(x, y, t) < ρ/|x|, then for any y ∈ S we have

lim|x|→∞ f(x, y, t) = 0. Also because f is continuous on R, there exists a global upper

bound, say K, such that for all (x, y, t) ∈ R × S × R+, |f(x, y, t)| < K. Thus

lim
t→∞

∫ t

t−∆
f(X(s), Y (s), s)ds√

2 log t
= 0, a.s.
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Hence it remains to show that

lim sup
t→∞

|B(t) − B(t − ∆)|√
2 log t

=
√

∆, a.s.

Consider Z∆(n) := (B(n) − B(n − ∆))/
√

∆, n ∈ N. Then {Z∆(n)}n∈N is a sequence

of standard normal random variables. For every ε > 0, Mill’s estimate gives

P[|Z∆(n)| >
√

2(1 + ε) log n] ≤ 2√
2π

1√
2(1 + ε) logn

1

n1+ε
.

Therefore by the Borel-Cantelli lemma and by letting ε ↓ 0 through the rational

numbers, we have lim supn→∞ |Z∆(n)|/√2 log n ≤ 1, a.s. Now choose {ni}i∈N in {n}
such that for any fixed ∆ and i ∈ N, ni+1 > ni + ∆. So {Z∆(ni)}n,i∈N is a sequence

of independent N (0, 1) random variables. By (2.6),

lim
i→∞

P[|Z∆(ni)| >
√

2 log ni]
1√
π

1√
log ni

1
ni

= 1. (6.1)

Since the denominator of the left–hand side of (6.1) is not summable, using the

Borel-Cantelli lemma again, we get lim supi→∞ |Z∆(ni)|/
√

2 log ni ≥ 1 a.s., and so

lim sup
n→∞

|Z∆(n)|√
2 log n

= 1, a.s. (6.2)

It immediately follows that

lim sup
t→∞

|B(t) − B(t − ∆)|√
2 log t

≥ lim sup
n→∞

|B(n) − B(n − ∆)|√
2 log n

=
√

∆, a.s. (6.3)

For the upper estimate, by the triangle inequality

|B(t)−B(t−∆)| ≤ |B(t)−B(nε)|+ |B(t−∆)−B(nε−∆)|+ |B(nε)−B(nε−∆)|
(6.4)

where ε ∈ (0, 1). We now consider the first term on the right-hand side of the above

inequality. By properties of Brownian motions,

P[ sup
nε≤t≤(n+1)ε

|B(t) − B(nε)| > 1] = 2P[ sup
0≤t≤εn̂ε−1

B(t) > 1]

= 2P[B(εn̂ε−1) > 1] = 2

(
1 − Φ(

1√
εn̂ε−1

)

)
,

where n̂ ∈ [n, n+1]. Again by Mill’s estimate and the Borel-Cantelli lemma, we have

lim sup
n→∞

max
t∈[nε,(n+1)ε]

|B(t) − B(nε)| ≤ 1 a.s., and (6.5)

lim sup
n→∞

max
t∈[nε,(n+1)ε]

|B(t − ∆) − B(nε − ∆)| ≤ 1, a.s. (6.6)

Also by a similar argument as (6.2),

lim sup
n→∞

|B(nε) − B(nε − ∆)|√
2 log n

=
√

∆, a.s. (6.7)
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Therefore, combining the results from (6.4) to (6.7), for almost all ω ∈ Ω, if nε ≤ t ≤
(n + 1)ε and n > N(ω), then

|B(t) − B(t − ∆)|√
2 log t

≤ 1√
2ε logn

[|B(t) − B(nε)| + |B(t − ∆) − B(nε − ∆)| + |B(nε) − B(nε − ∆)|]

which implies lim supt→∞ |B(t)−B(t−∆)|/(
√

2 log t) ≤
√

∆/
√

ε a.s. Finally, letting

ε ↑ 1 through the rational numbers, we obtain

lim sup
t→∞

|B(t) − B(t − ∆)|√
2 log t

≤
√

∆, a.s. (6.8)

The proof is complete.

6.2. Proof of Theorem 4.2. To show the statements in part (i), we observe that

log S(t) = log S(0) + µt −
∫ t

0

1

2
γ2(Y (s))ds + X(t).

which implies

log S(t)

t
=

log S(0)

t
+ µ − 1

2t

∫ t

0

γ2(Y (s))ds +
X(t)

t
.

Now by Corollary 3.3, we have limt→∞ X(t)/t = 0, a.s. while by the ergodic property

of the Markov chain,

lim
t→∞

1

2t

∫ t

0

γ2(Y (s))ds =
σ2
∗
2

a.s.

Therefore by letting t → ∞, the first assertion in part (i) is obtained. Since

log S(t) −
(
µt − 1

2

∫ t

0

γ2(Y (s))ds
)

= log S(0) + X(t),

also by Corollary 3.3, we get the second assertion in part (ii).

6.3. Proof of Theorem 4.3. Let Sl(t) = log S(t) and with Rδ as defined in (4.6),

we have

Sl(t) = Sl(0) +

∫ t

0

{µ − 1

2
g2(X(s), Y (s), s) + f(X(s), Y (s), s)} ds

+

∫ t

0

g(X(s), Y (s), s) dB(s), (6.9)

R∆(t) =

∫ t

t−∆

{µ − 1

2
g2(X(s), Y (s), s) + f(X(s), Y (s), s)} ds

+

∫ t

t−∆

g(X(s), Y (s), s) dB(s). (6.10)

Define M2(t) =
∫ t

0
g(X(s), Y (s), s) dB(s) and so 〈M2〉(t) =

∫ t

0
g2(X(s), Y (s), s) ds.

As in the proof of Theorem 3.1, we invoke a time–change argument. We may define

a new Brownian motion B̃ by B̃(〈M2〉(t)) = M2(t) where the stopping time θ(t)
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is defined by θ(t) = inf{s > 0 : 〈M2〉(s) > t}. Since g2(x, y, t) ≥ K2, we have

θ(t) = 〈M2〉−1(t). Finally, B̃(t) = M2(θ(t)) is a G(t) := F(θ(t)) Brownian motion.

Set S̃l(t) = Sl(θ(t)), X̃(t) = X(θ(t)), and Ỹ (t) = Y (θ(t)). Applying Problem 3.4.5

and Proposition 3.4.8 in [14] to (6.9), in the manner of the proof of Theorem 3.1, we

arrive at

S̃l(t) = S̃l(0) +

∫ t

0

µ − 1
2
g2(X̃(u), Ỹ (u), τ(u)) + f(X̃(u), Ỹ (u), θ(u))

g2(X̃(s), Ỹ (u), θ(u))
du + B̃(t),

(6.11)

for all t ≥ 0. By (3.1a),(3.1b) and the fact that |f(x, y, t)| ≤ f̄ for all (x, y, t) ∈ R ×
S× [0,∞), we have that the integrand in the Riemann integral in (6.11) is absolutely

bounded by C1 > 0. Therefore, there is a process c∆ such that for |c∆(t)| ≤ C1∆, we

have S̃l(t) − S̃l(t − ∆) = c∆(t) + B̃(t) − B̃(t − ∆). Hence

log(S(θ(t))/S(θ(t − ∆))) = c∆(t) + B̃(t) − B̃(t − ∆).

Also, we have that ∆ = 〈M2〉(θ(t)) − 〈M2〉(θ(t − ∆)) =
∫ θ(t)

θ(t−∆)
g2(X(s), Y (s), s) ds,

so that (3.1b) implies

∆

K1

≤ θ(t) − θ(t − ∆) ≤ ∆

K2

. (6.12)

This implies that θ∆ defined by θ∆(t) = θ(t) − θ(t − ∆) obeys ∆
K1

≤ θ∆(t) ≤ ∆
K2

.

Using the definition of θ∆, we get

log(S(θ(t))/S(θ(t) − θ∆(t))))√
2 log θ(t)

=
c∆(t)√
2 log t

·
√

2 log t√
2 log θ(t)

+
√

∆
(B̃(t) − B̃(t − ∆))/

√
∆√

2 log t
·

√
2 log t√

2 log θ(t)
.

Therefore, as t/K1 ≤ θ(t) ≤ t/K2, and using (6.3) and (6.8), we have

lim sup
t→∞

| log(S(θ(t))/S(θ(t) − θ∆(t)))|√
2 log θ(t)

=
√

∆, a.s.

Now, we have

max
∆/K1≤δ≤∆/K2

Rδ(θ(t)) = max
∆/K1≤δ≤∆/K2

log

(
S(θ(t))

S(θ(t) − δ)

)

≥ log

(
S(θ(t))

S(θ(t) − θ∆(t))

)
.

Combining the last two expressions, and using the fact that log θ(t)/ log t → 1 as

t → ∞, we obtain

lim sup
t→∞

max0≤δ≤∆/K2
|Rδ(t)|√

2 log t
≥ lim sup

t→∞

max∆/K1≤δ≤∆/K2
|Rδ(t)|√

2 log t
≥

√
∆, a.s. (6.13)
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To obtain an upper inequality, by (6.10), there exists a process c
(2)
∆ (t) such that

|c(2)
∆ (t)| ≤ C2∆ we have

max
0≤δ≤∆

|Rδ(t)| ≤ max
0≤δ≤∆

c
(2)
∆ (t) + max

0≤δ≤∆

∣∣∣∣
∫ t

t−δ

g(X(s), Y (s), s) dB(s)

∣∣∣∣ .

Therefore

lim sup
t→∞

max0≤δ≤∆ |Rδ(t)|√
2 log t

≤ lim sup
t→∞

max0≤δ≤∆

∣∣∣
∫ t

t−δ
g(X(s), Y (s), s) dB(s)

∣∣∣
√

2 log t
.

Now, define θ̄δ by θ̄δ(t) = 〈M2〉(t) − 〈M2〉(t − δ) ∈ [K2δ, K1δ]. Then, as

lim
t→∞

log〈M2〉(t)
log t

= 1,

we get

lim sup
t→∞

max0≤δ≤∆

∣∣∣
∫ t

t−δ
g(X(s), Y (s), s) dB(s)

∣∣∣
√

2 log t

= lim sup
t→∞

max0≤δ≤∆

∣∣∣B̃(〈M2〉(t)) − B̃(〈M2〉(t) − θ̄δ(t)))
∣∣∣

√
2 log〈M2〉(t)

= lim sup
T→∞

max0≤δ≤∆

∣∣∣B̃(T ) − B̃(T − θ̄δ(θ(T )))
∣∣∣

√
2 log T

,

where we used the substitution θ(T ) = t at the last step. Now, as θ̄δ(θ(T )) ∈
[K2δ, K1δ], we have

max
0≤δ≤∆

|B̃(T ) − B̃(T − θ̄δ(θ(T )))| ≤ max
0≤δ≤∆

max
K2δ≤s≤K1δ

|B̃(T ) − B̃(T − s)|

≤ max
0≤s≤K1∆

|B̃(T ) − B̃(T − s)|.

Hence, by defining Uc(t) = max0≤u≤c |B̃(t) − B̃(t − u)|, we get

lim sup
t→∞

max0≤δ≤∆ |Rδ(t)|√
2 log t

≤ lim sup
t→∞

UK1∆(t)√
2 log t

We now determine the asymptotic behaviour of Uc. Since it is a result about the

Brownian motion B̃, we can consider any Brownian motion W . First, fix t ≥ 0, and

let m > 0. Then

P[Uc(t) ≥ m]

= P[{max
0≤u≤c

W (t) − W (t − u) ≥ m} ∪ {− min
0≤u≤c

W (t) − W (t − u) ≥ m}]

≤ P[ max
0≤u≤c

W (t) − W (t − u) ≥ m] + P[− min
0≤u≤c

W (t) − W (t − u) ≥ m]. (6.14)
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Now W̄ defined by W̄ (t) = W (t) − W (t − u), 0 ≤ u ≤ t, is a standard Brownian

motion. Thus, as max0≤u≤c W̄ (u) has the same distribution as |W̄ (c)|,

P[ max
0≤u≤c

W (t) − W (t − u) ≥ m]

= P[|W̄ (c)| ≥ m] = 2P

[
W̄ (c)√

c
≥ m√

c

]
= 2

(
1 − Φ

(
m√
c

))
. (6.15)

Define W ∗ = −W̄ . Then −min0≤u≤c W̄ (u) = max0≤u≤c W ∗(u). But as W ∗ is also a

standard Brownian motion, this has the same distribution as |W ∗(c)|. Therefore

P[− min
0≤u≤c

W (t) − W (t − u) ≥ m] = P[|W ∗(c)| ≥ m] = 2

(
1 − Φ

(
m√
c

))
. (6.16)

Combining (6.14), (6.15), (6.16) gives P[Uc(t) ≥ m] ≤ 4
(
1 − Φ

(
m√

c

))
. By (2.6), we

have

P[Uc(an) ≥
√

2 log an

√
c(1 + η)] ≤ 4

1√
2π

· 1√
1 + η

√
2 log an

· 1

a1+η
n

.

Hence, if an → ∞ and if, for all η > 0 we have
∑∞

n=1 a
−(1+η)
n < ∞, then

lim sup
n→∞

Uc(an)√
2 log an

≤ √
c, a.s.

Next, let an ≤ t ≤ an+1. Then

|Uc(t) − Uc(an)| ≤ max
0≤u≤c

||W (t) − W (t − u)| − |W (an) − W (an − u)||

≤ max
0≤u≤c

|W (t) − W (an) − (W (t − u) − W (an − u))|

≤ |W (t) − W (an)| + max
0≤u≤c

|W (t − u) − W (an − u))|.

Therefore

max
an≤t≤an+1

|Uc(t) − Uc(an)|

≤ max
an≤t≤an+1

|W (t) − W (an)| + max
an≤t≤an+1

max
0≤u≤c

|W (t− u) − W (an − u))|

≤ 2 max
an−c≤v<u≤an+1

0≤u−v≤an+1−an

|W (u)− W (v)|.

We next notice that W ′ defined by W ′(t) = tW (1/t) for t > 0 and W ′(0) = 0 is

a standard Brownian motion. Now, suppose that an − c ≤ v < u ≤ an+1, 0 ≤
u − v ≤ an+1 − an, and define u′ = 1/u, v′ = 1/v. Then we have W (u) − W (v) =

u (W ′(u′) − W ′(v′)) + (u − v)W ′(v′). Therefore v′ − u′ = (u − v)/uv ≤ (an+1 −
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an)/(an+1(an − c)) =: δn > 0, and we have

max
an−c≤v<u≤an+1

0≤u−v≤an+1−an

|W (u)− W (v)|

≤ max
an−c≤v<u≤an+1,v′=1/v,u′=1/u

0≤u−v≤an+1−an

u|W ′(u′) − W ′(v′)| + (u − v)|W ′(v′)|

≤ an+1 max
1/an+1≤u′<v′≤(an−c)−1

0≤v′−u′≤δn

|W ′(u′) − W ′(v′)|

+ (an+1 − an) max
1/an+1≤v≤1/(an−c)

|W ′(v′)|.

Next, fix ε > 0 and let an = nε. Then an+1/an → 1 as n → ∞, so δn → 0 as n → ∞.

Now, as 1/an+1 → 0 as n → ∞ and an − c > 0 for all n > N , for n > N , we have

max an−c≤v<u≤an+1
0≤u−v≤an+1−an

|W (u) − W (v)|
√

2 log an

≤
max 0≤u′<v′≤1

0≤v′−u′≤δn

|W ′(u′) − W ′(v′)|
√

2δn log(1/δn)
·
√

a2
n+1δn log(1/δn)

log an

+
(an+1 − an)√

2 log an

max
1/an+1≤v≤1/(an−c)

|W ′(v′)|.

Since an+1 − an = ε and an+1/an → 1 as n → ∞, we have

a2
n+1δn log(1/δn)

log an

=
an+1

an − c
(an+1 − an)

(
log an+1

log an

+
log(an − c)

log an

− log(an+1 − an)

log an

)
.

Hence

lim
n→∞

a2
n+1δn log(1/δn)

log an
= 2ε.

Since δn → 0 as n → ∞, Lévy’s result on the modulus of continuity of Brownian

motion (see e.g., [14, Theorem 2.9.25]) implies

lim
n→∞

max 0≤u′<v′≤1

0≤v′−u′≤δn

|W ′(u′) − W ′(v′)|
√

2δn log(1/δn)
= 1, a.s.,

and so

lim sup
n→∞

max an−c≤v<u≤an+1
0≤u−v≤an+1−an

|W (u) − W (v)|
√

2 log an

≤
√

2ε, a.s.

Hence

lim sup
n→∞

maxan≤t≤an+1 |Uc(t) − Uc(an)|√
2 log an

≤ 2
√

2ε, a.s.
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Now, for each t > 0 there exists n(t) ∈ N such that an(t) ≤ t < an(t)+1. Therefore, as

an(t) ≤ t, we have

lim sup
t→∞

Uc(t)√
2 log t

≤ lim sup
t→∞

|Uc(t) − Uc(an(t))|√
2 log t

+
U(an(t))√

2 log t

≤ lim sup
t→∞

{
maxan(t)≤s≤an(t)+1

|Uc(s) − Uc(an(t))|√
2 log an(t)

·
√

log an(t)√
log t

+
U(an(t))√
2 log an(t)

·
√

log an(t)√
log t

}

≤ 2
√

2ε +
√

c, a.s.

Letting ε → 0+ through the rational numbers gives lim supt→∞ Uc(t)/
√

2 log t ≤ √
c,

a.s. Therefore

lim sup
t→∞

max0≤δ≤∆ |Rδ(t)|√
2 log t

≤ lim sup
t→∞

UK1∆(t)√
2 log t

≤
√

K1

√
∆, a.s.

as required.
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