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ABSTRACT. This paper is divided into three parts on diverse aspects of stochastic analysis,

namely

1) newly defined stochastic integrals such as the stochastic Simpson and stochastic quadrature

integrals and their relation to the recently introduced stochastic α-integral by the author (DSA, Vol.

15 (2), 2006),

2) oscillation theorems for second order stochastic differential equations (SDEs) which show the

almost sure oscillation property of all linear undamped oscillators perturbed by additive, non-

degenerate martingale-type noise for all measurable random initial data (this generalizes results

from X. Mao (1997), Markus and Weerasinghe (1988)),

3) expected energy formulas for linear stochastic oscillators with additive noise under adequate

discretization by midpoint-type methods (the latter generalizes independent results from Hong,

Scherer and Wang (NPSC, Vol. 14 (1), 2006) and the author (2004 for the beam problem, 2005 for

stochastic wave equation)). Energy-exact stochastic-numerical methods (called improved midpoint

methods) for linear second order SDEs are constructed and verified along non-equidistant partitions.

These results can be applied to quadrature methods such as Newton-Cotes formulas for sto-

chastic integrals, to analysis of the oscillatory and energy behavior of stochastically perturbed

Schrödinger equations, stochastic oscillators, beam models and stochastic wave equations for ran-

domly vibrating strings.

AMS (MOS) Subject Classification. 34F05, 37H10, 60H10, 65C30.

1. INTRODUCTION

This paper focuses on 3 dynamic aspects of stochastic analysis, stochastic integra-

tion and 2nd order stochastic differential equations (SDEs). In Section 2, we report

on newly defined stochastic integrals such as the stochastic Simpson integral and its

relation to the recently introduced stochastic alpha-integral by the author [10]. There

it is shown that the Simpson integral coincides with the well-known Stratonovich inte-

gral under appropriate conditions. Besides, we introduce the more general stochastic

quadrature integral which indeed gives new stochastic integrals which do not coincide

neither with the famous Itô nor with the Stratonovich integrals in general. Section 3
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discusses oscillation theorems for second order stochastic differential equations which

show the almost sure oscillation property of all linear undamped oscillators perturbed

by additive, non-degenerate martingale-type noise for all measurable random initial

data (this generalizes results from X. Mao [6], Markus and Weerasinghe [5]). Eventu-

ally, Section 4 presents expected energy formulas for linear stochastic oscillators with

additive noise under discretization by midpoint-type methods (the latter generalizes

independent results from Hong, Scherer and Wang [2] and the author (preprints in

2004, 2005)). There, a new numerical method (called improved midpoint method)

is shown to be energy-exact along any nonrandom time-partition and with any in-

tegrable, adapted initial data. An appendix (Section 5) states the law of iterated

logarithms (LIL) for stochastic processes with independent increments (PII) which is

needed to prove oscillation theorems for SDEs.

The presented results can be applied to quadrature methods such as Newton-

Cotes formulas for stochastic integrals, to analysis of the oscillatory and energy be-

havior of stochastically perturbed Schrödinger equations, stochastic oscillators, beam

models and stochastic wave equations for randomly vibrating strings, and its ade-

quate discretization in a dynamically consistent fashion. In passing, for introductory

discussions on Itô-Riemann stochastic quadratures, see Allen [1] and Schurz [11].

2. NEW STOCHASTIC INTEGRALS: STOCHASTIC SIMPSON AND

QUADRATURE INTEGRALS

Let ‖X(t)‖p = (E [‖X(t)‖p
d])

1/p for R
d-valued random variables X(t) on the com-

plete filtered probability space (Ω,F , (Ft)t≥0, P), ‖.‖d a vector norm on R
d with Eu-

clidean scalar product < ., . >d. Furthermore, < X >t
0 denotes the quadratic varia-

tion of Ft-adapted d-dimensional real-valued stochastic process X = (X(t))t≥0 and <

X, Y >t
0 the quadratic covariation for processes X and Y . Set ∆Xn = X(tn+1)−X(tn)

and ∆tn = |tn+1 − tn|. Throughout this paper, we only deal with processes X with

< X >b
a< +∞. For essentials on stochastic analysis, see [1], [3], [4], [7], [8], [9], [15].

Definition 2.1. For a given Borel-measurable function f : R
d → R

d and d-dimensio-

nal stochastic process, the (stochastic) Simpson integral from a to b > a of f(X)

along process X is defined by

S

∫ b

a

f(X(t))dX(t) := (2.1)

lim
N→+∞

1

6

N−1
∑

n=0

〈

f(X(tn)) + 4f(
X(tn+1) + X(tn)

2
) + f(X(tn+1)), ∆Xn

〉

d

if the limit exists, where this limit is understood in the sense L2(Ω,F , P) along non-

random partitions

a = t0 < t1 < · · · < tn < tn+1 < · · · < tN = b. (2.2)
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Theorem 2.1. Suppose that f ∈ C1 on the range of X(t) for a ≤ t ≤ b, X =

(X(t))t≥0 is a continuous d-dimensional stochastic process on the filtered probability

space (Ω,F , (Ft)t≥0, P) with E [〈X〉ba] < +∞, and

E [〈X〉ba] < +∞, E

[

∫ b

a

(‖f(X(t))‖2

d + ‖∇f(X(t))‖2

d×d)d〈X〉ta

]

< +∞. (2.3)

Then

S

∫ b

a

f(X(t))dX(t) =

∫ b

a

〈f(X(t)), dX(t)〉d +
1

2
〈f(X), X〉ba (2.4)

= α

∫ b

a

〈f(X(t)), dX(t)〉d

where α = 1

2
.

Remark 2.2. That means that the stochastic Simpson integral coincides with the

Stratonovich integral (or α-integral with α = 1/2) under appropriate assumptions.

Therefore, this concept will not lead to essentially new types of stochastic integrals

under given smooth assumptions of Theorem 2.1.

Proof. For the sake of abbreviation of notation, suppose d = 1. Define the discrete

stochastic Simpson integral

Sb
a(N) :=

1

6

N−1
∑

n=0

[

f(X(tn)) + 4f(
X(tn+1) + X(tn)

2
) + f(X(tn+1))

]

∆Xn (2.5)

along partitions (2.2). Recall the definition of discrete outer stochastic α-integral

given by

Qb
a(α)(N) :=

N−1
∑

n=0

[

αf(X(tn+1) + (Id − α)f(X(tn)
]

∆Xn

along partitions (2.2), where Id is the unit d × d matrix and α d × d real-valued

matrix as introduced originally by Schurz [10]. Obviously, under assumptions (2.3),

we can establish the convergence of the discrete Simpson integral (2.5) to the contin-

uous Simpson integral (2.1) as maxn=1,2,...,N |tn − tn−1| → 0 as N → +∞. Similarly,

convergence for the α-integrals holds. Now, for fixed N ∈ N, decompose the discrete

Simpson integral into

Sb
a(N) =

1

6

N−1
∑

n=0

f(X(tn))∆Xn +
4

6

N−1
∑

n=0

f(
X(tn+1)+X(tn)

2
)∆Xn +

1

6

N−1
∑

n=0

f(X(tn+1))∆Xn

=
1

6
Qb

a(0)(N) +
2

3
Qb

a(
1

2
)(N) +

1

6
Qb

a(1)(N) +
2

3
Rb

a(N)

=
1

6
Itô +

2

3
Stratonovich +

1

6
Fisk +

2

3
Rb

a(N)
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along partitions (2.2) with remainder term

Rb
a(N) =

N−1
∑

n=0

[

f(
X(tn+1) + X(tn)

2
) −

f(X(tn+1)) + f(X(tn))

2

]

∆Xn. (2.6)

Using twice Theorem 2.5 (identity (2.14)) from [10], we find that

Sb
a(N) =

1

6
Qb

a(0)(N) +
2

3
(Qb

a(0)(N) +
1

2
〈f(X), X〉ba) +

1

6
(Qb

a(0)(N)

+ 〈f(X), X〉ba) +
2

3
Rb

a(N)

= Qb
a(0)(N) + [

2

3
·
1

2
+

1

6
]〈f(X), X〉ba +

2

3
Rb

a(N)

= Qb
a(α)(N) +

2

3
Rb

a(N)

with α = 1/2. It remains to take the limit N → +∞. Note that the remainder term

Rb
a(N) → 0 in L2 as N → +∞ under assumption (2.3) (cf. Schurz [10], arguing as in

proof of Theorem 4.1, p. 250–251). Thus, as N → +∞ in above equation array, we

verify relation (2.4). (Note that maxn=1,2,...,N |tn − tn−1| → 0 as N → +∞.)

Let us generalize the previous concept of integration. Suppose that qi ∈ R
1

are normalized nonrandom weights with
∑k

i=0
qi = 1 (the latter normalization is

important for consistency of integrals below) where k ∈ N \ {0} is fixed. Recall

∆Xn = X(tn+1) − X(tn) and define differences

∆0Xn = X(tn+1) − X(tn), ∀k > 0 : ∆kXn = X(tn+1) − X(tn+1−k).

Definition 2.3. For a given Borel-measurable function f : R
d → R

d and d-dimensio-

nal stochastic process, the k-stage quadrature integral of the first kind from a

to b > a of f(X) along process X is defined by

Q1

k

∫ b

a

f(X(t))dX(t) := lim
N→+∞

N−1
∑

n=0

k
∑

i=0

〈qif(X(tn,i)), ∆Xn〉d (2.7)

if the limit exists, where this limit is understood in the sense L2(Ω,F , P) along non-

random partitions (2.2) with sub-partitions

tn = tn,0 < tn,2 < · · · < tn,i−1 < tn,i < · · · < tn,k ≤ tn+1. (2.8)

Definition 2.4. For a given Borel-measurable function f : R
d → R

d and d-dimensio-

nal stochastic process, the k-stage quadrature integral of the second kind from

a to b > a of f(X) along process X is defined by

Q2

k

∫ b

a

f(X(t))dX(t) := lim
N→+∞

N−1
∑

n=k

k
∑

i=0

〈qif(X(tn+1−k+i)), ∆kXn〉d (2.9)

if the limit exists, where this limit is understood in the sense L2(Ω,F , P) along non-

random partitions (2.2).
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Remark 2.5. Weights qi above could be replaced even by matrices qi ∈ R
d×d. How-

ever, such a concept we leave to the further interest of the reader. A corresponding

investigation can be conducted for this more general case in a similar manner. We

shall focus on the case of one-dimensional weights and the case k = 2 for simplicity

below. If k = 0 then the quadrature integral of first kind coincides with the Itô-

integral and the quadrature integral of second kind with the backward integral. If

k > 1 all integrals with non-smooth f might differ.

Theorem 2.2. Suppose that f ∈ C1 on the range of X(t) for a ≤ t ≤ b, X =

(X(t))t≥0 is a continuous d-dimensional stochastic process on the filtered probability

space (Ω,F , (Ft)t≥0, P), and hypothesis (2.3) is satisfied. Then

Q1

2

∫ b

a

f(X(t))dX(t) =

∫ b

a

〈f(X(t)), dX(t)〉d + α〈f(X), X〉ba

= α

∫ b

a

〈f(X(t)), dX(t)〉d (2.10)

where α = q1/2 + q2 and q0 + q1 + q2 = 1.

Remark 2.6. That means that the stochastic quadrature integral coincides with

the α-integral with α = q1/2 + q2 under appropriate assumptions. Therefore, this

concept may lead to new types of stochastic integrals (neither Itô nor Stratonovich

integrals) which are strongly related to the concept of α-integrals under given smooth

assumptions of Theorem 2.2. However, if q1 = −2q2 then we receive the well-known

Itô integral. If q1 + 2q2 = 1 then we obtain the well-known Stratonovich integral

(both facts due to the consistency condition and relation to α-integrals, see [10]).

Proof. For the sake of abbreviation of notation, suppose d = 1. Define the discrete

stochastic Quadrature integral of the first kind by

Qb
a(N) :=

N−1
∑

n=0

[

q0f(X(tn))+q1f(
X(tn+1) + X(tn)

2
)+q2f(X(tn+1))

]

∆Xn (2.11)

along partitions (2.2). Now, for fixed N ∈ N, decompose the discrete quadrature

integral (2.11) into

Qb
a(N) = q0

N−1
∑

n=0

f(X(tn))∆Xn + q1

N−1
∑

n=0

f(
X(tn+1) + X(tn)

2
)∆Xn

+q2

N−1
∑

n=0

f(X(tn+1))∆Xn

= q0Q
b
a(0)(N) + q1Q

b
a(

1

2
)(N) + q2Q

b
a(1)(N) + q1R

b
a(N)

= q0Itô + q1Stratonovich + q2Fisk + q1R
b
a(N)
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along partitions (2.2) with remainder term Rb
a(N) defined by (2.6). Using twice

Theorem 2.5 (identity (2.14)) from [10], we find that

Qb
a(N) = q0Q

b
a(0)(N) + q1(Q

b
a(0)(N) +

1

2
〈f(X), X〉ba) + q2(Q

b
a(0)(N)

+ 〈f(X), X〉ba) + q1R
b
a(N)

= Qb
a(0)(N) +

[q1

2
+ q2

]

〈f(X), X〉ba + q1R
b
a(N) = Qb

a(α)(N) + q1R
b
a(N)

with α = q1/2 + q2 (recall that consistency condition q0 + q1 + q2 = 1 holds). It

remains to take the limit N → +∞. Note that Rb
a(N) → 0 in L2 under (2.3) and

maxn=1,2,...,N |tn − tn−1| → 0 as N → +∞. Thus, as N tends to infinity in above

equation, we can confirm the validity of (2.10). Hence, Theorem 2.2 is verified.

Example. Consider integrals
∫ T

0

W (t)dW (t)

where W is a standard Wiener process and T > 0 nonrandom (hence f(x) = x and

X = W here). Then, for Itô, Stratonovich, α, Simpson and Quadrature integrals we

obviously have
∫ T

0

W (t)dW (t) =
(W (T ))2 − T

2
,

∫ T

0

W (t) ◦ dW (t) = S

∫ T

0

W (t)dW (t) =
(W (T ))2

2

α

∫ T

0

W (t)dW (t) =
(W (T ))2 − (1 − 2α)T

2
, Q1

2

∫ T

0

W (t)dW (t) =
(W (T ))2 + (q2 − q0)T

2
.

One can clearly recognize that the quadrature integral Q1
k differs from the other

integrals. Moreover, it depends on the presence of asymmetric terms in its definition

(expressed by the relation of its q2- and q0-weights). Hence, the Simpson integral must

coincide with the symmetric integral of Stratonovich type (for
∫

WdW at least).

Remark 2.7. More general, for integrals
∫ b

a
f(X(t))dX(t), we may arrive at the open

conjecture that

Q1

2

∫ b

a

f(X(t))dX(t) = F (X(b)) − F (X(a)) +
(q2 − q0)

2

∫ b

a

‖f ′(X(t))‖2

1d〈X〉t0

for sufficiently smooth functions f : R
1 → R

1 (e.g. locally linearizable such as convex

ones), continuous processes X with finite quadratic variation and nonrandom limits

a and b, where F is a antiderivative of f . Is this really true?

Remark 2.8. Note that, for same weights qi and smooth f , X, we have

Q1

0

∫ b

a

f(X(t))dX(t) = Itô integral, Q2

0

∫ b

a

f(X(t))dX(t) = Backward integral

Q2

1

∫ b

a

f(X(t))dX(t) = α

∫ b

a

f(X(t))dX(t) where α = q0 = (1 − q1).



NEW STOCHASTIC INTEGRALS, OSCILLATIONS AND ENERGY 187

3. OSCILLATION THEOREMS FOR LINEAR 2ND ORDER SDEs

Let B(S) be the Borel σ-algebra of inscribed set S and (Ω,F , (Ft)t≥0, P) a com-

plete probability basis. Consider stochastic differential equations (stochastic oscillator

with additive Gaussian noise)

ẍ + ω2x = σξ(t) (3.1)

driven by white noise ξ, with real eigenfrequency ω ≥ 0 and real noise intensity

σ 6= 0. This equation for a stochastic oscillator can be rewritten to the equivalent

two-dimensional system of SDEs

dX(t) = Y (t)dt (3.2)

dY (t) = −ω2X(t)dt + σdW (t) (3.3)

driven by the standard Wiener process W (i.e. W (t) =
∫ t

0
ξ(s)ds) and started at

(F0,B(R2))-measurable initial data X(0) = X0 = x0, Y (0) = Y0 = y0.

Theorem 3.1 (Explicit Representation). Assume that both X(0) = X0 and Y (0) =

Y0 are (F0,B(R1))-measurable initial data, and ω > 0. Then the (strong) solution

(X(t), Y (t)) of oscillator (3.1) satisfies (P-a.s.)

X(t) = R1 cos(ωt− δ1) +
σ

ω

∫ t

0

sin(ω(t − s))dW (s) (3.4)

Y (t) = R2 cos(ωt− δ2) + σ

∫ t

0

cos(ω(t− s))dW (s) (3.5)

for all times t ≥ 0, where

R1 =
√

[X(0)]2 + [Y (0)/ω]2, δ1 = arctan(Y (0)/[ωX(0)]),

R2 =
√

[ωX(0)]2 + [Y (0)]2, δ2 = arctan(−ωX(0)/Y (0))

(if Y (0) = 0 or X(0) = 0 then above we take the limit Y (0) → 0+ or X(0) → 0+,

respectively; if both X(0) = 0 and Y (0) = 0 then we set R1 = 0 and R2 = 0).

Remark. The proof uses the well-known variation of parameters formula and trigono-

metric identities in a standard manner. So we omit it here. For more details, see [12].

Theorem 3.2 (A.S. Persistence of Oscillations About 0). Assume that ω > 0, σ 6= 0,

and X(0) = x0, Y (0) = ẋ0 are (F0,B(R1))-measurable. Then both components of

solution vector (X(t),Y(t))t≥0 of stochastic oscillator (3.1) have infinitely many zero’s

(P-a.s.), i.e. both X(t) and Y (t) oscillates around zero infinitely often (P almost

surely) as time t advances.

Proof. Suppose that ω > 0 and σ 6= 0 throughout the entire proof. First, let X(0) =

Y (0) = 0. Then we have the components X and Y are continuous time, Gaussian
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N (0, V ar(t))-distributed Ft-martingales with finite variance V ar(t) (which can even

be explicitly calculated). Moreover, the representations of X and Y satisfy

X(t) =
σ

ω

∫ t

0

sin(ω(t− s))dW (s)

Y (t) = σ

∫ t

0

cos(ω(t − s))dW (s)

for all times t ≥ 0. Note that both X and Y as stochastic integrals with non-

anticipating integrands are processes with independent increments. Hence, using the

law of iterated logarithm (LIL, see Shiryaev [15], Stout [16] and Wang [17] (as sum-

marized by Theorem 5.1 in the appendix, Section 5) confirms that both X and Y

must oscillate around zero (a.s., as time-shifted Wiener processes).

Second, let |X(0)| > 0. Recall general representations (3.4) and (3.5) from Theo-

rem 3.1. It suffices to consider the X-component since the the proof for Y -component

is very similar to that of X-component. Now consider X(t) at discrete instants

tk :=
π/2 + 2kπ + arctan(Y (0)/[ωX(0)])

ω
=

π/2 + 2kπ + δ1

ω

where k ∈ N (if X(0) = 0 then one sets arctan() = −π/2 in above definition of tk).

Note that tk − tk−1 = ∆k = 2π
ω

. Define the sequence (Un)m∈N by Un = X(tn), n ∈ N.

Thereby Un = σ
ω

∫ tn
0

sin(ω(tn − s))dW (s). We can decompose Un by Un =
∑n

k=1
Zk

where (Zk)k∈N is a sequence of independent Gaussian distributed random variables

satisfying

Zk =
σ

ω

∫ tk

tk−1

sin(ω(tn − s))dW (s)

with mean zero and variance

E [Zk]
2 =

σ2

ω2

∫ tk

tk−1

sin2(ω(tn − s))ds =
σ2

2ω2

∫ tk

tk−1

(1 − cos(2ω(tn − s)))ds

=
σ2

2ω2
[s +

sin(2ω(tn−s))

2ω
]tktk−1

=
σ2

2ω2
[tk−tk−1 +

sin(2ω(tn−tk))

2ω
−

sin(2ω(tn−tk−1))

2ω
]

=
σ2π

ω3

where δ1 = arctan(Y (0)/[ωX(0)]). Here, we have used the fact that

sin(2ω(tn−tk)) = sin(2ω(tn−tk−1−∆k)) = sin(2ω(tn−tk−1−
2π

ω
))

= sin(2ω(tn−tk−1)−4π) = sin(2ω(tn−tk−1)).

Consequently, all random variables Zk of Un are identically distributed. Now, stan-

dard limit theorems on family of sums of i.i.d. random variables (such as laws of
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iterated logarithms (LIL), see Shiryaev [15], Stout [16] and Wang [17] (see Theo-

rem 5.1 in the appendix, Section 5) say that infinitely many oscillations of the se-

quence (Un)n∈N around zero must happen (almost surely) as n tends to infinity (by

infinite number of sign changes of (Un)n∈N). (Recall that X has always a continuous

time modification.)

Third, suppose that X(0) = 0 and Y (0) 6= 0. Then

X(t) = Y0

sin(ωt)

ω
+

σ

ω

∫ t

0

sin(ω(t − s))dW (s).

Now, consider X(t) at discrete instants tk := k
2π

ω
, hence tk−tk−1 = 2π/ω. Define the

sequence Un = X(tn), n ∈ N as before. Note that Un = σ
ω

∫ tn
0

sin(ω(tn−s))dW (s) can

be decomposed in terms of Un =
∑n

k=1
Zk where (Zk)k∈N is a sequence of independent

identically Gaussian distributed random variables Zk ∈ N (0, σ2π/ω3). Therefore, the

LIL (i.e. Theorem 5.1 in Section 5) gives the presence of infinite number of oscillations

of (Un)n∈N around 0, hence of X too.

Fourth, we may proceed similarly with the analysis of Y -component with phase

angle δ2 in representation (3.5) in order to confirm the conclusion of Theorem 3.2.

However, for this procedure, one needs to distinguish between the cases Y (0) = 0 and

Y (0) 6= 0.

4. ENERGY IDENTITIES FOR LINEAR

STOCHASTIC OSCILLATORS

Consider midpoint methods applied to oscillator (3.1)

Xn+1 = Xn + Ȳnhn, Yn+1 = Yn − ω2X̄nhn + σ∆Wn (4.1)

where hn = tn+1 − tn as current step size, ∆Wn = W (tn+1) − W (tn) ∈ N (0, hn) as

independent Gaussian noise increments, using current arithmetic means

X̄n =
Xn+1 + Xn

2
and Ȳn =

Yn+1 + Yn

2
.

In what follows, we shall generalize results from Hong, Scherer and Wang [2] who

considered the energy functional of this method for the special case ω = 1, X0 = 1 and

Y0 = 0 only along equidistant partitions (tn)n∈N of intervals [0, T ]. In fact, we allow

to have random initial data in L2(Ω,F0, P) (i.e. the decisive condition to guarantee

the finiteness of expected energy) and non-equidistant partitions of intervals [0, T ].

Let 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ · · · ≤ tnT
= T form a nonrandom partition of [0, T ] and

E(t) =
ω2[X(t)]2 + [Y (t)]2

2

be the energy functional related to (3.1). Then the following more general result is

found.
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Theorem 4.1 (Energy Identity for Midpoint Methods). Assume that

(i) W (i.e. W (t) =
∫ t

0
ξ(s)ds) is a standard Wiener process and

(ii) initial data X(0) = X0, Y (0) = Y0 are L2(Ω,F0, P)-integrable.

Then, ∀tn ≥ 0, the mean energy E [E(tn)] is finite and grows linearly in t. More

precisely, we have ∀ω, σ ∈ R
1 ∀X0, Y0 ∈ L2(Ω,F0, P)

0 ≤ E [E(0)] +
σ2

2
tn min

k=0,1,...,n−1

1

1+ω2h2
k/4

≤ E [E(tn)] = E [E(0)] +
σ2

2

n−1
∑

k=0

hk

1+ω2h2
k/4

≤ E [E(0)] +
σ2

2
tn max

k=0,1,...,n−1

1

1 + ω2h2
k/4

≤ E [E(0)] +
σ2

2
tn < +∞

which renders to be an equality for equidistant partitions.

Proof. More general, consider the drift-implicit θ-methods

Xn+1 = Xn + (θnYn+1 + (1 − θn)Yn)hn (4.2)

Yn+1 = Yn − ω2(θnXn+1 + (1 − θn)Xn)hn + σ∆Wn

with nonrandom parameter-sequence (θn)n∈N, where

θn ∈ R
1, hn = tn+1 − tn, ∆Wn = W (tn+1) − W (tn) ∈ N (0, hn).

First, rewrite this system of equations for (X, Y ) to as

Xn+1 = Xn + (2θnȲn + (1 − 2θn)Yn)hn

Yn+1 = Yn − ω2(2θnX̄n + (1 − 2θn)Xn)hn + σ∆Wn.

Second, multiply the components of these equations by ω2X̄n and Ȳn (resp.) to arrive

at

ω2

2
(X2

n+1 − X2

n) = (2θnω
2ȲnX̄n + (1 − 2θn)ω2YnX̄n)hn

1

2
(Y 2

n+1−Y 2

n ) = −ω2(2θnȲnX̄n+(1−2θn)ȲnXn)hn+σȲn∆Wn.

Third, adding both equations leads to

En+1 = En − ω2(1 − 2θn)[YnX̄n − ȲnXn]hn + σȲn∆Wn. (4.3)

Fourth, note that

[YnX̄n − ȲnXn] =
1

2
[YnXn+1 − Yn+1Xn],

Ȳn =
2Yn − ω2(Xn + θn(1 − 2θn)Ynhn)hn + σ∆Wn

2(1 + ω2θ2
nh

2
n)

,

E [σȲn∆Wn] =
σ2

2(1 + ω2θ2
nh2

n)
hn.
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Fifth, pulling over expectations and summing over n in equation (4.3) for the path-

wise evolution of related energy yield that

E [E(tn)] = E [E(0)] +
σ2

2

n−1
∑

k=0

hk

1 + ω2θ2
kh

2
k

−
ω2

2

n−1
∑

k=0

(1−2θk)E [YkXk+1−Yk+1Xk]hk.

Now, it remains to set θn = 0.5 for all n ∈ N. Thus, one obtains

E [E(tn)] = E [E(0)] +
σ2

2

n−1
∑

k=0

hk

1 + ω2h2
k/4

<+∞

since the expected initial energy is finite under (ii). Consequently, by estimating the

series with minimum and maximum in a standard fashion, the conclusion of Theorem

4.1 is confirmed.

Remark. Theorem 4.1 remains true if all ∆Wn are independent quantities with

E [∆Wn] = 0 and E [(∆Wn)2] = hn. (So Gaussian property is not essential for its

validity.) Theorem 4.1 says also that midpoint methods underestimate the exact

mean energy (the formula below is also called trace formula in [14])

∀t ≥ 0 : E [E(t)] = E [E(0)] +
1

2
σ2t (4.4)

of underlying continuous SDE (3.1) (however they are consistent as maximum step size

tends to zero). The proof of Theorem 4.1 also shows that the situation of inadequate

replication of expected energy is not improving with the use of more general drift-

implicit θ-methods (including forward Euler and backward Euler methods as well).

Extracting results from the previous proof of Theorem 4.1 gives the following

immediate consequence.

Corollary 4.1 (Expected Energy Identity for θ-Methods (4.2)). Under the same

assumptions (i)–(ii) as in Theorem 4.1, we have the expected energy identity

E [E(tn)] = E [E(0)]+
σ2

2

n−1
∑

k=0

hk

1 + ω2θ2
kh

2
k

−
ω2

2

n−1
∑

k=0

(1−2θk)E [YkXk+1−Yk+1Xk]hk (4.5)

along any nonrandom partition (tn)n∈N for the drift-implicit θ-methods (4.2) with any

nonrandom parameters θk ∈ R
1, any nonrandom constants ω, σ ∈ R

1 and any random

initial data X0, Y0 ∈ L2(Ω,F0, P).

However, the observed bias in the energy-evolution under discretization can be

even removed by the energy-exact improved midpoint methods

Xn+1 = Xn + Ȳnhn, Yn+1 = Yn − ω2X̄nhn + σ
√

1 + ω2h2
n/4∆Wn (4.6)

where the involved quantities are defined as for midpoint methods (4.1). In passing,

we note that this numerical method is new to the best of our knowledge. Moreover, it

is a consistent one with an exact replication of the temporal evolution of underlying

continuous time energy.
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Theorem 4.2 (Exact Energy Identity for Improved Midpoint Methods). Under the

same assumptions (i)–(ii) as in Theorem 4.1, we have the exact energy identity (called

trace formula in a more general context, see [14])

E [E(tn)] = E [E(0)] +
1

2
σ2tn (4.7)

along any nonrandom partition (tn)n∈N for the methods (4.6) with any nonrandom

constants ω, σ ∈ R
1 and any random initial data X0, Y0 ∈ L2(Ω,F0, P).

Proof. More general, consider the fully implicit θ-methods

Xn+1 = Xn + (θnYn+1 + (1 − θn)Yn)hn (4.8)

Yn+1 = Yn − ω2(θnXn+1 + (1 − θn)Xn)hn + σn∆Wn

with nonrandom implicitness-parameters θn, where

σn = σ
√

1 + ω2θ2
nh2

n, θn ∈ R
1, hn = tn+1 − tn, ∆Wn = W (tn+1) − W (tn) ∈ N (0, hn).

First, rewrite this system of equations for (X, Y ) to as

Xn+1 = Xn + (2θnȲn + (1 − 2θn)Yn)hn

Yn+1 = Yn − ω2(2θnX̄n + (1 − 2θn)Xn)hn + σn∆Wn.

Second, multiply the components of these equations by ω2X̄n and Ȳn (resp.) to get

ω2

2
(X2

n+1 − X2

n) = (2θnω
2ȲnX̄n + (1 − 2θn)ω2YnX̄n)hn

1

2
(Y 2

n+1−Y 2

n ) = −ω2(2θnȲnX̄n+(1−2θn)ȲnXn)hn+σnȲn∆Wn.

Third, adding both equations leads to

En+1 = En − ω2(1 − 2θn)[YnX̄n − ȲnXn]hn + σnȲn∆Wn.

Fourth, note that

[YnX̄n − ȲnXn] =
1

2
[YnXn+1 − Yn+1Xn],

Ȳn =
2Yn − ω2(Xn + θn(1 − 2θn)Ynhn)hn + σn∆Wn

2(1 + ω2θ2
nh

2
n)

,

E [σnȲn∆Wn] =
σ2

2
hn.

Fifth, pulling over expectations and summing over n yield that

E [E(tn)] = E [E(0)] +
σ2

2
tn−

ω2

2

n−1
∑

k=0

(1−2θk)E [YkXk+1−Yk+1Xk]hk <+∞.

Recall that all step sizes hn, parameters ω, σ and θn are supposed to be nonrandom.

It remains to set θn = 0.5 to verify the energy-identity (4.7).

Extracting results from the previous proof of Theorem 4.2 yields the following.
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Corollary 4.2 (Expected Energy Identity for θ-Methods (4.8)). Under the same

assumptions (i)–(ii) as in Theorem 4.1, we have the expected energy identity

E [E(tn)] = E [E(0)] +
σ2

2
tn −

ω2

2

n−1
∑

k=0

(1 − 2θk)E [YkXk+1 − Yk+1Xk]hk (4.9)

along any nonrandom partition (tn)n∈N for the improved implicit θ-methods (4.8) with

any nonrandom parameters θk ∈ R
1, any nonrandom constants ω, σ ∈ R

1 and any

random initial data X0, Y0 ∈ L2(Ω,F0, P).

Remark. For more results on energy identities and oscillations, see forthcoming pa-

pers of author. Notice that relations (4.4) for continuous energy of SDE (3.1) and (4.7)

for discrete energy of numerical methods (4.6) are indeed identical at the partition-

instants tn for all parameters ω, σ and initial values X0, Y0 ∈ L2(Ω,F0, P)! Thus we

answer the question that such numerical methods indeed exist (which are consistent

too). The conclusions of Theorems 4.1, 4.2 and Corollaries 4.1, 4.2 are still valid if

all ∆Wn are independent random variables with E [∆Wn] = 0 and E [(∆Wn)2] = hn.

5. APPENDIX: LIL FOR PII

The following theorem represents a summary of major results found by Stout

[16] (discrete case) and Wang [17] (continuous case). It is also known as the law of

iterated logarithms (LIL) for processes with independent increments (PII). This

result extends classical results of Kolmogorov, Lévy and Strassen.

Theorem 5.1 (Stout-Wang’s LIL for PII). Let X = (X(t))t≥0 be a stochastic process

with independent increments (PII) along a continuous or discrete time scale t ∈ T

with T = [0, +∞) or T = N. Assume that

(i) ∀t ∈ T : E [X(t)] = 0, V (t) := E [(X(t))2] < +∞, limt→+∞ V (t) = +∞,

(ii) E [supt>0

(

∆Xt

t

)2

] < +∞ where ∆Xt = X(t) − X(t−) for T = [0, +∞) and

∆Xt = X(t) − X(t − 1) for T = N.

Then

P

({

lim sup
t→+∞

X(t)
√

2V (t) log log(V (t))
= +1

})

= 1,

P

({

lim inf
t→+∞

X(t)
√

2V (t) log log(V (t))
= −1

})

= 1.
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