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ABSTRACT. In this paper, the concept of practical stability is investigated for a class of controlled

stochastic systems of the Ito-Doob type. By using vector Lyapunov-like functions and comparison

principle, sufficient conditions are established for various types of practical stability criteria in the

p-th mean and in probability. This comparison principle allows one to determine the practical sta-

bility criteria of a nonlinear stochastic system by testing the practical stability of the corresponding

auxiliary deterministic system with random initial condition. Finally, for the stochastic systems

we discuss the controllability and study the optimal practical stabilization of controlled stochastic

systems via the well known Hamilton-Jacobi-Bellman equation.

AMS(MOS) Subject Classifications. 93E15, 93E20, 34D20

1. INTRODUCTION

Stability analysis of both deterministic and stochastic systems in the Lyapunov

sense is well known and is widely used in the real world problems [1,2,3,6,9]. However,

sometimes for a practical system, the desired state may be unstable in the Lyapunov

sense, but still good enough in the sense that the system is oscillating sufficiently near

the state with an acceptable performance [5]. For example, an aircraft or a missile

may oscillate around a mathematically unstable course, yet its performance may be

acceptable. Problems falling in this category include the traveling of a space vehicle

between two points, and the problem in a chemical process, of keeping the temperature

within certain bound. To deal with such situations, the notion of practical stability

is more useful. This concept was first proposed by Lasalle and Lefschetz [4], and was

developed by Laksmikantham et. al [5], among others.

For stochastic systems, practical stability in the p-th mean was introduced by

Zhao-Shu et. al [1] and the stability in probability by Allan Tsoi and Bo Zhang [9]. In

their study, the stochastic system and the auxiliary equation has deterministic initial

conditions. We have generalized this concept to stochastic systems and hence the
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auxiliary systems with random initial conditions [6,7,8]. This is achieved by using a

very powerful comparison theorem developed by Bonita and Ladde [3]. In this paper,

practical stability in the p-th moment and in probability is extended for a larger class

of Itô-type nonlinear stochastic systems via Lyapunov-like functions and comparison

principle. We have also obtained sufficient conditions for the instability criteria of

the stochastic systems. Furthermore, the stabilizing control law to optimize some

performance index such as the cost of the control leads to the optimal stabilization

problem which is a very interesting area of research in the engineering sciences. We

also present the controllability of the stochastic systems and the optimal stabilization

via the standard Hamilton-Jacobi Bellman equation. Numerical examples are given

to demonstrate the fruitfulness of the developed theory.

2. PRELIMINARIES

Consider a large-scale system described by a system of stochastic differential

equations of Itô-Doob type,

dx = f(t, x)dt + σ(t, x)dξ, x(t0) = x0 (2.1)

Equation (2.1) can be written as:

dx = f(t, x)dt +
m

∑

r=1

σr(t, x)dξr, (2.2)

where x(t0) = x0 is an n-dimensional random vector defined on a complete probability

space (Ω,F ,P); ξ(t) = (ξ1(t), . . . , ξm(t)) is an m-dimensional normalized Wiener

process that is Ft-measurable for each t ≥ t0 and the increment ξ(t + h) − ξ(t) is

independent of every event in Ft; Ft is an increasing family of sub-sigma algebras of

F ; x0 and ξ(t) are independent for each t ≥ t0, f ∈ C[J ×ℜn,ℜn], σr ∈ C[J ×ℜn,ℜn]

for 1 ≤ r ≤ m; and f and gr are smooth enough to guarantee the existence of a

solution process, x(t) = x(t, t0, x0) of (2.2) for t ≥ t0.

Let x(t, t0, x0) be any solution process of (2.2) with initial data (t0, x0). We shall

assume thatf(t, 0) ≡ 0, σr(t, 0) ≡ 0 so that the system (2.2) possess a trivial solution.

Our objective is to investigate practical stability concepts in the sense of (i) pth

mean; and (ii) probability of the solution processes of (2.2) and also the practical sta-

bility concepts for some controlled stochastic systems. This is achieved by a powerful

comparison theorem [3] in the context of vector Lyapunov-like functions and systems

of differential inequalities.

Definition 2.1: System (2.2) is said to be (PSM) practically stable in the p-th mean

if, given (λ,A) with 0 < λ < A, we have E‖x0‖
p < λ imply

Et0,x0
‖x(t, t0, x0)‖

p < A, ∀t ≥ t0, for some t0 ∈ ℜ+ (2.3)
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Definition 2.2: System (2.2) is said to be (UPSM) uniformly practically stable in

the p-th mean if it is (PSM) and (2.3) holds for all t0 ∈ ℜ+.

Definition 2.3: System (2.2) is said to be (PQSM) practically quasi-stable in the p-

th mean with (λ,B) if, there exists positive numbers λ,B and T , we have E‖x0‖
p < λ

imply

Et0,x0
‖x(t, t0, x0)‖

p < B, ∀t ≥ t0 + T, for some t0 ∈ ℜ+ (2.4)

Definition 2.4: System (2.2) is said to be (UPQSM) uniformly practically quasi-

stable in the p-th mean if it is (PQSM) and (2.4) holds for every t0 ∈ ℜ+.

Definition 2.5: System (2.2) is said to be (SPSM) strongly practically stable in the

p-th mean if (PSM) and (PQSM) hold simultaneously.

Definition 2.6: System (2.2) is said to be (SUPSM) strongly uniformly practically

stable in the p-th mean (UPSM) and (UPQSM) hold simultaneously.

Definition 2.7: System (2.2) is said to be (PSP) practically stable in probability if,

given (λ,A) with 0 < λ < A, and for any ǫ > 0, such that

P{ω : ‖x0(ω)‖ > λ} < ǫ

implies

P{ω : ‖x(t, ω)‖ ≥ A} < ǫ, ∀t ≥ t0, for some t0 ∈ ℜ+ (2.5)

Definition 2.8: System (2.2) is said to be (UPSP) uniformly practically stable in

probability if it is (PSP) and (2.5) holds for all t0 ∈ ℜ+.

Definition 2.9: System (2.2) is said to be (PQSP) with λ, B if, there exists positive

numbers λ,B and T , and for any ǫ > 0, such that

P{ω : ‖x0(ω)‖ > λ} < ǫ

implies

P{ω : ‖x(t, ω)‖ ≥ B} < ǫ, ∀t ≥ t0 + T, for some t0 ∈ ℜ+ (2.6)

Definition 2.10: System (2.2) is said to be (UPQSP) if it is (PQSP) and (2.6) holds

for every t0 ∈ ℜ+.

Definition 2.11: System (2.2) is said to be (SPSP) if (PSP) and (PQSP) hold

simultaneously.

Definition 2.12: System (2.2) is said to be (SUPSP) if (UPSP) and (UPQSP) hold

simultaneously.

Consider now the auxiliary random differential system

u′ = g(t, u), u(t0) = u0 (2.7)

where g ∈ C[J ×ℜN
+ ,ℜN ], g(t, u) is concave and quasinilpotent nondecreasing in u for

each fixed t ∈ J and u0 is an N -dimensional random vector.
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Let u(t, t0, u0) be any solution of (2.7) and r(t, t0, u0) be the maximal solution

processes of (2.7) through (t0, u0).

We need the following corresponding definitions of practical stability of the aux-

iliary system (2.7).

Definition 2.13: System (2.7) is said to be partial practically stable (PPS∗), if

given (λ,A) with 0 < λ < A, we have E[
∑N

i=1 ui0] < λ imply

N
∑

i=1

ri(t, t0, Eu0) < A, ∀t ≥ t0, for some t0 ∈ ℜ+ (2.8)

Definition 2.14: System (2.7) is said to be partial practically stable in probability

(PPSP ∗) if, given (λ,A) with 0 < λ < A, and for any ǫ > 0 such that

P

{

ω :

N
∑

i=1

ui0(ω) > λ

}

< ǫ

implies

P

{

ω :
N

∑

i=1

ri(t, t0, Eu0(ω)) ≥ A

}

< ǫ, ∀t ≥ t0, for some t0 ∈ ℜ+ (2.9)

The notions of (UPPSP ∗), (PPQSP ∗), (SPPSP ∗), (SUPPSP ∗) can be defined sim-

ilarly to the corresponding ones in the above definitions.

3. PRACTICAL STABILITY CRITERIA

In this section, by employing the Lyapunov-like functions and the basic com-

parison principle of stochastic systems, we give results for various types of practical

stability in the pth mean and in probability of system (2.1).

Lemma 3.1: [Theorem 3.1, [3]] Assume that there exist functions V (t, x), and g(t, u)

satisfying the following conditions:

(i) V (t, x) ∈ C[J ×ℜn,ℜN
+ ], ∂V (t,x)

∂t
, ∂V (t,x)

∂x
, and ∂2V (t,x)

∂x2 exist and are continuous for

(t, x) ∈ J × ℜn and

LV (t, x) ≤ g (t, V (t, x)) , (3.1)

for (t, x) ∈ J × ℜn, where

L =
∂

∂t
+ f(t, x).

∂

∂x
+

1

2
tr

(

A(t, x)
∂2

∂x2

)

A(t, x) = (aij(t, x) =
m

∑

r=1

(σr(t, x)σT
r (t, x))

(ii) g ∈ C[J × ℜN
+ ,ℜN ]; g(t, 0) ≡ 0, g(t, u) is concave and quasi-monotone non-

decreasing function in u, for each t ∈ J ;
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(iii) r(t) = r(t, t0, u0) is the maximal solution of the auxiliary differential system

u′ = g(t, u), u(t0) = u0 (3.2)

existing for t ≥ t0; where u0 is an N -dimensional random vector;

(iv) for the solution process x(t) = x(t, t0, x0) of (2.2), E[V (t, x(t))] exist for t ≥ t0.

Then,

E[V (t, x(t))|x(t0) = x0] ≤ r(t, t0, u0), t ≥ t0 (3.3)

whenever

V (t0, x0) ≤ u0

Theorem 3.1: Assume that

(i) there exist functions V (t, x), and g(t, u) satisfying the following conditions:

V (t, x) ∈ C[J ×ℜn,ℜN
+ ], ∂V (t,x)

∂t
, ∂V (t,x)

∂x
, and ∂2V (t,x)

∂x2 exist and are continuous on

J × ℜn, and for (t, x) ∈ J × ℜn and

LV (t, x) ≤ g (t, V (t, x)) , (3.4)

where g ∈ C[J × ℜN
+ ,ℜN ]; g(t, 0) ≡ 0, g(t, u) is concave and quasi-monotone

non-decreasing function in u, for each fixed t ∈ J ;

(ii) there exists a matrix function T (t) such that T ∈ C[ℜ+,ℜN2

], T (t) = (τij(t)),

τij(t) ≥ 0, and for u, v ∈ ℜN , u ≥ v, g(t, u) − g(t, v) ≥ −T (t)(u − v);

(iii) r(t) = r(t, t0, u0) is the maximal solution of the auxiliary differential system

(3.2) existing for t ≥ t0 and E[r(t, t0, u0)] exists;

(iv) for (t, x) ∈ J × ℜN ,

b(‖x‖p) ≤
n

∑

i=1

Vi(t, x) ≤ a(t, ‖x‖p) (3.5)

where b ∈ VK[ℜ+,ℜ+], VK is the collection of all continuous convex and increas-

ing functions defined on ℜ+ into itself with b(0)=0 and a ∈ CK[ℜ+ × ℜ+,ℜ+],

CK is the collection a(t, u) of all continuous concave and increasing functions in

u for each t ∈ ℜ+ defined on ℜ+ × ℜ+ into ℜ+ with a(t, 0) = 0;

(v) λ and A are given such that 0 < λ < A and a(t0, λ) < b(A).

Then, the partial practical stability (PPS∗) of (2.7) implies that the system (2.2) is

practically stable in the p-th mean (PSM).

Proof: Let x(t) = x(t, t0, x0) be any solution process of (2.2). By hypothesis (iv),

0 ≤ E[b(‖x‖p)] ≤ E

[

N
∑

i=1

Vi(t, x(t))

]

≤ a(t, E‖x(t)‖p) (3.6)

Hence, we have by Lemma 3.1, that V (t0, x0) ≤ u0 implying

E[V (t, x(t))|x(t0) = x0] ≤ r(t, t0, u0)
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so that
N

∑

i=1

E[Vi(t, x(t))|x(t0) = x0] ≤

N
∑

i=1

ri(t, t0, u0), ∀t ≥ t0 (3.7)

where r(t, t0, u0) is the maximal solution of (2.7) existing on [t0,∞).

Taking expected value of (3.7) both sides and using Lemma 3.2 [3],

N
∑

i=1

E[Vi(t, x(t))] ≤

N
∑

i=1

E[ri(t, t0, u0)] ≤

N
∑

i=1

ri(t, t0, Eu0) (3.8)

Since r(t, t0, u0) of (2.7) is partially practically stable; we have,
N

∑

i=1

E[ui0] < a(t0, λ)

implies that
N

∑

i=1

ri(t, t0, Eu0) < b(A), ∀t ≥ t0 (3.9)

Now, we claim that E‖x0‖
p < λ implies E‖x(t)‖p < A, t ≥ t0, where x(t, t0, x0) is

any solution of (2.2) with E‖x0‖
p < λ.

Suppose this claim is not true, then there exists a t1 > t0 and a solution x(t) =

x(t, t0, x0) of (2.2) with E‖x0‖
p < λ such that

E‖x(t1)‖
p = A and E‖x(t)‖p < A for t0 ≤ t < t1 (3.10)

By hypothesis (iv), we have

N
∑

i=1

E[Vi(t1, x(t1))] ≥ b(E‖x(t1)‖
p) = b(A) (3.11)

Let us choose u0 such that V (t0, x0) = u0 and
∑N

i=1 E[ui0] = a(t0, E‖x0‖
p); and by

the previous estimate (3.8)

N
∑

i=1

E[Vi(t1, x(t1))] ≤

N
∑

i=1

E[ri(t1, t0, u0)] <

N
∑

i=1

ri(t1, t0, Eu0) (3.12)

The relations, (3.9), (3.11), and (3.12) lead to the contradiction

b(A) ≤

N
∑

i=1

E[Vi(t1, x(t1))] < b(A).

This completes the proof.

Theorem 3.2: Assume that the conditions in Theorem 3.1 are satisfied by replacing

a ∈ CK by a ∈ K and a(λ) < b(A). Then system (2.7) is (UPPS∗) with (a(λ), b(A))

implies system (2.2) is (UPSM).

Proof: It is not difficult to see, since a does not depend on t0 ∈ ℜ+. We thus

complete the proof.
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Theorem 3.3: Assume that the conditions of Theorem 3.1 are satisfied. Then, for

some positive numbers (λ,B, T ), that system (2.7) is (PPQS∗) with (a(t0, λ), b(B), T )

implies that system (2.2) is (PQSM) with (λ,B, T ).

Proof: From the practical-quasi-stability with (a(t0, λ), b(B), T ) of system (2.7), we

know that for some t∗0 ∈ ℜ+, we have
∑N

i=1 E[ui0] < a(t0, λ) implies that

N
∑

i=1

ri(t, t
∗

0, Eu0) < b(B), ∀t ≥ t∗0 + T. (3.13)

Now, we claim that E‖x0‖
p < λ implies Et∗

0
,x0
‖x(t)‖p < B, t ≥ t∗0+T , where x(t, t0, x0)

is any solution of (2.2) with E‖x0‖
p < λ.

Suppose this claim is not true, then there would exists a t1 > t∗0+T and a solution

x(t) = x(t, t∗0, x0) of (2.2) with E‖x0‖
p < λ such that

E‖x(t1)‖
p = B and E‖x(t)‖p < B for t∗0 + T ≤ t < t1 (3.14)

By hypothesis (iv), we have

N
∑

i=1

Et∗
0
,x0

[Vi(t1, x(t1))] ≥ b(E‖x(t1)‖
p) = b(B) (3.15)

Let us choose u0 such that V (t0, x0) = u0 and
∑N

i=1 E[ui0] = a(t0, E‖x0‖
p). Hence,

we have by Lemma 3.1, that V (t0, x0) ≤ u0 implying

Et∗
0
,x0

[V (t, x(t))|x(t∗0) = x0] ≤ r(t, t∗0, u0)

so that
N

∑

i=1

Et∗
0
,x0

[Vi(t, x(t))|x(t∗0) = x0] ≤

N
∑

i=1

ri(t, t
∗

0, u0), ∀t ≥ t0 (3.16)

where r(t, t∗0, u0) is the maximal solution of (2.7) existing on [t∗0,∞).

Taking expected value of (3.16) both sides and using Lemma 3.2 [3],

N
∑

i=1

Et∗
0
,x0

[Vi(t, x(t))] ≤
N

∑

i=1

E[ri(t, t
∗

0, u0)] ≤
N

∑

i=1

ri(t, t
∗

0, Eu0) (3.17)

The relations, (3.13), (3.15), and (3.17) lead to the contradiction

b(B) ≤
N

∑

i=1

Et∗
0
,x0

[Vi(t1, x(t1))] < b(B)

This completes the proof.

Theorem 3.4: Assume that the conditions of Theorem 3.2 are satisfied. If system

(2.7) is (UPPQS∗), then system (2.2) is (UPQM).

Proof: We observe that the function a in Theorem 3.2 does not depend on t0 ∈ ℜ+,

so the conclusion of Theorem 3.2 holds for all t0 ∈ ℜ+ which complete the proof.
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From the definitions of (SPSM) and (SUPSM), and using Theorems 3.1-3.4, it is

easy to see that we have the following Corollaries:

Corollary 3.1: Assume that the conditions in Theorem 3.1 are satisfied. If system

(2.7) is (SPPS∗), then system (2.2) is (SPSM).

Corollary 3.2: Assume that the conditions in Theorem 3.2 are satisfied. If system

(2.7) is (SUPPS∗), then system (2.2) is (SUPSM).

The following Theorem illustrates the sufficient conditions for practical instability

of a stochastic system given by equation (2.2).

Theorem 3.5: Assume that there exists V (t, x) and g(t, u) satisfying the following

conditions:

(i) for (t, x) ∈ J × ℜN ,

f1(‖x‖
p) ≤

s
∑

i=1

Vi(t, x) ≤ f2(‖x‖
p) (3.18)

where f1 ∈ VK[ℜ+,ℜ+], VK is the collection of all continuous convex and in-

creasing functions defined on ℜ+ into itself with f1(0) = 0 and f2 ∈ CK[ℜ+ ×

ℜ+,ℜ+], CK is the collection f2(u) of all continuous concave and increasing

functions in u for each t ∈ ℜ+ defined on ℜ+ × ℜ+ into ℜ+ with f1(0) = 0;

(ii) V (t, x) ∈ C[J ×ℜn,ℜN
+ ], ∂V (t,x)

∂t
, ∂V (t,x)

∂x
, and ∂2V (t,x)

∂x2 exist and are continuous for

on J ×ℜn, and for (t, x) ∈ J ×ℜn and

LV (x) ≥ g (t, V (x)) , (3.19)

where the operator L is defined as (3.10).

(iii) g ∈ C[ℜ+ × B(J ),B(J )] ; g(t, 0) ≡ 0, g(t, u) is convex and quasi-monotone

non-decreasing function in u, for each t ∈ ℜ+;

(iv) ρ(t) = ρ(t, t0, u0) is the minimal solution of the auxiliary differential system

u′ = g(t, u), u(t0) = u0 (3.20)

existing for t ≥ t0; where V (t0, x0) ≥ u0 and u0 is a d-dimensional random

vector;

(v) E[ρ(t, t0, u0)] → ∞ as t → ∞;

Then, the stochastic process Xt given by system (2.2) is practically unstable in the

p-th mean.

Proof: By imitating the proof of Theorem 3.1, it can be easily shown that

E[V (Xt)|x0] ≥ ρ(t, t0, u0), (3.21)

whenever V (x0) ≥ u0.
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Taking the expected value of the above expression both sides and let t → ∞ we

can show that

E[V (Xt)] → ∞

Using the hypothesis (i), and the fact that f2 is concave, we have deduce that as

t → ∞

E[‖Xt‖
p] → ∞.

Hence, the stochastic process given by the system (2.2) is practically unstable. This

completes the proof of the theorem.

Next we will discuss the partial practical stability in probability of system (2.2).

Theorem 3.6: Assume that the conditions in Theorem 3.1 are satisfied. If system

(2.7) is (PPSP ∗) with (a(t0, λ), b(A)), then system (2.2) is (PSP) with (λ,A).

Proof: Let x(t) = x(t, t0, x0) be a solution process of (2.2). By the condition (iv) in

Theorem 3.1,

0 ≤ b(‖x‖p) ≤

N
∑

i=1

Vi(t, x) ≤ a(t, ‖x‖p) (3.22)

By Lemma 3.2 [3], that V (t0, x0) ≤ u0 implying

Et0,x0
[V (t, x(t))|x(t0) = x0] ≤ r(t, t∗0, u0)

so that
N

∑

i=1

Et0,x0
[Vi(t, x(t))] ≤

N
∑

i=1

ri(t, t0, Eu0), ∀t ≥ t0 (3.23)

where r(t, t0, u0) is the maximal solution of (2.7) existing on [t0,∞).

From the practical stability of (2.7) in probability, we know that for any ǫ > 0

P

{

ω :

N
∑

i=1

ui0(ω) > a(t0, λ)

}

< ǫ

implies

Pt∗
0
,u0

{

ω :

N
∑

i=1

ri(t, t
∗

0, Eu0(ω)) ≥ b(A)

}

< ǫ, ∀t ≥ t∗0, for some t∗0 ∈ ℜ+ (3.24)

Let us choose u0 so that u0 ≥ V (t0, x0) and
∑m

i=1 ui0 = a(t0, ‖x0‖).

Since a(t0, ω) ∈ K we have

P{ω : a(t0, ‖x0‖) > a(t0, λ)} = P{ω : ‖x0‖ > λ} (3.25)

Now, we claim that system (2.2) is (PSP) with (λ,A). If this claim is not true, there

would exists an ǫ0 > 0, a solution x(t) = x(t, t∗0, x0), with

P{ω : ‖x0(ω)‖ > λ} < ǫ0 (3.26)

and a t1 > t∗0 such that

Pt∗
0
,x0
{ω : ‖x(t1, t

∗

0, ω)‖ ≥ A} = ǫ0 (3.27)
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However from (3.22), we have

Pt∗
0
,x0

{

ω :

N
∑

i=1

EVi(t1, x(t1, t
∗

0, ω) ≥ b(A)

}

= ǫ0 (3.28)

Choose an ǫ > 0 such that 1 − ǫ > ǫ0
2
, using (3.23) and (3.24), we will get

Pt∗
0
,x0

{

ω :
m

∑

i=1

E[Vi(t1, x(t1))] ≤
N

∑

i=1

ri(t1, t
∗

0, Eu0) < b(A)

}

>
ǫ0

2
(3.29)

by (3.28) and (3.29), we get the following contradiction

Pt∗
0
,x0

{

ω : b(A) ≤
N

∑

i=1

E[Vi(t1, x(t1))] ≤
N

∑

i=1

ri(t1, t
∗

0, Eu0) < b(A)

}

>
ǫ0

2
(3.30)

This completes the proof.

Corollary 3.3: Assume that the conditions in Theorem 3.5 are satisfied by replacing

a ∈ CK by a ∈ K. If system (2.7) is (UPPSP ∗), then system (2.2) is (UPSP).

Theorem 3.6: Assume that the conditions in Theorem 3.5 are satisfied. If system

(2.7) is (PPQSP ∗), then system (2.2) is (PQSP).

Proof: We will leave the proof of this theorem to the reader.

Example 3.1: [2] Consider the system of stochastic differential equations

dx = f(t, x(t))x(t)dt +

2
∑

r=1

σr(t, x(t))dξr, (3.31)

where x ∈ ℜ2, f ∈ C[J ×ℜ2,ℜ2], σr ∈ C[J ×ℜ2,ℜ2] for 1 ≤ r ≤ 2. We assume that

f(t, 0, 0) ≡ 0, σr(t, 0, 0) ≡ 0

[σ1(t, x) + σ2(t, x)]2 ≤ (x1 + x2)
2λ(t)

[σ1(t, x) − σ2(t, x)]2 ≤ (x1 − x2)
2λ(t)

where λ ∈ C[ℜ+ × ℜ+] ∩ L1[0,∞), and

F (t, x) =

[

e−t − f0(t, x) sin t

sin t e−t − f0(t, x)

]

with f0 ∈ C[ℜ+ × ℜ2,ℜ], f0(t, x) ≥ 0 on the ball B(ρ) with radius ρ and center at

0 ∈ ℜ2 for all t ∈ ℜ+ and f0(t, 0) ≡ 0. Consider the function:

V (t, x) =

[

(x1 + x2)
2

(x1 + x2)
2

]

The components of V , V1 and V2 satisfy the hypotheses of Lemma 3.4 with N = 2.

(x2
1 + x2

2) ≤
2

∑

i=1

Vi(t, x) ≤ 2(x2
1 + x2

2)
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If we take b(s) = s and a(s) = 2s, then the inequality in Theorem 3.2 is satisfied with

positive numbers λ and A with 2λ < A. Also, the inequality

LV (x) ≤ g(t, V (x))

is satisfied in ℜ+ × ℜ2 with

g(t, u) =

[

(2e−t + 2 sin t + λ(t))u1

(2e−t + 2 sin t + λ(t))u2

]

It is easy to observe that g(t, u) is concave and quasi-monotone nondecreasing in u

for each fixed t and the auxiliary system (2.7) is (UPPS∗). Therefore, system (3.40)

is (UPSM).

4. STABILIZATION OF CONTROLLED STOCHASTIC SYSTEMS

We consider a controlled stochastic systems of the type:

dx = f(t, x, u)dt +

m
∑

r=1

σr(t, x, u)dξr, (4.1)

f ∈ C[J × ℜn × ℜN ,ℜn], σr ∈ C[J × ℜn × ℜN ,ℜn] for 1 ≤ r ≤ m. We assume that

f(t, 0, 0) ≡ 0, σr(t, 0, 0) ≡ 0. Here u is a control parameter with values in a given

Borel set E ⊂ ℜN described by

E = {u ∈ ℜN : U(t, u) ≤ v0(t), t ≥ t0}

where U ∈ C[ℜ+ ×ℜN ,ℜ+] and v0(t) ∈ C[ℜ+,ℜ+] is a given function.

Assume that the control u in (4.1) is a function of t and x(t), that is u = u(t, x(t)).

Then the process described by (4.1) is Markovian.

A control u = u(t, x) is said to be admissible if the coefficients in (4.41), f(t, x,

u(t, x)) and σr(t, x, u(t, x)) are continuous and have continuous partial derivatives

with respect to x which are bounded uniformly in t > 0 and u(t, 0) ≡ 0.

We denote by U the class of admissible controls. Each function u ∈ U can be

associated with a Markov process x(t, t0, x0, u) which is a solution to equation (4.1)

with initial condition x(t0, t0, x0, u) = x0.

Next we will discuss some practical stability results on control system (4.1). For

this purpose, consider the auxiliary system

w′ = g(t, w, u), w(t0) = w0 (4.2)

where g ∈ C[J×ℜN
+ ×ℜN ,ℜN ], g(t, w, u) is a concave and quasi-monotone nondecreas-

ing in w for each fixed (t, u) ∈ J ×E, nondecreasing in u, and w0 is an N -dimensional

random vector.

Let w(t, t0, w0) be any solution of (4.2) and r(t, t0, w0) be the maximal solution

process of (4.2) through (t0, w0).
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Theorem 4.1: Assume that the hypotheses (ii) and (iii) of Theorem 3.1 are satisfied

and moreover

(i) there exist functions V (t, x), and g(t, u) satisfying the following conditions:

V (t, x) ∈ C[J ×ℜn,ℜN
+ ], ∂V (t,x)

∂t
, ∂V (t,x)

∂x
, and ∂2V (t,x)

∂x2 exist and are continuous on

J × ℜn, and for (t, x) ∈ J × ℜn and

LV (t, x) ≤ g (t, V (t, x), U(t, u)) , (4.3)

where g ∈ C[J × ℜN
+ × ℜN ,ℜN ]; g(t, 0, 0) ≡ 0, g(t, w, v) is concave and quasi-

monotone non-decreasing function in w and nondecreasing in v, for each fixed

t ∈ J ;

(ii) for (t, x) ∈ J × ℜn,

b(‖x‖p) ≤

N
∑

i=1

Vi(t, x) ≤ a(‖x‖p) (4.4)

where b ∈ VK[ℜ+,ℜ+], VK is the collection of all continuous convex and in-

creasing functions defined on ℜ+ into itself with b(0)=0 and a ∈ K[ℜ+,ℜ+], K

is the collection a(u) of all continuous concave and increasing functions in u with

a(0) = 0;

(iii) λ and A are given such that 0 < λ < A and a(λ) < b(A);

(iv) there exists u∗ ∈ C[ℜ+,ℜN
+ ] such that the maximal solution r(t) = r(t, t0, w0, u

∗)

of the auxiliary system (4.42) is partial practically stable with (a(λ), b(A)).

Then, u∗ = u∗(t) ∈ U gives system (4.41) practically stable in the p-th mean (PSM).

Proof: Let U(t, u∗(t)) ≤ v0(t) for t ≥ t0, and Xu∗

(t) = X(t, t0, x0, u
∗) be any solution

process of (4.1).

By hypothesis (ii),

0 ≤ E[b(‖Xu∗

(t)‖p)] ≤ E[
N

∑

i=1

Vi(t, x
u∗

(t))] ≤ a(E‖Xu∗

(t)‖p) (4.5)

Hence, we have by Lemma 3.1, that V (t0, x0) ≤ w0 implying

E[V (t, Xu∗

(t))|Xu∗

(t0) = x0] ≤ r(t, t0, w0)

so that
N

∑

i=1

E[Vi(t, X
u∗

(t))|Xu∗

(t0) = x0] ≤
N

∑

i=1

ri(t, t0, u0), ∀t ≥ t0 (4.6)

where r(t, t0, w0) is the maximal solution of (4.2) existing on [t0,∞).

Taking expected value of (4.6) both sides and using Lemma 3.2[3],

E[b(‖Xu∗

(t)‖p)] ≤
N

∑

i=1

E[Vi(t, X
u∗

(t))] ≤
N

∑

i=1

E[ri(t, t0, w0)] ≤
N

∑

i=1

ri(t, t0, Ew0)

(4.7)
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Since r(t, t0, w0, u
∗) of (4.2) is partially practically stable with (a(λ), b(A)); we have,

∑N

i=1 E[wi0] < a(λ) implies that

N
∑

i=1

ri(t, t0, Ew0) < b(A), ∀t ≥ t0 (4.8)

Now, we claim that E‖x0‖
p < λ implies E‖Xu∗

(t)‖p < A, t ≥ t0, where Xu∗

(t, t0, x0, u
∗)

is any solution of (4.1) with E‖x0‖
p < λ.

Suppose this claim is not true, then there exists a t1 > t0 and a solution Xu∗

(t) =

Xu∗

(t, t0, x0, u
∗) of (4.1) with E‖x0‖

p < λ such that

E‖Xu∗

(t1)‖
p = A and E‖Xu∗

(t)‖p < A for t0 ≤ t < t1 (4.9)

By assumption (ii), we have

N
∑

i=1

E[Vi(t1, X
u∗

(t1))] ≥ b(E‖Xu∗

(t1)‖
p) = b(A) (4.10)

Let us choose w0 such that V (t0, x0) = w0 and
∑N

i=1 E[wi0] = a(E‖x0‖
p); and by the

previous estimate (4.7)

N
∑

i=1

E[Vi(t1, X
u∗

(t1))] ≤

N
∑

i=1

E[ri(t1, t0, w0)] <

N
∑

i=1

ri(t1, t0, Ew0) (4.11)

The relations, (4.7), (4.10), and (4.11) lead to the contradiction

b(A) ≤

m
∑

i=1

E[Vi(t1, x(t1))] < b(A)

This completes the proof.

Remark 4.1: In condition (i) of the theorem, function g depends on t, V , and U . It

can be easily shown that the Lemma 3.2 is still valid for this function g.

Remark 4.2: The function a does not depend on t0, so that uniform partial practical

stability of system (4.2) implies the uniform practical stability of system (4.1).

Corollary 4.1: Assume that the conditions of Theorem 4.1 are satisfied and moreover

(v) there exists some T = T (t0, w0) such that

m
∑

i=1

ri(t0 + T, t0, w0, v) ≤ b(β)

where r(t) = r(t, t0, w0, v) is the maximal solution of (4.2) through (t0, w0).

Then system (4.1) is controllable in the p-th mean. That is all the solutions

Xu(t) = X(t, t0, x0, u) starting in {x ∈ ℜn : ‖x0‖
p < λ} enter into the bounded

region {x ∈ ℜn : ‖x(ω)‖p < β}. That is , E‖x0‖
p < λ imply E‖x(t0 + T )‖p < β.
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Proof: From (4.7) in the proof of the Theorem 4.1, we have by (v) that

b(E[(‖X(t0 + T )‖p)]) ≤
N

∑

i=1

E[ri(t0 + T, t0, w0, v)] ≤
N

∑

i=1

ri(t, t0, Ew0, v) ≤ b(β),

(4.12)

where r(t, t0, w0, v) is the maximal solution of (4.2). Therefore,

E‖X(t0 + T )‖p ≤ β

The proof is complete.

Now, we will seek an optimal control function, i.e. a control function u0 ∈ U

which minimizes the cost functional:

J t0,x0(u) = E

{
∫

∞

t0

g (t, V (t, x(t, t0, x0, u), x(t, t0, x0, u), u(t, x(t, t0, x0, u)) dt

}

where g(t, v, x, u) > 0 for all t ∈ J , v ∈ ℜN , x ∈ ℜn and u ∈ ℜ. Moreover, we will

show that the system (4.1) with u = u0(t, x) is practically stable in p-th mean.

Theorem 4.2: Assume that the hypotheses (ii) and (iii) of Theorem 3.1 are satisfied

and moreover,

(i) there exist functions V (t, x), and g(t, u) satisfying the following conditions:

V (t, x) ∈ C[J ×ℜn,ℜN
+ ], ∂V (t,x)

∂t
, ∂V (t,x)

∂x
, and ∂2V (t,x)

∂x2 exist and are continuous for

on J ×ℜn, and for (t, x) ∈ J ×ℜn and

LuV (t, x) + g (t, V (t, x), x, u)) ≥ 0, ∀u ∈ U (4.13)

where g ∈ C[J × ℜN
+ × ℜN ,ℜN

+ ]; g(t, 0, 0) ≡ 0, g(t, w, v) is concave and quasi-

monotone non-decreasing function in w and nondecreasing in v, for each t ∈ J ;

(ii) the set E is a convex compact set, For u0(t, x) ∈ U system (4.1) admits a unique

solution for t ≥ t0 and for (t, x) ∈ J × ℜn, and

Lu0 + g (t, V (t, x), x, u)) ≡ 0, ∀u ∈ U (4.14)

(iii) for (t, x) ∈ J × ℜN ,

b(‖x‖p) ≤
N

∑

i=1

Vi(t, x) ≤ a(‖x‖p) (4.15)

where b ∈ VK[ℜ+,ℜ+], VK is the collection of all continuous convex and in-

creasing functions defined on ℜ+ into itself with b(0) = 0 and a ∈ K[ℜ+,ℜ+],

K is the collection a(u) of all continuous concave and increasing functions in u

with a(0) = 0;

(iv) λ and A are given such that 0 < λ < A and a(λ) < b(A).

(v) the maximal solution r(t) = r(t, t0, w0, u
0) of

w′ = g(t, w, x, u0(t, x)), w(t0) = w0 (4.16)
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exists on [t0,∞) and this system is partial practically stable with (a(λ), b(A))

and lim
t→∞

r(t, t0, Ew0, u
0) = 0.

Then the control u0(t, x) is a solution to the optimal stabilization for the control

system (4.1) in the sense of minimizing the cost,

J t0,x0(u0) = min
u∈U

J t0,x0(u) (4.17)

and u0(t, x) makes the system (4.1) practically stable in the p-th mean and J t0,x0(u0) =

V (t0, x0).

Remark 4.2: The conditions (i) and (ii) can be combined into one equation

min
u∈E

[LV (x) + g(t, V (x), x, u)] = 0

This is the well known Hamilton-Bellman-Jacobi equation corresponding to our sto-

chastic System (4.1).

Proof of Theorem 4.2: Let X0(t) = X(t, t0, x0, u
0) be the solution of (4.1) corre-

sponding to the control u0(t, x) ∈ U . Then by following the proof of Theorem 4.1 and

Corollary 4.1 we can prove that system (4.1) is practically stable in the p-th mean.

We also have
N

∑

i=1

EVi(t, X
0(t)) ≤

N
∑

i=1

ri(t, t0, Ew0, u
0) → 0 (4.18)

Hence by condition (iii), b(E‖X0(t)‖p) → 0, and therefore we get E‖X0(t)‖p → 0, as

t → ∞. Let u = u(t, x) be any admissible control and X(t) = X(t, t0, x0, u) be the

corresponding solution. By applying Itô formula to V (t, X(t)) we obtain

dV (t, X(t)) = LuV (t, X(t)) + Vx(t, X(t)).
m

∑

r=1

gr(t, X(t))dξr(t) (4.19)

Integrating (4.19) from t0 to t, we obtain

V (t, X(t)) − V (t0, x0) =

∫ t

t0

LuV (s, X(s))ds,

+

∫ t

t0

Vx(s, X(s))

m
∑

r=1

gr(s, X(s))dξr(t) (4.20)

Taking the expected value of (4.20) and letting u = u0(t, x)

EV (t, X0(t)) − EV (t0, x0) = E[

∫ t

t0

LuV (s, X0(s))ds],

= E[

∫ t

t0

g(s, V (s, X0(s)), X0(s), u0(s, X0(s)))ds] (4.21)

Letting t → ∞ and using (4.16) we get

J t0,x0(u0) = E[V (t0, x0)] (4.22)
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Now if u(t, x) is any admissible control and X(t) = X(t, t0, x0, u) then using similar

argument we can get

EV (t, X(t)) − EV (t0, x0) = E[

∫ t

t0

LuV (s, X(s))ds],

≥ −E[

∫ t

t0

g(s, V (s, X(s)), X(s), u0(s, X(s)))ds] (4.23)

Letting t → ∞, we have

0 ≥ EV (t0, x0) − E[

∫

∞

t0

g(s, V (s, X(s)), X(s), u(s, X(s)))ds]

That is J t0,x0(u) ≥ E[V (t0, x0)] which with (4.22) implies

J t0,x0(u0) = min
u∈U

J t0,x0(u)

Hence the proof is complete.

The following example will illustrate the fruitfulness of the obtained results.

Example 4.1 Consider the following nonlinear time-varying hybrid system

dx = [f(t, x) + B(t, x)u]dt +

m
∑

r=1

g(t, x)wr(t) x (t0) = x0, η (t0) = i0 (4.24)

where x ∈ ℜn, x (t0) = x0 is an n-dimensional random vector. Let f(t, x) ∈

C [J × ℜn,ℜn], B(t, x) : J × ℜn → ℜn × ℜm is a continuous n × m matrix and

u ∈ ℜm(m ≤ n), w(t) = (w1, w2, . . . , wm) is a m-dimensional normalized Wiener

process. The corresponding uncontrolled stochastic system is given by

dx = f(t, x)dt +

m
∑

r=1

g(t, x)wr(t), x (t0) = x0

Let us use the following performance index:

Jt0,x0
= E

∫

∞

t0

[

Q1(t, x) + uTQ2u|x0, t0
]

dt (4.25)

where G(t, V, x, u) = Q1(t, x)+uT Q2u, Q1(t, x) ∈ C[J ×ℜn,ℜ], Q2 are real symmetric

positive definite matrices of dimension m×m. The optimal index V (t, x) : J ×ℜn →

ℜ+, which belongs to the class C2 in both arguments, satisfies the following:

LuV (t, x, k) =
∂V (t, x)

∂t
+

∂V (t, x)

∂x
· [f(t, x, k) + B(t, x, k)u] +

1

2
tr

(

A(t, x)
∂2

∂x2

)

= W (t, V (t, x, k), k) +
∂V (t, x)

∂x
· B(t, x, k)u (4.26)

where

A(t, x) = (aij(t, x) =
m

∑

r=1

(g(t, x)gT (t, x))
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and W (t, V (t, x, k), U(t, u)) be defined as

W (t, x, k) =
∂V (t, x, k)

∂t
+

∂V (t, x, k)

∂x
· f(t, x, k) +

1

2
tr

(

A(t, x)
∂2

∂x2

)

.

Assume that the uncontrolled stochastic system is practically stable. This ensures

the existence of a positive definite V (t, x) such that W (t, x) ≤ 0.

Now, let us define

LV (t, x) + ĝ(t, V, x, u) = L(t, V, x, u)

= W (t, x) + Q1(t, x) + uT Q2u +
∂V (t, x)

∂x
· B(t, x)u.

Hence, the Hamilton-Jacobi-Bellman equation using the vector-Lyapunov function

V (t, x), gives the following set of conditions to find the control u0:

L(V (t, x), t, x, u) = 0, at u = u0 (4.27)

∂

∂u
L(V (t, x), t, x, u) = 0, at u = u0. (4.28)

From these two set of conditions it follows that we obtain the following relationship

W (t, x) + Q1(t, x) + uTQ2u +
∂V (t, x)

∂x
= 0

B(t, x)Vx(t, x) + 2Q2u
0 = 0 (4.29)

Thus, we get the control u0 that satisfies the above set of two conditions

u0 = −
1

2
Q−1

2 B(t, x)Vx(t, x). (4.30)

To discuss the problem of minimization of the functional (4.25), we look at the fol-

lowing expression

Vx(t, x)B(t, x)u + uTQ2u = −2
[

u0
]T

Q2

[

u0
]

+ uT Q2u

=
(

u − u0
)T

Q2

(

u − u0
)

−
[

u0
]T

Q2u
0. (4.31)

Using the condition (4.27) and (4.28), we will get

W (t, x) + Q1k(t, x) −
[

u0
]T

Q2u
0 = 0. (4.32)

Thus, we obtain

Q1(t, x) = −W (t, x) +
[

u0
]T

Q2u
0. (4.33)

Now, we need to prove that lim
t→∞

w(t, x) = 0 where w(t, x) is the solution of the com-

parison system

w′ = −g
(

t, w, x, u0
)

= −Q1(t, x) −
[

u0
]T

Q2u
0

= W (t, x) − 2
[

u0
]T

Q2u
0

≤ 0 (4.34)

Thus, limt→∞ w(t, x) = 0.
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Therefore, under the control law u0 = −1
2
Q−1

2 B(t, x)Vx(t, x), we obtain the opti-

mal stabilization of system (4.24). Hence, we have the optimal performance index

J0 (t0, x0) = E [V (t0, x0, i0)] .
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