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ABSTRACT. We can not neglect the randomness in the dynamics of market competition. This

paper develops a stochastic differential game model which incorporates advertising effects for two

companies introducing a new brand of product, competing for the market share and optimizing the

budget. Our model is formulated as a stochastic, two-player, noncooperative differential game. As to

the choice of basic dynamics, because of the special sale growing style in the introductory period, our

model disagrees with the simple decay factor in Vidale-Wolfe model, but is based on the combination

of Lanchester combat model and Logistic growth model. The solution concept is Nash Equilibrium.

We derive optimality necessary conditions for Nash Equilibrium from dynamic programming, which

is a Stochastic Partial Differential Equation(SPDE). The typical work in this field is from Prasad A.

(2004), where he analytically solved his model because of the special form of the model. We choose

to solve the optimality conditions, which is SPDE system numerically. Management strategy and

discussions based on practical considerations will be given based on numerical results.
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1. INTRODUCTION

First we discuss some basic deterministic dynamics in Marketing. Vidale-Wolfe

(1957) advertising model is one of the earliest math models in marketing, which is

derived from actual market phenomena represented by cases they have observed, and

consistent with experimental observations. It is simple but can describe the relation-

ship between advertising and sales in a reasonable manner. Thus, many researchers

adopt Vidale-Wolfe type dynamics in many differential game models in marketing

competition. The basic Vidale-Wolfe model is the following

dx

dt
= ρµ(1 −

x

M
) − kx, x(0) = x0 ,

where x is the sales rate, M is the maximum sales potential, and the parameters ρ

and k are the response constant of advertising and sales decay constant, respectively.

The parameter µ is control variable, representing the rate of advertising expenditure.
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From this model, we can see that the product sales change rate depends on two

factors: one is positive response to advertising that acts on the unsold portion of the

market, and the other is decay caused by forgetting, which is linearly proportional to

the sold portion of the market. And the general Vidale-Wolfe in duopoly is as follows:

dxi

dt
= ρiµi(1 − f(xi, x1 + x2)) − kixi,

where f(·, ·) is strictly bigger than zero. However, Vidale-Wolfe model just reflects the

fact that for some mature product, sale will decrease as time goes on, and adverting

may stop this kind of natural decay to some extent.

Lanchester combat model is a basic model to describe competition among in-

dividuals, which is also used to describe competition in marketing. Kimball (1957)

recognized the application of this model in advertising. The basic dynamics is as

follows:
dx1

dt
= bu1x2 − au2x1

dx2

dt
= au2x1 − bu1x2

where x1 + x2 = M . Lanchester model reveals the basic fact that in competition,

the driving force is the extra ‘force’ of one competitor over the other. In fact, by

substituting x2 = M − x1 we can see that the dynamics for i− th player is a Vidale-

Wolfe model with time-varying decay parameter. The general Lanchester model is as

follows:
dx

dt
= g(ui)xj − h(uj)xi, i 6= j, where g(·), h(·) > 0

Suresh P. Sethi (1973,1977) used optimal control model to conduct research about

optimal advertising strategy, which is based on the dynamics from Vidale-Wolfe and

Lanchester models. And many similar works were done by Friedman (1983), Erickson

(1985), Eliashberg and Jeuland (1986). These works approach the problem as open

loop, deterministic optimal control problems.

However, in all the above models, there is no competition. Kenneth R. Deal

(1979) first set up deterministic differential game model to optimize advertising ex-

penditures in a dynamic duopoly. His ‘Vidale-Wolfe’ type differential game is as

follows:

max
u1

J1 =

∫ tf

t0

(c1x1(t) − u2
1(t))dt + ω1

x1(tf)

x1(tf ) + x2(tf )

max
u2

J2 =

∫ tf

t0

(c2x2(t) − u2
2(t))dt + ω2

x2(tf)

x1(tf ) + x2(tf )

and system dynamics:

dx1

dt
= −a1x1(t) + b1u1(t)

M − x1(t) − x2(t)

M

dx2

dt
= −a2x2(t) + b2u2(t)

M − x1(t) − x2(t)

M
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We have analyzed some drawback of the above dynamics in [15]. Here we just repeat

that competitors have no direct influence on other competitors’ sales. The typical

‘Lanchester’ type differential game is from Case (1979):

max
u1

J1 =

∫ +∞

t0

e−rt(q1x(t) −
c1

2
u2

1(t))dt

max
u2

J2 =

∫ +∞

t0

e−rt(q2(1 − x(t)) −
c2

2
u2

2(t))dt

and system dynamics:

dx

dt
= u1(t)(1 − x(t)) − u2(t)x(t), x(0) = x0

Case used these assumptions in the above typical differential game model in adver-

tising competition: total market potential is constant over time; the only marketing

instrument used by the firm is advertising; advertising has diminishing returns since

there are increasing marginal costs of advertising; there are saturation effects since

ui is employed on the market of the opponent player. Some other typical determin-

istic differential game models can be found in Gerhard Sorger (1989), Pradeep K

Chintagunta (1992).

All of the models abovr are deterministic models. However, in reality, competition

in marketing is full of uncertainity . For example, in the driving force of sale change,

besides adverting and competition, there should be many other factors which are

not included. So we want to extend our research on competition into stochastic

environment. And we try to answer how randomness will affect the outcome of

competition, and to what extend randomness will affect the results. Prasad and

Sethi (2004) gave the first stochastic differential game model to describe competitive

advertising in uncertain environment. Their ‘Lanchester’ type stochastic differential

game model is as follows:

max
u1

J1 =

∫

∞

t0

e−r1t(m1x(t) − c1u
2
1(t))dt

max
u2

J2 =

∫

∞

t0

e−r2t(m2x(t) − c2u
2
2(t))dt

subject to:

dx = (ρ1u1(x)
√

1 − x(t) − ρ2u2(x)
√

x(t) − δ(2x − 1))dt + σ(x)dw, x(0) = x0

In the above dynamics, we see that the driving force just comes from competition,

and they did not consider the effects of sales growth or decrease in the product life

cycle. Further, they solved their model analytically because of the special form of the

model.

Currently, given rapid advances in technology, companies from time to time in-

troduce newer versions of old products which incorporate not only old functions but
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also the newer functions, such as in electronic products and daily necessities. When

such types of products come into the market, their sale usually will experience a

grow-saturation-decay phase(Figure 6.1). In previous papers [15], [16], we conducted

research in competition in different stages of a product life cycle. We have set up

deterministic differential game models for different stages, and drawn practical guide-

lines based on numerical results. And in this paper, we will conduct research on

competition in stochastic environment in marketing. In the following subsection, we

will set up stochastic differential game model based on the first stage of a product life

cycle. In our work, we will combine two kinds of dynamics: one is logistic growth,

the other is ‘Lanchester’ competition. And each company has two objectives: one is

market share, the other is profit. We will set up algorithm to solve our model numer-

ically, and this numerical approach has an advantage over the approach of Prasad A.

(2004) because our algorithm have more adaptability, and can be easily modified to

solve more general models. Another different feature is that we choose to concentrate

on research of competition at some stage of the product life cycle, which may be more

useful from practical aspect.

2. MODEL

Our stochastic differential game model deals with the competition in the first

stage of product life cycle, which includes ‘Introduction, Growth, and Maturity’ in

the following graph (Figure 6.1). Suppose that there are 2 companies to sell one

kind of new product in the same market. The market managers use one kind of

control – advertising – to maximize profit and maximize final market share. The

main notations are as follows:
x(t) Market share of company 1 at time t.

y(t) Market share of company 2 at time t.

ui(t) Control/Advertising of company i at time t.

ci Price of company i’ product.

ωi Weight factor, which shows the relative importance between two objectives

of sale managers.

αi Effectiveness of natural growth of company i’ s product.

ki Market limitation for company i’s product.

βi Effectiveness of control/advertising of company i.

σ Effectiveness of randomness on the sales.

To describe the dynamics in the fist stage of the product life cycle, we still adopt

the assumptions that the sale growth of new product has an approximate logistics

growth, which is called natural growth, and the market capability for one product is

limited, so in the basic dynamics of state variables we will adopt following equations
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Sales volumn vs Time

t

x(t)

Introdution Growth Maturity Saturation Decline

Figure 1

to describe the growth of sale:

dx

dt
= α1(k1 − x)x

dy

dt
= α2(k2 − y)y

Another driving force for the dynamics is from competition. We suppose that

bigger control/advertising will lead to bigger driving force, bigger own market share

will lead to less driving force, and bigger competitor’s market share will lead to bigger

own advertising effectiveness. Based on Lanchester competition model we integrate

our assumptions about competition in following formula:

dx

dt
= β1u1

√

(k1 − x)y − β2u2

√

(k2 − y)x

The third force to affect the dynamics of sale is randomness. Just as we mentioned

in previous section, in reality, there are many factors we can not expect exactly to

affect the dynamics of state variables. We model the randomness as white noise (dBt),

where dBt is Brownian motion. In order to quanitify the randomness, we adopt the

assumption that when sale is in the middle of its range, it has larger randomness, and

when sale approach the broader portion of its range, it has smaller randomness, and

the two companies’ sales will interact to increase the randomness. Thus, we adopt

following formula to describe randomness in the market competition:

σxy(k1 − x)(k2 − y)dBt

Based on the above analysis, we synthesize these three factors to set up stochastic

differential equation for sales:

dx =
(

α1(k1 − x)x + β1u1

√

(k1 − x)y − β2u2

√

(k2 − y)x
)

dt

+ σxy(k1 − x)(k2 − y)dBt
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dy =
(

α2(k2 − y)y + β2u2

√

(k2 − y)x− β1u1

√

(k1 − x)y
)

dt

− σxy(k1 − x)(k2 − y)dBt

Each company has its own objectives. Based on practical considerations, usually

there are two goals in this competition for each company in the first stage of product

life cycle, one is maximizing profit, the other is maximizing the final market share.

So we integrate these two factors into each competitor’s objective function as follows:

J1(x(t), y(t), u∗

1(t), u
∗

2(t), t, tf) = max
u1

E

{
∫ tf

t

(c1x(t) − u2
1(t))dt + ω1

x(tf )

x(tf ) + y(tf)

}

J2(x(t), y(t), u∗

1(t), u
∗

2(t), t, tf) = max
u2

E

{
∫ tf

t

(c2x(t) − u2
2(t))dt + ω2

y(tf)

x(tf ) + y(tf)

}

where Ji(x(t), y(t), u∗

1(t), u
∗

2(t), t, tf ) is optimal objective value when each company

adopt optimal control u∗

i (t). We take expectation because of the objective value is a

random variable.

So we have our stochastic differential game model:

J1(x(t),u∗

1(t), u
∗

2(t), t, tf ) = max
u1

E

{
∫ tf

t

(c1x(t) − u2
1(t))ds + ω1

x(tf )

x(tf ) + y(tf)

}

J2(x(t),u∗

1(t), u
∗

2(t), t, tf ) = max
u2

E

{
∫ tf

t

(c2x(t) − u2
2(t))ds + ω2

x(tf )

x(tf ) + y(tf)

}

s.t.

dx =
(

α1(k1 − x)x + β1u1

√

(k1 − x)y − β2u2

√

(k2 − y)x
)

dt

+ σxy(k1 − x)(k2 − y)dBt

dy =
(

α2(k2 − y)y + β2u2

√

(k2 − y)x − β1u1

√

(k1 − x)y
)

dt

− σxy(k1 − x)(k2 − y)dBt

x(t), y(t) given

In the following sections, we will use dynamic programming to derive optimality

condition for the above stochastic differential game, then we will set up algorithm to

solve optimality conditions, and then solve the above model.

3. OPTIMALITY CONDITION

Now we will derive optimality condition for a generalized model of our problem.

The general model is as follows:

J1(x(t),u∗

1(t), u
∗

2(t), t, tf) = max
u1

E

{
∫ tf

t

f1(x(t), u1(t), u2(t))ds + h1(x(tf ))

}

J2(x(t),u∗

1(t), u
∗

2(t), t, tf) = max
u2

E

{
∫ tf

t

f2(x(t), u1(t), u2(t))ds + h2(x(tf ))

}
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s.t.

dx = a(x(t), u1(t), u2(t))dt + σ(x(t), u1(t), u2(t))dBt

x(t) given

where

x(t) =[x1(t), x2(t), . . . , xn(t)]T

xi(t, ω) : [0, tf ] × Ω → R

f1(t, ω) : [0, tf ] × Ω → R

f2(t, ω) : [0, tf ] × Ω → R

a(t, ω) : [0, tf ] × Ω → Rn

σ(t, ω) : [0, tf ] × Ω → Rn

B(t, ω) : [0, tf ] × Ω → R

Then we define the optimal solution for above stochastic differential game.

Definition 3.1. u∗

1, u
∗

2 are optimal solution for two-player stochastic differential game

if following conditions are met:

J1(u
∗

1, u
∗

2) ≥ J1(u1, u
∗

2), J2(u
∗

1, u
∗

2) ≥ J2(u
∗

1, u2)

The following lemma will be used to derive the optimality condition for above

model.

Lemma 3.1. Suppose the process x1(t), x2(t), . . . , xn(t) obeys the stochastic differen-

tial equations:

dxi = ai(t, x1(t), . . . , xn(t))dt + σi(t, x1(t), . . . , xn(t))dBt

where i = 1, 2, . . . , n. Define

y(t) = J(t, x1(t), . . . , xn(t))

Then the stochastic differential equation for y(t) is as follows:

dy =

[

∂J

∂t
+

n
∑

i

∂J

∂xi

αi +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

]

dt +

n
∑

i=1

∂J

∂xi

σidBt

Proof. By general Itô formula, we have:

dy =
∂J

∂t
dt +

∑

i

∂J

∂xi

dxi +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

dxidxj

=
∂J

∂t
dt +

∑

i

∂J

∂xi

(aidt + σidBt) +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

(aidt + σidBt)(ajdt + σjdBt)
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=
∂J

∂t
dt +

∑

i

∂J

∂xi

aidt +
∑

i

∂J

∂xi

σidBt +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

(σiσj)dt

= [
∂J

∂t
+

n
∑

i

∂J

∂xi

αi +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj ]dt +

n
∑

i=1

∂J

∂xi

σidBt

Now we derive optimality condition for above general model through dynamic

programming.

Theorem 3.1. Suppose Nash equilibrium (u∗

1(t), u
∗

2(t)) exits for above model. Then,

(u∗

1(t), u
∗

2(t)) should satisfy following equations:

−
∂J1

∂t
= max

u1∈[t,tf ]

{

f1(x(t), u1(t), u
∗

2(t)) +
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J1

∂xi∂xj

σiσj

}

−
∂J2

∂t
= max

u2∈[t,tf ]

{

f2(x(t), u1(t), u
∗

2(t)) +
∑

i

∂J2

∂xi

ai +
1

2

∑

i

∑

j

∂2J2

∂xi∂xj

σiσj

}

Proof. Suppose player 2 has reached his equilibrium u∗

2(t), then player 1 will maximize

his objective under the condition that player 2 has already adopted optimal control.

So player 1 has following problem:

J1(x(t),u∗

1(t), u
∗

2(t), t, tf) = max
u1

E

{
∫ tf

t

f1(x(t), u1(t), u
∗

2(t))ds + h1(x(tf ))

}

s.t.

dx = a(x(t), u1(t), u
∗

2(t))dt + σ(x(t), u1(t), u
∗

2(t))dBt

x(t) given

Then

J1(u
∗

1, u
∗

2, x(t), t, tf) = max
u1

E

{
∫ tf

t

f1(x(t), u1(t), u
∗

2(t))ds + h1(x(tf ))

}

= max
u1

E

{
∫ t+∆t

t

f1(x(t), u1(t), u
∗

2(t))ds +

∫ tf

t+∆t

f1(x(t), u1(t), u
∗

2(t))ds + h1(x(tf ))

}

= max
u1∈[t,t+∆t]

E

{

∫ t+∆t

t

f1(x(t), u1(t), u
∗

2(t))ds

+ max
u1∈[t+∆t,tf ]

E

[
∫ tf

t+∆t

f1(x(t), u1(t), u
∗

2(t))ds + h1(x(tf ))

]

}

= max
u1∈[t,t+∆t]

E

{
∫ t+∆t

t

f1(x(t), u1(t), u
∗

2(t))ds + J1(u
∗

1, u
∗

2, x(t + ∆t), t + ∆t, tf )

}

= max
u1∈[t,tf ]

E

{
∫ t+∆t

t

f1(x(t), u1(t), u
∗

2(t))ds + J1(u
∗

1, u
∗

2, x(t + ∆t), t + ∆t, tf )

}

= max
u1∈[t,tf ]

E

{

∫ t+∆t

t

f1(x(t), u1(t), u
∗

2(t))ds + J1(u
∗

1, u
∗

2, x(t), t, tf )
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+

(

∂J1

∂t
+
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

)

∆t +
∑

i

∂J

∂xi

σi∆Bt + O(∆t)

}

by Lemma 3.1

= max
u1∈[t,tf ]

E

{

J1(u
∗

1, u
∗

2, x(t), t, tf) +

(

f1(x(t), u1(t), u
∗

2(t))

+
∂J1

∂t
+
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

)

∆t +
∑

i

∂J

∂xi

σi∆Bt + O(∆t)

}

=⇒

0 = max
u1∈[t,tf ]

E

{(

f1(x(t), u1(t), u
∗

2(t)) +
∂J1

∂t
+
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

)

∆t

+
∑

i

∂J

∂xi

σi∆Bt + O(∆t)

}

=⇒

0 = max
u1∈[t,tf ]

{(

f1(x(t), u1(t), u
∗

2(t)) +
∂J1

∂t
+
∑

i

∂J1

∂xi

ai

+
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

)

∆t + O(∆t)

}

since E[∆Bt] = 0

=⇒

−
∂J1

∂t
= max

u1∈[t,tf ]

{

f1(x(t), u1(t), u
∗

2(t)) +
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J

∂xi∂xj

σiσj

}

by dividing ∆t

We can use the same argument for player 2. Then the necessary conditions for

optimal solution (u∗

1, u
∗

2) is:

−
∂J1

∂t
= max

u1∈[t,tf ]

{

f1(x(t), u1(t), u
∗

2(t)) +
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J1

∂xi∂xj

σiσj

}

−
∂J2

∂t
= max

u2∈[t,tf ]

{

f2(x(t), u∗

1(t), u2(t)) +
∑

i

∂J2

∂xi

ai +
1

2

∑

i

∑

j

∂2J2

∂xi∂xj

σiσj

}

In order to use above optimality conditions to solve our stochastic differential

game model, we will convert this necessary conditions into Stochastic Partial Differ-

ential Equation (SPDE) in the following way, and then solve the SPDE numerically

in the following section.
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From above necessary conditions for optimality, we write it out explicitly

−
∂J1

∂t
= max

u1

{f1 +
∑

i

∂J1

∂xi

ai +
1

2

∑

i

∑

j

∂2J1

∂xi∂xj

σiσj}

= max
u1

{c1x − u2
1

+
∂J1

∂x
(α1(k1 − x)x + β1u1

√

(k1 − x)y − β2u2

√

(k2 − y)x)

+
∂J1

∂y
(α2(k2 − y)y + β2u2

√

(k2 − y)x − β1u1

√

(k1 − x)y)

−
1

2
(
∂2J1

∂x2
+ 2

∂2J1

∂x∂y
+

∂2J1

∂y2
)σ2x2y2(k1 − x)(k2 − y)2}

−
∂J2

∂t
= max

u2

{f2 +
∑

i

∂J2

∂xi

ai +
1

2

∑

i

∑

j

∂2J2

∂xi∂xj

σiσj}

= max
u2

{c2x − u2
2

+
∂J2

∂x
(α1(k1 − x)x + β1u1

√

(k1 − x)y − β2u2

√

(k2 − y)x)

+
∂J2

∂y
(α2(k2 − y)y + β2u2

√

(k2 − y)x − β1u1

√

(k1 − x)y)

−
1

2
(
∂2J2

∂x2
+ 2

∂2J2

∂x∂y
+

∂2J2

∂y2
)σ2x2y2(k1 − x)(k2 − y)2}

On the right sides of above equations, we have concave functions of u1, u2 re-

spectively, so first order derivative with respect to u1, u2 will vanish at the optimal

trajectories. Then, we differentiate right hand sides and get optimal u1, u2 as follows:

u∗

1 =
1

2
β1

√

(k1 − x)y(
∂J1

∂x
−

∂J1

∂y
)

u∗

2 =
1

2
β2

√

(k2 − y)x(
∂J2

∂y
−

∂J2

∂x
)

Now let

p̄ = (p1 p2) ,

(

∂J1

∂x

∂J1

∂y

)

r̄ = (r1 r2) ,

(

∂J2

∂x

∂J2

∂y

)

and put u∗

1, u
∗

2 back to above partial differential equations system to get:

−
∂J1

∂t
= H∗

1 (x, y, p̄, r̄,
∂p̄

∂x
,
∂p̄

∂y
,
∂r̄

∂x
,
∂r̄

∂y
)

−
∂J2

∂t
= H∗

2 (x, y, p̄, r̄,
∂p̄

∂x
,
∂p̄

∂y
,
∂r̄

∂x
,
∂r̄

∂y
)

and from

p1(t) =
∂J1

∂x
(x(t), t, tf), p2(t) =

∂J1

∂y
(x(t), t, tf)
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r1(t) =
∂J2

∂x
(x(t), t, tf), r2(t) =

∂J2

∂y
(x(t), t, tf)

we apply Itô formula to p1(t), p2(t), r1(t), r2(t) to get following related stochastic

differential equations:

dp1 = −
∂H∗

1

∂x
dt + (

∂2J1

∂x∂x
+

∂2J1

∂x∂y
)σdB

dp2 = −
∂H∗

1

∂y
dt + (

∂2J1

∂y∂x
+

∂2J1

∂y∂y
)σdB

dr1 = −
∂H∗

2

∂x
dt + (

∂2J2

∂x∂x
+

∂2J2

∂x∂y
)σdB

dr2 = −
∂H∗

2

∂y
dt + (

∂2J2

∂y∂x
+

∂2J2

∂y∂y
)σdB

We put the above optimal u∗

1, u
∗

2 back into the state equation, and get following

state and co-state system as follows, which is Stochastic Partial Differential Equations

(SPDE):

dx = (α1(k1 − x)x +
1

2
β2

1(k1 − x)y(p1 − p2) −
1

2
β2

2(k2 − y)x(r2 − r1))dt

+ σxy(k1 − x)(k2 − y)dB

dy = (α2(k2 − y)y +
1

2
β2

2(k2 − y)x(r2 − r1) −
1

2
β2

1(k1 − x)y(p1 − p2))dt

− σxy(k1 − x)(k2 − y)dB

dp1 = {−c1 −
1

4
β2

1(p1 − p2)
2

− p1[α1k1 − 2α1x −
1

2
y(p1 − p2)

2 −
1

2
β2

2(k2 − y)(r2 − r1)]

− p2[
1

2
β2

2(k2 − y)(r2 − r1) +
1

2
β2

1(p1 − p2)]

+ σ2x(k1 − x)(k2 − 2x)y2(k2 − y)2[
∂p1

∂x
+ 2

∂p1

∂y
+

∂p2

∂y
]}dt

+ [
∂p1

∂x
−

∂p1

∂y
]σxy(k1 − x)(k2 − y)dB

dp2 = {
1

4
β2

1(k − x)(p1 − p2)
2

− p1[
1

2
β2

1(k − x)(p1 − p2) +
1

2
β2

2x(r2 − r1)]

− p2[
1

2
α2(k2 − 2y) −

1

2
β2

2x(r1 − r2) −
1

2
β2

1(k1 − x)(p1 − p2)]

+ σ2y(k2 − y)(k2 − 2y)x2(k1 − x)2[
∂p1

∂x
+ 2

∂p2

∂y
+

∂p2

∂y
]}dt

+ [
∂p2

∂x
−

∂p2

∂y
]σxy(k1 − x)(k2 − y)dB
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dr1 = {
1

4
β2

2(k − y)(r1 − r2)
2

− r1[α1(k1 − 2x) −
1

2
β2

1y(p1 − p2) −
1

2
β2

2(k2 − y)(r2 − r1)]

− r2[
1

2
β2

2(k2 − y)(r2 − r1) +
1

2
β2

1y(p1 − p2)]

+ σ2x(k1 − x)(k1 − 2x)y2(k2 − y)2[
∂r1

∂x
+ 2

∂r1

∂y
+

∂p2

∂y
]}dt

+ [
∂r1

∂x
−

∂x1

∂y
]σxy(k1 − x)(k2 − y)dB

dr2 = {−c2 −
1

4
β2

2(r2 − r1)
2

− r1[
1

2
β2

1(k1 − x)(p1 − p2) +
1

2
β2

2x(r2 − r1)]

− r2[α2(k2 − 2y) −
1

2
β2

2x(r2 − r1) −
1

2
β2

1(k1 − x)(p1 − p2)]

+ σ2y(k2 − y)(k2 − 2y)x2(k2 − x)2[
∂r1

∂x
+ 2

∂r2

∂x
+

∂r2

∂y
]}dt

+ [
∂r1

∂x
−

∂r2

∂y
]σxy(k1 − x)(k2 − y)dB

Boundary condition:

p1(x, y, tf) = ω1
y

(x + y)2
|tf

p2(x, y, tf) = −ω2
x

(x + y)2
|tf

r1(x, y, tf) = −ω2
y

(x + y)2
|tf

r2(x, y, tf) = ω2
x

(x + y)2
|tf

What we will do in next section is to design algorithm to solve the above specific

SPDE system.

4. NUMERICAL CALCULATION

We first rewrite the above SPDE system using simpler notation:

dx = f1(x, y, p1, p2, r1, r2)dt + g1(x, y)dBt

dy = f2(x, y, p1, p2, r1, r2)dt + g2(x, y)dBt

dp1 = f3(x, y, p1, p2, r1, r2,
∂pi

∂x
,
∂pi

∂y
)dt + g3(x, y,

∂pi

∂x
,
∂pi

∂y
)dBt
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dp2 = f4(x, y, p1, p2, r1, r2,
∂pi

∂x
,
∂pi

∂y
)dt + g4(x, y,

∂pi

∂x
,
∂pi

∂y
)dBt

dr1 = f5(x, y, p1, p2, r1, r2,
∂ri

∂x
,
∂ri

∂y
)dt + g5(x, y,

∂ri

∂x
,
∂ri

∂y
)dBt

dr2 = f6(x, y, p1, p2, r1, r2,
∂ri

∂x
,
∂ri

∂y
)dt + g6(x, y,

∂ri

∂x
,
∂ri

∂y
)dBt

x(0), y(0) given

pi(x, y, tf), ri(x, y, tf) known

where i = 1, 2

so we can see that in above SPDE system to be solved, the initial value for state

x(0), y(0), terminal value for pi(x, y, tf), ri(x, y, tf) are known. We can call this spe-

cific SPDE Two-Point Boundary Value Stochastic Partial Differential Equation (TP-

BVSPDE).

The idea to solve the above problem comes from the observation of following graph

(Figure 6.2), which is xy-plane v.s. time. We discretize time interval [0, tf ] into N

subintervals, and at time 0, ∆t, 2∆t, . . . , (N + 1)∆t, we have N + 1 parallel planes.

And on each xy-plane, we can do discretization for each xy-plane, dividing each plane

into Nx×Ny sub-rectangles. On the xy− tf plane, we know every value of pi(x, y, tf),

ri(x, y, tf), which means we know every discretized pi(x(i), y(j), tf), ri(x(i), y(j), tf)

at time tf . So if we can figure out pi(x(i), y(j), k∆t), ri(x(i), y(j), k∆t) at each xy-

plane, then we may solve our problem. We try to use backward Euler method to

integrate the SPDE backward.

Terminal time x−y plane

Y

T

X

Initial time x−y plane

Figure 2. xy-time plane
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The first problem we’d like to solve is how to evaluate ∂pi

∂x
, ∂pi

∂y
, ∂ri

∂x
, ∂ri

∂y
. At one

discretized xy-plane, if we know the value of pi(x, y, t), ri(x, y, t) at each corner of the

sub-rectangular plane, then we can approximate them by pi(i+1,j,k)−pi(i,j,k)
∆x

, etc. The

second problem is how to do stochastic integrals. As to an autonomous SDE:

dX(t) = f(x(t))dt + g(X(t))dB(t), 0 ≤ t ≤ tf

where X(0) is given, the Euler-Maruyama(EM) Method takes the following form to

solve it numerically:

X(i + 1) = X(i) + f(X(i))∆t + g(X(i))(B(i + 1) − B(i)), i = 1, . . . , N

where B(1), . . . , B(N) is discretized Brownian path. These random variables are

simulated with a random number generator. Based on EM method to solve SDE, once

we get value for ∂pi

∂x
(x(i), y(j), k∆t), we can use backward Euler-Maruyama method

to integrate the costate equation backward equation. So, after we get all the values

of pi(x(i), y(j), k), ri(x(i), y(j), k), we still use Euler-Maruyama (EM) Method to

integrate the state equations forward. And then using state and costate values we

evaluate controls. Based on above idea, we design Algorithm 6.1 to solve the above

TPBVSPDE.

Algorithm 4.1. Step 1. Discretize time interval [0, tf ] into N subintervals. Dis-

cretize xy-plane into Nx × Ny sub-rectangles.

Step 2. Generate discretized Brownian path at each sub-time intervals: dB(1), . . . ,

dB(N).

Step 3. Evaluate pi(i, j, N + 1), ri(i, j, N + 1).

Step 4. Use Backward Euler method to integrate costate equations backward:

for k = N : 1

approximate ∂pi

∂x
, ∂pi

∂y
, ∂ri

∂x
, ∂ri

∂y
by pi(i+1,j,k)−pi(i,j,k)

∆x
, pi(i,j+1,k)−pi(i,j,k)

∆y
, ri(i+1,j,k)−ri(i,j,k)

∆x
,

ri(i,j+1,k)−ri(i,j,k)
∆y

.

for i = 1 : Nx, j = 1 : Ny

pi(i, j, k) = pi(i, j, k + 1)

−fi(x(i), y(j), p1(i, j, k + 1), p2(i, j, k + 1), r1(i, j, k + 1), r2(i, j, k + 1),
∂pi

∂x
(i, j), ∂pi

∂y
(i, j))∆t

−gi(x(i), y(j), ∂pi

∂x
(i, j), ∂pi

∂y
(i, j))∆B(k)

ri(i, j, k) = ri(i, j, k + 1)

−fi(x(i), y(j), p1(i, j, k + 1), p2(i, j, k + 1), r1(i, j, k + 1), r2(i, j, k + 1),
∂ri

∂x
(i, j), ∂ri

∂y
(i, j))∆t

−gi(x(i), y(j), ∂ri

∂x
(i, j), ∂ri

∂y
(i, j))∆B(k)

end

end
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Step 5. Use forward Euler-Maruyama method to integrate state equations for-

ward:

for k = 1 : N

x(k + 1) = x(k) + f1(x(k), y(k), p1(x(k), y(k), k), p2(x(k), y(k), k),

r1(x(k), y(k), k), r2(x(k), y(k), k))∆t + g1(x(k), y(k))∆B(k)

y(k + 1) = y(k) + f2(x(k), y(k), p1(x(k), y(k), k), p2(x(k), y(k), k),

r1(x(k), y(k), k), r2(x(k), y(k), k))∆t + g2(x(k), y(k))∆B(k)

end

Step 6. Evaluate controls u1, u2:

for k = 1 : N + 1

u1(k) = 1
2
β1

√

(k1 − x(k))y(k)(p1(x(k), y(k), k) − p2(x(k), y(k), k))

u2(k) = 1
2
β2

√

(k2 − y(k))x(k)(r1(x(k), y(k), k) − r2(x(k), y(k), k))

end 2

5. NUMERICAL RESULTS

Using Algorithm 6.1, we solved our model. In this section, we will discuss some

important numerical results based on practical considerations. The result we will get

is in terms of strong solution of SDE, which means the solution is based on the path

of the underlying Brownian motion. Each time we generate a Brownian motion path,

we will get one sample solution path. So, in the following experiment, we run each

case three times, from which we can see some common features, which is what we

expected.

In case 1, the main assumptions about company X and company Y are 1) com-

pany X’s sale increases more quickly, that is α1 > α2; 2) Company Y ’s product is

more competitive, that is β1 < β2; 3) Company Y emphasizes final market more than

company X, that is ω1 < ω2. These assumptions have been reflected in the following

data set:

Case 1:
ω1 = 0.15 ω1 = 0.25

k1 = 0.9 k2 = 0.7

c1 = 1 c2 = 1.5

α1 = 0.02 α2 = 0.01

β1 = 1 β2 = 1.2

x0 = 0.018 y0 = 0.01

σ = 10

The numerical results are as follows. The expected objective value is J1 =

0.0812, J2 = 0.1476. The state and control trajectories are in Figure 3 and Fig-

ure 4. Regarding the state trajectories we can clearly see from these three sample

pathes that company X’s sale is decreasing and company Y ’s sale is increasing. This
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result comes from a combination of two reasons, one is company Y emphasize more

final market share, the other is company Y ’s product is more competitive. So, many

customers change to buy company Y ’s product. In this case, competition effect dom-

inates natural growth effect. As to control trajectories, both of them use relatively

bigger controls at first, then decrease controls. This phenomena have been reflected

in the deterministic differential game, which is the competitors in a system always

compete furiously (use bigger controls) at first until they eventually find that they

can not get more from each other and comprise to some equilibrium.

Objective values:

J1 J2

0.08131269347293 0.14770122394696

0.08120381779516 0.14767756426844

0.08116196526100 0.14740749943551

In case 2, all the main assumptions about company X and company Y are the

same as case 1 except that company X’s competitive capability is bigger than that

of company Y , that is, β1 > β2. So the related data set is as follows:

Case 2:

ω1 = 0.15 ω1 = 0.25

k1 = 0.9 k2 = 0.7

c1 = 1 c2 = 1.5

α1 = 0.02 α2 = 0.01

β1 = 1.2 β2 = 1

x0 = 0.018 y0 = 0.01

σ = 10

Numerical results are as follows. The expected objective values are J1 = 0.1030, J2 =

0.11894. The state trajectories are in Figure 5. In this case, company X’s sale is al-

most keeping at some constant, and company Y ’s sale is just increasing a little bit.

This result is clearly from the fact that company X’s competitive capability has been

increased, although company Y wants final market share more. And as to controls,

the results are also as expected. Because of competitive capability and less emphasis

on final market share, company X’s control is approximately decreasing first and then

keeping at some constant low level. However, company Y will struggle for his goal,

more final market share under the condition that his competitive capability is not as

big as company X, so company Y ’s control is increasing first and then keeping at

some higher level.
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Figure 3. State trajectories(Case 1)
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Figure 4. Control trajectories(Case 1)
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Objective values:

J1 J2

0.10241283869068 0.11997014633432

0.10307904939597 0.11892865268987

0.10420939135293 0.11630669702601

In case 3, we are interested in the situation that weaker company X wants more

final market. Here all main assumptions about company X and company Y are still

the same as case 1 except that company X in this case will emphasize final market

share more than company Y , that is, ω1 > ω2. So the related data set are as follows:

Case 3:
ω1 = 0.25 ω1 = 0.15

k1 = 0.9 k2 = 0.7

c1 = 1 c2 = 1.5

α1 = 0.02 α2 = 0.01

β1 = 1.2 β2 = 1

x0 = 0.018 y0 = 0.01

σ = 10

Numerical results are as follows. The expected objective values are J1 = 0.1605, J2 =

0.079. The trajectories for state variables are in Figure 7 below. Now in this case,

company Y ’s sale approximately increase a little and company X’s sale approximately

decrease a little as time goes on. And as to controls(Figure 8 below), company X’s

control is obviously bigger than that of company Y ’s, both of them use big control

first and decrease to some level. This can be obviously explained by company X’s

want for more final market share but his competitive capability is not as good as

company Y . So he always uses bigger control all the time. However even with bigger

control, his sale sometime will decrease a little. On the side of company Y , he has

better competitive capability, and does not care much about final market share, so

he can just use smaller control to keep his sale on some level.

Objective values:

J1 J2

0.16074372560537 0.07883976295665

0.16084549921485 0.08017856767953

0.16027936192200 0.07913855277273
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Figure 5. State trajectories(Case 2)
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Figure 6. Control trajectories(Case 2)
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Figure 7. State trajectories(Case 3)
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6. CONCLUSION

In this paper, we set up stochastic differential game model to explore competi-

tion in a market. We used dynamic programming to derive the necessary optimality

conditions for general two-person Stochastic differential game model. The optimality

condition consists of a system of Stochastic Partial Differential Equation with sep-

arated boundary conditions. Because of the nonlinearity of the equations, analytic

solution is hard to get. We appeal to numerical methods to solve it. Specific al-

gorithm is set up to solve the system of optimality conditions. The key technique

used in the algorithm is 1) simulating random variables, discretized Brownian path;

2) integrating backwards costate equations on every state planes at each discretized

time points, which means we will calculate all values of costate variables at all grid

point of the xy-plane. This is necessary to approximate the partial derivative costate

variables. And this will induce much more computation than the usual Euler back-

wards method. 3) Approximating the partial derivatives at each grid point on each

xy-plane. 4) Integrating stochastic differential equations of state variables based on

Euler-Maruyama method. The numerical solution of our model is in terms of a strong

solution of Stochastic Differential Equation, which mean every specific solution tra-

jectories come from specific generated Brownian path.

We use our algorithm to solve our model based on some practical considerations.

The numerical results can be explained well from these practical aspects. Comparing

stochastic and deterministic differential game from metaphysical level, we have found

that 1) competition is always fierce at first and then settle at a lower equilibrium

level, and 2) competitor’s objective and characteristics will determine the outcome of

the competition. So based on these two rules, we can approximately anticipate the

state and control trajectories before numerical calculations in both stochastic and

deterministic situations.

Our algorithm is not hard to be extended to solve general n-person stochastic

differential game models. However before doing that, much research work should be

expected in analyzing stability issues under specific situations.
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