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ABSTRACT. We study the periodic semilinear problem for the rotationally invariant wave equa-

tion. Our hypotheses are given in terms of the primitive of the nonlinearity.
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1. INTRODUCTION

In this paper we study periodic solutions of the rotationally invariant Dirichlet

problem for the semilinear wave equation

�u − µu = p(t, x, u), t ∈ R, x ∈ BR (1.1)

u(t, x) = 0, t ∈ R, x ∈ ∂BR (1.2)

u(t + T, x) = u(t, x), t ∈ R, x ∈ BR, (1.3)

where

�u := utt − ∆u, (1.4)

BR = {x ∈ R
n : |x| < R}, (1.5)

and

p(t, x, u) = p(t, |x|, u), x ∈ BR.

Our basic assumption is that the ratio R/T is rational. Thus, we can write

8R/T = a/b, (1.6)

where a, b are relatively prime positive integers. We show that

n 6≡ 3 (mod (4, a)) (1.7)

implies that the linear problem corresponding to (1.1)–(1.3) has no essential spectrum.

If

n ≡ 3 (mod (4, a)), (1.8)

then the essential spectrum of the linear operator consists of precisely one point

λ0 = −(n − 3)(n − 1)/4R2. (1.9)
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We consider the nonlinear case for p(t, r, s) satisfying

|p(t, r, s)| ≤ C(|s| + 1), s ∈ R, r = |x|. (1.10)

We assume that the point µ is in the resolvent set of � and

(m− − µ)s2 − W1(t, r) ≤ 2P (t, r, s) ≤ (m+ − µ)s2 + W2(t, r), (1.11)

where

P (t, r, s) =

∫ s

0

p(t, r, σ) dσ, (1.12)

µ ∈ (m−, m+) is contained in the resolvent set and the functions W1, W2 are in

L1(Q, ρ) with Q = [0, T ] × [0, R] and ρ = rn−1. We also assume that

H(t, r, s) := 2P (t, r, s) − sp(t, r, s) (1.13)

satisfies

lim sup
|s|→∞

H(t, r, s)/|s| ≤ h(t, r) < 0. (1.14)

Our main theorem is

Theorem 1.1. If (1.7) holds, then (1.1)–(1.3) has a weak rotionally invariant so-

lution. If (1.8) holds and m− ≥ λ0, assume that p(t, r, s) is nondecreasing in s. If

m+ ≤ λ0, assume that p(t, r, s) is nonincreasing in s. Then (1.1)–(1.3) has a weak

rotationally invariant solution.

For the definition of essential spectrum, cf., e.g., [12].

Beginning with Smiley [13], several authors have examined the radially symmetric

problem (1.1)–(1.3) (cf. [13, 14, 2, 3, 4, 1, 10, 5, 7, 8] and the references cited in them).

The complications for this problem depend on the values of R and T . Only in [10]

were all possible rational values of R/T considered.

In [13, 2, 1, 8] the hypotheses included inequalities of the form

p ≤ lim inf
f(u)

u
≤ lim sup

f(u)

u
≤ q.

In [2] the authors examine radially symmetric solutions to the problem

utt − ∆u + g(u) = f(t, x),

u(t + T, ·) = u(t, ·),

where x belongs to a bounded ball B in R
n with radius R, u satisfies the homogeneous

Dirichlet boundary conditions on ∂B, and R/T is rational. The existence of at least

one weak solution is proved provided that g is asymptotically linear and the behaviour

of g(u)/u for u tending to ±∞ is suitably related to the eigenvalues of the operator

Lv = vtt − ∆v, v(t + T, ·) = v(t, ·).

In [4] irrational values of R/T are considered.
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In [10] we proved Theorem 1.1 under the assumption

|p(t, r, s)| ≤ C(|s|θ + 1), s ∈ R, (1.15)

holding for some θ < 1. This assumption is a far greater restriction than (1.10) and

(1.11).

What distinguishes the present paper from the results of others is that we cover

all rational values of R/T, and our hypotheses are given in terms of the primitive

P (t, r, s) =

∫ s

0

p(t, r, σ) dσ, (1.16)

of p(t, r, s) rather than the function p(t, r, s) itself.

2. THE SPECTRUM OF THE LINEAR OPERATOR

In dealing with problem (1.1)–(1.3), one needs to calculate the spectrum of the

linear operator � applied to periodic rotationally symmetric functions. Specifically,

we shall need the following theorem proved in [10].

Theorem 2.1. Let L0 be the operator

L0u = utt − urr − r−1(n − 1)ur (2.1)

applied to functions u(t, r) in C∞(Q̄) satisfying

u(T, r) = u(0, r), ut(T, r) = ut(0, r), 0 ≤ r ≤ R (2.2)

u(t, R) = ur(t, 0) = 0, t ∈ R (2.3)

where Q = [0, T ] × [0, R]. Then L0 is symmetric on L2(Q, ρ), where ρ = rn−1.

Assume that 8R/T = a/b, where a, b are relatively prime integers (i.e., (a, b) = 1).

Then L0 has a selfadjoint extension L having no essential spectrum other than the

point λ0 = −(n − 3)(n − 1)/4R2. If n 6≡ 3 (mod(4, a)), then L has no essential

spectrum. If n ≡ 3 (mod(4, a)), then the essential spectrum of L is precisely the point

λ0.

3. THE NONLINEAR CASE

We now turn to the problem solving (1.1)–(1.3). If one is searching for rotationally

invariant solutions, the problem reduces to

Lu = f(t, r, u), u ∈ D(L), (3.1)

where L is the selfadjoint extension of the operator L0 given in Theorem 2.1. Under

the hypotheses of that theorem the spectrum of L is discrete. We assume that f(t, r, s)

is a Carathéodory function on Q × R such that

|f(t, r, s)| ≤ C(|s| + 1), s ∈ R. (3.2)

We have
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Theorem 3.1. Let f(t, r, s) satisfy (1.11), (1.14), (3.2), and assume the hypotheses

of Theorem 2.1. If

n 6≡ 3 (mod(4, a)) (3.3)

make no further assumptions. If

n ≡ 3 (mod(4, a)) (3.4)

and m− ≥ λ0, assume in addition that there is a point µ ∈ (m−, m+) such that

p(t, r, s) = f(t, r, s) − µs (3.5)

is nondecreasing in s. If m+ ≤ λ0, assume that there is such a point such that p(t, r, s)

is nonincreasing in s. Then (3.1) has at least one weak solution.

The following theorem is used in the proof. We believe it is of interest in its own

right. It was proved in [10].

Theorem 3.2. Let N be a closed separable subspace of a Hilbert space E. Let G be

a continuously differentiable functional on E such that

vn = Pun → v weakly in E, wn = (I − P )un → w strongly in E

implies

G′(vn + wn) → G′(v + w) weakly in E, (3.6)

where P is the projection of E onto N . Assume

a0 := sup
N

G < ∞, b0 : inf
M

G > −∞. (3.7)

Then there is a sequence {uk} ⊂ E such that

G(uk) → c, b0 ≤ c ≤ a0, G′(uk) → 0. (3.8)

Proof of Theorem 3.1. Let

G(u) = ([L − µ]u, u)− 2

∫ ∫
Q

P (t, r, u)ρ dt dr, u ∈ E (3.9)

where

P (t, r, s) =

∫ s

0

p(t, r, σ) dσ (3.10)

and the scalar product is that of L2(Q, ρ). One checks readily that G is a C1 functional

on E with

(G′(u), v)/2 = ([L − µ]u, v) − (p(u), v), u, v ∈ E, (3.11)

where we write p(u) in place of p(t, r, u). This shows that u is a weak solution of (3.1)

iff G′(u) = 0. Let N be the subspace of E spanned by the eigenvectors corresponding
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to those eigenvalues < µ, and let M denote the subspace of E spanned by the rest.

Thus M = N⊥ in E. Then

G(v) = ([L − µ]v, v) − 2

∫ ∫
Q

P (t, r, v)ρ dt dr

≤ (m− − µ)‖v‖2 + (µ − m−)‖v‖2 + B1 = B1, v ∈ N,

where

Bj =

∫ ∫
Q

Wj(t, r)ρ dt dr.

Also,

G(w) ≥ (m+ − µ)‖w‖2 − (m+ − µ)‖w‖2 − B2 = −B2, w ∈ M. (3.12)

If {uk} ⊂ E is a sequence converging weakly to u in E, then {uk} has a renamed

subsequence which converges strongly in L2(Q, ρ) and a.e. in Q. This follows from

the fact that the embedding of E in L2(Q, ρ) is compact. Now

(G′(uk), v)/2 = (wk, v)E − (vk, v)E − µ(uk, v) − (p(uk), v), v ∈ E, (3.13)

where uk = vk + wk, vk ∈ N, wk ∈ M. It follows that G′(uk) → G′(u) weakly in E.

Hence all of the hypotheses of Theorem 3.2 are satisfied, and we can conclude that

there is a sequence {uk} satisfying (3.8). A compactness argument shows that

‖uk‖E ≤ C. (3.14)

Consequently, there is a renamed subsequence which converges weakly to u in E, a.e.

in Q and strongly in L2(Q, ρ). Taking the limit in

(G′(uk), v)/2 = ([L − µ]uk, v) − (p(uk), v), (3.15)

we obtain a weak solution of (3.1).
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