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ABSTRACT. We establish the existence of two distinct solutions for problem (1.1) for small values

of a parameter λ > 0 in a subcritical case. This is obtained as a combination of approximation and

variational methods. In a critical case we show the existence of at least one solution.
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1. INTRODUCTION

In this paper we investigate the solvability of the Neumann problem

{

−∆u = Q(x)up + λP (x)u−γ in Ω,
∂u
∂ν

= 0 on ∂Ω, u > 0 on Ω,
(1.1)

where Ω ⊂ R
N is a bounded domain with a smooth boundary ∂Ω and λ > 0 is a

parameter. The exponent p is subcritical, that is 1 < p < N+2
N−2

. The exponent γ of

the singular term satisfies 0 < γ < 1. It is assumed that the coefficients P and Q are

continuous on Ω̄, P > 0 on Ω̄, Q changes sign on Ω, that is, Q+ 6≡ 0 and Q− 6≡ 0 on

Ω and moreover
∫

Ω

Q(x) dx < 0. (1.2)

Solutions to this problem are sought in the Sobolev space H1(Ω). We recall that

H1(Ω) is the Sobolev space equipped with norm

‖u‖2 =

∫

Ω

(

|∇u|2 + u2
)

dx.

We say that u ∈ H1(Ω), with u > 0 on Ω, is a solution to problem (1.1) if

∫

Ω

(

∇u∇v −Q(x)upv − λP (x)u−γv
)

dx = 0 (1.3)
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for every v ∈ H1(Ω). If both coefficients Q and P are positive, then problem (1.1)

does not have a solution in H1(Ω). Indeed, testing (1.3) with v = 1, we get
∫

Ω

(

Q(x)up + λP (x)u−γ
)

dx = 0.

Since this integral must positive, we have arrived at a contradiction. This remark

justifies our assumption on the coefficient Q. Equation (1.1) with the Dirichlet bound-

ary conditions has quite an extensive literature (see [2], [3], [4], [9], [8], [6], [7], [14]).

Further bibliographical references can be found in [5]. It seems that the correspond-

ing Neumann problem has attracted less attention. In particular, for the Dirichlet

problem
{

−∆u = up + λu−γ in Ω,

u = 0 on ∂Ω, u > 0 on Ω,

it was shown in [2] that there exists a constant λ∗ > 0 such that there exists at least

one solution for λ ∈ (0, λ∗) and no solution for λ > λ∗. This has been extended in

[4] [8], [6], [7] to p = N+2
N−2

. The authors of these papers also proved the existence of

at least two solutions for 0 < λ < λ∗ and at least one solution for λ = λ∗ and no

solution for λ > λ∗. Similar results have also been obtained for the problem (see [8])
{

−∆u = λW (x)up + h(x)u−γ in Ω,

u = 0 on ∂Ω, u > 0 on Ω,

where the coefficient W is allowed to change sign.

The variational functional associated with (1.1) has the form

Jλ(u) =
1

2

∫

Ω

|∇u|2 dx−
1

p+ 1

∫

Ω

Q(x)|u|p+1 dx−
λ

1 − γ

∫

Ω

P (x)|u|1−γ dx.

This functional is not C1. To obtain solutions to problem (1.1), we consider the

approximating problem
{

−∆u = Q(x)up + λP (x)u
(

u2 + ǫ
)− 1+γ

2 in Ω
∂u
∂ν

= 0 on ∂Ω, u > 0 on Ω,
(1.4)

where ǫ > 0 is small. The corresponding variational functional is given by

Jλ,ǫ(u) =
1

2

∫

Ω

|∇u|2 dx−
1

p+ 1

∫

Ω

Q(x)|u|p+1 dx−
λ

1 − γ

∫

Ω

P (x)
(

u2 + ǫ
)

1−γ

2 dx.

If ǫ = 0 we write Jλ,0 = Jλ. The functional Jλ,ǫ is C1 for ǫ > 0. For small λ > 0 and

ǫ > 0 this functional has two critical points: a local minimizer and a critical point

of the mountain-pass type. Two distinct solutions to problem (1.1) are obtained as

limits of these two critical points as ǫ → 0. In the critical case we only prove the

existence of at least one solution of problem (1.1).

The paper is organized as follows. In Section 2 we show that the functionals Jλ,ǫ

have a mountain-pass structure. Existence of at least two solutions in the subcritical

case is given in Sections 3 and 4. The regularity of solutions is discussed in Section 5.
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The existence of at least one solution for problem (1.1) in the critical case is given in

Section 6.

Throughout this paper, in a given Banach space we denote strong convergence

by “→” and a weak convergence by “⇀”. The norms in the Lebesgue spaces Lp(Ω),

1 ≤ p ≤ ∞, are denoted by ‖ · ‖p.

2. MOUNTAIN-PASS GEOMETRY OF Jλ,ǫ AND PALAIS-SMALE

CONDITION

In this section and Sections 3 and 4 we assume that 1 < p < N+2
N−2

. First we show

that the functional Jλ,ǫ has a mountain-pass geometry. The space H1(Ω) admits the

following decomposition

H1(Ω) = V ⊕ R,

where V = {v ∈ H1(Ω);
∫

Ω
v dx = 0}. This decomposition allows us to define an

equivalent norm on H1(Ω):

‖u‖2
V =

∫

Ω

|∇v|2 dx+ t2.

We use the following quantitative statement from [1]: there exists η > 0 such that for

every t ∈ R and every v ∈ V the inequality
(∫

Ω
|∇v|2 dx

)
1

2 ≤ η|t| yields
∫

Ω

Q(x)|t+ v(x)|p+1 dx ≤
|t|p+1

2

∫

Ω

Q(x) dx. (2.1)

Lemma 2.1. There exist positive numbers ǫ◦, λ◦, ρ and β such that

Jλ,ǫ(u) ≥ β for ‖u‖ = ρ (2.2)

and for all 0 < λ ≤ λ◦, 0 < ǫ ≤ ǫ◦.

Proof Let ρ2 = ‖u‖2
V = ‖∇v‖2

2 + t2. We distinguish two cases: (i) ‖∇v‖2 ≤ η|t| and

(ii) ‖∇v‖2 ≥ η|t|. If ‖∇v‖2 ≤ η|t| and ‖∇v‖2
2 + t2 = ρ2, then t2 ≥ ρ2

1+η2 . By (2.1) we

have
∫

Ω

Q(x)|v + t|p+1 dx ≤ −|t|p+1α

with α = −1
2

∫

Ω
Q(x) dx > 0. Using this we obtain the following estimate of Jλ,ǫ

Jλ,ǫ(u) ≥
α

p+ 1

(

ρ2

1 + η2

)
p+1

2

−
λ

1 − γ

∫

Ω

P (x)
(

u2 + ǫ
)

1−γ

2 dx. (2.3)

In case (ii), we first observe that ‖u‖V ≤ ‖∇v‖2

(

1+ 1
η2

)
1

2 . Thus applying the Sobolev

inequality we get
∫

Ω

Q(x)|u|2
∗

dx ≤ C‖u‖2∗

V ≤ C1

(

1 +
1

η2

)
2
∗

2 ‖∇v‖2∗

2
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for some constants C,C1 > 0. Hence, if ρ is sufficiently small we get

Jλ,ǫ(u) ≥
1

2
‖∇v‖2

2 − C1

(

1 +
1

η2

)
2
∗

2 ‖∇v‖2∗

2 −
λ

1 − γ

∫

Ω

P (x)
(

u2 + ǫ
)

1−γ

2 dx

≥
1

4
‖∇v‖2

2 −
λ

1 − γ

∫

Ω

P (x)
(

u2 + ǫ
)

1−γ

2 dx.

Since ‖∇v‖2 ≥
ηρ

(

1+η2

) 1
2

, we deduce from the above estimate that

Jλ,ǫ(u) ≥
ρ2η2

4
(

1 + η2
) −

λ

1 − γ

∫

Ω

P (x)
(

u|2 + ǫ
)

1−γ
2 dx. (2.4)

We put κ = min

(

α
p+1

(

ρ2

1+η2

)
p+1

2

, ρ2η2

4
(

1+η2

)

)

. It follows from (2.3) and (2.4) that

Jλ,ǫ(u) ≥ κ−
λ

1 − γ

∫

Ω

P (x)
(

u2 + ǫ
)

1−γ

2 dx (2.5)

for ‖u‖V = ρ. By the Hölder and Sobolev inequalities, we deduce from (2.5) that

Jλ,ǫ(u) ≥ κ−
λM

1 − γ
|Ω|

p+γ

p+1

(

‖u‖1−γ
V + ǫ

1−γ

2

)

for some constant M > 0 independent of λ and ǫ. We now fix ǫ◦ > 0, suitably small

and select λ◦ > 0 so that

Jλ,ǫ(u) ≥
κ

2
for ‖u‖V = ρ (2.6)

and for all 0 < λ < λ◦ and 0 < ǫ < ǫ◦. Since the norms ‖ · ‖ and ‖ · ‖V are equivalent

estimate (2.1) follows. �

Let ϕ ∈ H1(Ω) be such that supp ϕ ⊂ supp Q+, ϕ 6≡ 0. Then for t > 0 we have

Jλ,ǫ(tϕ) ≤
t2

2

∫

Ω

|∇ϕ|2 dx−
tp+1

p + 1

∫

Ω

Q+|ϕ|p+1 dx.

We choose t◦ > 0 so that Jλ,ǫ(t◦ϕ) < 0 and ‖t◦ϕ‖ > ρ. This choice of t◦ϕ is

independent of λ and ǫ. We set v1 = t◦ϕ and put

Γ = {γ ∈ C
(

[0, 1], H1(Ω)
)

; γ(0) = 0, γ(1) = v1}.

We now define the mountain-pass level for Jλ,ǫ

cλ,ǫ = inf
γ∈Γ

max
t∈[0,1]

Jλ,ǫ(γ(t)) (2.7)

for 0 < λ ≤ λ◦ and 0 < ǫ ≤ ǫ◦. It is easy to check that cλ,ǫ2 ≤ cλ,ǫ1 if ǫ1 ≤ ǫ2. Since

for every 0 < λ ≤ λ◦, 0 < ǫ ≤ ǫ◦ and u ∈ H1(Ω)

Jλ,ǫ(u) ≤
1

2

∫

Ω

|∇u|2 dx−
1

p+ 1

∫

Ω

Q(x)|u|p+1 dx,

we deduce from this that cλ,ǫ is uniformly bounded in ǫ ∈ (0, ǫ◦].

Proposition 2.2. Let 0 < λ ≤ λ◦ and 0 < ǫ ≤ ǫ◦. Then every (PS)cλ,ǫ
sequence is

relatively compact in H1(Ω).
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Proof Let {un} ⊂ H1(Ω) be a (PS)cλ,ǫ
sequence, that is,

Jλ,ǫ(un) → cλ,ǫ and J ′
λ,ǫ(un) → 0 in H−1(Ω).

First we show that {un} is bounded in H1(Ω). Arguing by contradiction, assume

‖un‖ → ∞. We put vn = un

‖un‖
. Since ‖vn‖ = 1 for every n, we may assume that

vn ⇀ v in H1(Ω) and vn → v in Lq(Ω) for every 1 ≤ q < 2∗, where 2∗ = 2N
N−2

. We

then have

1

2

∫

Ω

|∇vn|
2 dx−

‖un‖
p−1

p+ 1

∫

Ω

Q|vn|
p+1 dx−

‖un‖
−1−γ

1 − γ

∫

Ω

P
( ǫ

‖un‖2
+ v2

n

)
1−γ

2 dx = o(1)

and
∫

Ω

|∇vn|
2 dx− ‖un‖

p−1

∫

Ω

Q|vn|
p+1 dx− ‖un‖

−1−γ

∫

Ω

Pv2
n

( ǫ

‖un‖2
+ v2

n

)
−1−γ

2 dx = 0.

The third term in the first relation tends to 0 as n → ∞. For the third term in the

second relation, we have the following estimate

‖un‖
−1−γ

∫

Ω

Pv2
n

( ǫ

‖un‖2
+ v2

n

)
−1−γ

2 dx ≤ ‖un‖
−1−γ

∫

Ω

P |vn|
1−γ dx,

which shows that this term tends to 0 as n → ∞. Therefore we can rewrite the last

two relations as

1

2

∫

Ω

|∇vn|
2 dx−

‖un‖
p−1

p+ 1

∫

Ω

Q|vn|
p+1 dx = o(1)

and
∫

Ω

|∇vn|
2 dx− ‖un‖

p−1

∫

Ω

Q|vn|
p+1 dx = o(1).

This is only possible when
∫

Ω
|∇vn|

2 dx → 0 and ‖un‖
p−1

∫

Ω
Q|vn|

p+1 dx → 0 as

n → ∞. Hence v = l (constant) and
∫

Ω
Q|l|p+1 dx = 0. By (1.2) l = 0 and vn → 0

in H1(Ω). This contradicts the fact that ‖vn‖ = 1 for every n. Therefore {un} is

bounded in H1(Ω). We may assume that un ⇀ u in H1(Ω) and un → u in Lq(Ω) for

1 ≤ q < 2∗. Since the functional Jλ,ǫ contains subcritical nonlinearities, it is easy to

show that {un} is relatively compact in H1(Ω). �

Proposition 2.3. Problem (1.4) admits a solution uǫ for every 0 < ǫ ≤ ǫ◦ and

0 < λ ≤ λ◦.

Proof This is a consequence of the mountain-pass principle and Proposition 2.2.

This solution uǫ can be taken to be nonnegative. The Harnack inequality implies

that uǫ > 0. �
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3. EXISTENCE OF A FIRST SOLUTION OF PROBLEM (1.1)

A solution to problem (1.1) will be obtained as a limit point of a family of

solutions {uǫ}, 0 < ǫ ≤ ǫ◦, of problem (1.4).

Proposition 3.1. A family of solutions {uǫ}, 0 < ǫ ≤ ǫ◦, of problem (1.4) is relatively

compact in H1(Ω).

Proof We commence by showing that family {uǫ}, 0 < ǫ ≤ ǫ◦, is bounded in H1(Ω).

In the contrary case we can find a sequence ǫn → 0 such that ‖uǫn
‖ → ∞. We put

un = uǫn
and vn = un

‖un‖
. We then have

1

2

∫

Ω

|∇vn|
2 dx−

‖un‖
p−1

p+ 1

∫

Ω

Q|vn|
p+1 dx

−
λ

1 − γ
‖un‖

−1−γ

∫

Ω

P
( ǫn

‖un‖2
+ v2

n

)
1−γ

2 dx = o(1) (3.1)

and
∫

Ω

|∇vn|
2 dx− ‖un‖

p−1

∫

Ω

Q|vn|
p+1 dx− λ‖un‖

−1−γ

∫

Ω

P
v2

n
(

ǫn

‖un‖2 + v2
n

)
1+γ

2

dx = 0.

(3.2)

Since the third terms in (3.1) and (3.2) tend to 0 as n → ∞, we can rewrite these

relations as
1

2

∫

Ω

|∇vn|
2 dx−

‖un‖
p−1

p+ 1

∫

Ω

Q|vn|
p+1 dx = o(1)

and
∫

Ω

|∇vn|
2 dx− ‖un‖

p−1

∫

Ω

Q|vn|
p+1 dx = o(1).

From this we derive a contradiction, as in the proof of Proposition 2.2. Since {uǫ},

0 < ǫ ≤ ǫ◦, is bounded we can choose a sequence {uǫn
} with ǫn → 0, denoted again

by {un}, such that un ⇀ u in H1(Ω) and un → u in Lq(Ω) for 1 ≤ q < 2∗. To proceed

further we need the following estimate: there exists a constant C1, independent of ǫ,

such that
∫

Ω

uǫ

(

u2
ǫ + ǫ

)γ+ 1

2

dx ≤ C1 (3.3)

for 0 < ǫ ≤ ǫ◦. To show this, we observe that uǫ satisfies
∫

Ω

∇uǫ∇v dx−

∫

Ω

Qup
ǫv dx− λ

∫

Ω

P
uǫv

(

u2
ǫ + ǫ

)
γ+1

2

dx = 0 (3.4)

for every v ∈ H1(Ω). Testing (3.4) with v =
(

u2
ǫ + ǫ

)− γ

2 we get

−γ

∫

Ω

uǫ|∇uǫ|
2

(

u2
ǫ + ǫ

)1+ γ
2

dx−

∫

Ω

Q
up

ǫ
(

u2
ǫ + ǫ

)
γ
2

dx = λ

∫

Ω

P
uǫ

(

u2
ǫ + ǫ

)γ+ 1

2

dx.
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From this, we derive the following inequality

λ

∫

Ω

P
uǫ

(

u2
ǫ + ǫ

)γ+ 1

2

dx ≤

∫

Ω

Q− up
ǫ

(

u2
ǫ + ǫ

)
γ

2

dx ≤

∫

Ω

Q−up−γ
ǫ dx.

Since {‖uǫ‖p+1−γ} is bounded independently of ǫ and minx∈Ω̄ P (x) > 0, the estimate

(3.3) follows. For n < m, we have
∫

Ω

|∇(un − um)|2 dx −

∫

Ω

Q
(

up
n − up

m

)

(un − um) dx (3.5)

= λ

∫

Ω

P

(

un

(

u2
n + ǫn

)
γ+1

2

−
um

(

u2
m + ǫm

)
γ+1

2

)

(un − um) dx.

It is clear that

lim
n,m→∞

∫

Ω

Q
(

up
n − up

m

)

(un − um) dx = 0 (3.6)

Let us denote the integral on the right-hand side of equation (3.5) by In,m. With the

aid of (3.3) and the Hölder inequality, we obtain

|In,m| ≤

∫

Ω

P
u

1

2
n

(

u2
n + ǫn

)
γ

2
+ 1

4

|un − um| dx+

∫

Ω

P
u

1

2
m

(

u2
m + ǫm

)
γ

2
+ 1

4

|un − um| dx

≤ 2‖P‖∞C
1

2

1

(
∫

Ω

|un − um|
2 dx

)
1

2

.

Hence In,m → 0 as n,m→ ∞ and so

lim
n,m→∞

∫

Ω

|∇(un − um)|2 dx = 0

and this completes the proof. �

We are now in a position to formulate the existence result for problem (1.1).

Theorem 3.2. Suppose that γ < min(p− 1, 1). For every 0 < λ ≤ λ◦ problem (1.1)

admits a solution uλ such that Jλ(uλ) > 0.

Proof Let {uǫ}, 0 < ǫ < ǫ◦, be a family of solutions of problem (1.4). By Propo-

sition 3.1 there exists a sequence ǫn such that ǫn → 0 and un := uǫn
→ u in H1(Ω).

First we show that u 6≡ 0. Testing (3.4) with v = un we get

∫

Ω

|∇un|
2 dx−

∫

Ω

Qup+1
n dx− λ

∫

Ω

P
u2

n
(

u2
n + ǫn

)
γ+1

2

dx = 0.

Combining this with Jλ,ǫn
(un) = cλ,ǫn

we get

(1

2
−

1

p+ 1

)

∫

Ω

Qup+1
n dx+

λ

2

∫

Ω

P
u2

n
(

u2
n + ǫn

)
γ+1

2

dx−
λ

1 − γ

∫

Ω

P
(

u2
n+ǫn

)
1−γ

2 dx = cλ,ǫn
.
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We rewrite this as

(1

2
−

1

p+ 1

)

∫

Ω

Qup+1
n dx +

(1

2
−

1

1 − γ

)

λ

∫

Ω

P
(

u2
n + ǫn

)
1−γ

2 dx (3.7)

= cλ,ǫn
+
ǫnλ

2

∫

Ω

P
(

u2
n + ǫn

)
−1−γ

2 dx.

Assuming that un ⇀ 0 in H1(Ω), the left-hand side of (3.7) tends to 0 as n → ∞,

while for the right-hand side we have

lim inf
n→∞

(

cλ,ǫn
+
ǫnλ

2

∫

Ω

P
(

u2
n + ǫm

)
−1−γ

2 dx

)

≥ β > 0.

and we have arrived at a contradiction. In the final step we show that u is a weak

solution of (1.1). Let v ∈ H1(Ω). For every n we have

∫

Ω

∇un∇v dx−

∫

Ω

Qup
nv dx = λ

∫

Ω

P
unv

(

u2
n + ǫn

)
1+γ

2

dx.

The left-hand side has a limit

lim
n→∞

(
∫

Ω

∇un∇v dx−

∫

Ω

Qup
nv dx

)

=

∫

Ω

∇u∇v dx−

∫

Ω

Qupv dx.

Hence the right-hand side also has a limit. We now evaluate this limit. For a small

δ > 0 we write
∫

Ω

P
unv

(

u2
n + ǫn

)
γ+1

2

dx =

∫

un≤δ

P
unv

(

u2
n + ǫn

)
γ+1

2

dx

+

∫

un>δ

P
unv

(

u2
n + ǫn

)
γ+1

2

dx = I1,n + I2,n.

We need the following estimate: there exists a constant C2 > 0, independent of ǫ,

such that
∫

Ω

uǫ
(

u2
ǫ + ǫ

)γ+1 dx ≤ C2 (3.8)

for all 0 < ǫ ≤ ǫ◦. To show this, we test (3.4) with v = 1
(

u2
ǫ+ǫ

)
γ+1
2

and get

−(γ + 1)

∫

Ω

uǫ|∇uǫ|
2

(

u2
ǫ + ǫ

)
γ+3

2

dx−

∫

Ω

Q
up

ǫ
(

u2
ǫ + ǫ

)
γ+1

2

dx = λ

∫

Ω

P
uǫ

(

u2
ǫ + ǫ

)γ+1 dx.

From this we deduce
∫

Ω

Q− up
ǫ

(

u2
ǫ + ǫ

)
γ+1

2

dx ≥ λ

∫

Ω

P
uǫ

(

u2
ǫ + ǫ

)γ+1 dx.
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Since ‖uǫ‖p−γ−1 is bounded independently of ǫ, estimate (3.8) follows. By (3.8) and

the Hölder inequality we have

I1,n ≤ ‖P‖∞δ
1

2

∫

un≤δ

u
1

2
n |v|

(

u2
n + ǫn

)
γ+1

2

dx

≤ ‖P‖∞δ
1

2

(
∫

Ω

un
(

u2
n + ǫn

)γ+1 dx

)
1

2

‖v‖2 ≤ ‖P‖∞δ
1

2C
1

2

2 ‖v‖2.

For I2,n, by the Lebesgue dominated convergence theorem, we have

lim
n→∞

I2,n =

∫

u≥δ

Pu−γ dx.

Since δ is arbitrary, we get

lim
n→∞

∫

Ω

P
unv

(

u2
n + ǫn

)
1+γ

2

dx =

∫

Ω

Pu−γv dx.

The fact that u is strictly positive on Ω follows from the Harnack inequality. Details

of this are given in Section 5. Since limǫ→0 cλ,ǫ > 0, we see that Jλ(uλ) > 0. �

4. EXISTENCE OF A SECOND SOLUTION OF PROBLEM (1.1)

We begin by showing that there exists a second solution of problem (1.4) for every

0 < ǫ ≤ ǫ◦. These solutions are local minimizers of functionals Jλ,ǫ. Let ψ ∈ H1(Ω)

with ψ 6≡ 0 and let 0 < λ ≤ λ◦. Then there exist t > 0 small and a > 0 such that

Jλ,ǫ(tψ) ≤
t2

2

∫

Ω

|∇ψ|2 dx−
tp+1

p+ 1

∫

Ω

Q|ψ|p+1 dx−
λt1−γ

1 − γ

∫

Ω

P
(

ψ2 +
ǫ

t2

)
1−γ

2 dx ≤ −a

and ‖tψ‖ < ρ. It is clear that the choice of t and a can be made independently of

0 < ǫ ≤ ǫ◦. Hence, we have

dλ,ǫ = inf
‖u‖≤ρ

Jλ,ǫ(u) ≤ −a. (4.1)

Since problem (4.1) is subcritical, for every 0 < ǫ ≤ ǫ◦ there exists a minimizer wǫ

which is a solution problem (1.4). We aim to show that the family of minimizers

{wǫ}, 0 < ǫ ≤ ǫ◦, has a limit point in H1(Ω) which is a solution to problem (1.1).

Theorem 4.1. Let γ < min(p − 1, 1). For every 0 < λ ≤ λ◦ problem (1.1) has a

solution wλ such that Jλ(wλ) < 0.

Proof We follow the argument used in Section 3. As in Proposition 3.1 we show

that {wǫ}, 0 < ǫ ≤ ǫ◦, is relatively compact in H1(Ω).Then there exists a sequence

ǫn → 0 such that wǫn
→ w in H1(Ω). We put wn = wǫn

. It is easy to show that

lim
n→∞

∫

Ω

P
(

w2
n + ǫ

)
1−γ

2 dx =

∫

Ω

Pw1−γ dx.

Hence Jλ(w) ≤ limn→∞ Jλ,ǫn
(wn) ≤ −a. This shows that w 6≡ 0. To show that w

satisfies (1.1) we repeat the final part of the proof of Theorem 3.2. �
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5. REMARKS ON THE REGULARITY OF SOLUTIONS OF

PROBLEM (1.1)

We use the following results from [13]:

Lemma 5.1. Suppose that ∂Ω ∈ C1 and a(x) ∈ L
N
2 (Ω). If u is a weak solution of

problem
{

−∆u = a(x)u in Ω
∂u
∂ν

= 0 on ∂Ω,

then u ∈ Ls(Ω) for every s ≥ 1.

Lemma 5.2. Suppose that ∂Ω ∈ C2, f ∈ Ls(Ω), s > 1. If u is a weak solution of

problem
{

−∆u = f(x) in Ω
∂u
∂ν

= 0 on ∂Ω,

then u ∈ H2,s(Ω).

These two lemmas yield the following regularity result for solutions of problem

(1.1).

Theorem 5.3. If ∂Ω ∈ C2 then a weak solution to problem (1.1) belongs to C1+α(Ω̄)

for some α ∈ (0, 1).

Proof First we observe that testing (1.3) with v = 1
(

u2+ǫ

)
p
2

gives

−p

∫

Ω

u|∇u|2
(

u2 + ǫ
)

p

2
+1
dx−

∫

Ω

Q
up

(

u2 + ǫ
)

p

2

dx = λ

∫

Ω

P
u−γ

(

u2 + ǫ
)

p

2

dx.

From this we deduce, using the Fatou lemma, that
∫

Ω

Q− dx ≥ λmP

∫

Ω

u−(γ+p) dx,

where mP = minx∈Ω̄ P (x). Using this estimate and a test function v = 1
(

u2+ǫ

)
2p+γ

2

we

get
‖Q−‖∞
(

λmP

)2

∫

Ω

Q− dx ≥

∫

Ω

dx

u2p+2γ
.

By iteration we obtain

‖Q−‖k−1
∞

(

λmP

)k

∫

Ω

Q− dx ≥

∫

Ω

dx

ukp+kγ

for every integer k ≥ 1. This shows that u−1 ∈ Lq(Ω) for every q ≥ 1. Applying

Lemma 5.1 with a(x) = Q(x)u(x)p−1 + P (x)u−1−γ ∈ L
N
2 (Ω), we see that u ∈ Ls(Ω)

for every s ≥ 1 . Since by Lemma 5.2 u ∈ H2,s(Ω), obviously u ∈ C1+α(Ω̄) for some

α ∈ (0, 1). �
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Remark 5.4. A solution u to problem (1.1) satisfies following equation

−∆u+ c(x)u = 0 in Ω

where c(x) = −
(

Q(x)u(x)p−1 + P (x)u−1−γ
)

∈ LN(Ω). Therefore we can apply the

Harnack inequality (see Théorème 7.1 in [10]) to obtain u > 0 on Ω.

6. CRITICAL CASE

In this section we consider the case p = 2∗ − 1. We establish the existence of at

least one solution of problem (1.1) through a local minimization and approximation.

It is clear that Lemma 2.1 continues to hold for p = 2∗ − 1. As in Section 4 we can

show that there exists a > 0 such that (4.1) is valid.

Proposition 6.1. For every 0 < ǫ ≤ ǫ◦ and 0 < λ ≤ λ◦ problem (1.4) has a solution

uǫ.

Proof Let {un} be a minimizing sequence for dλ,ǫ. Since ‖un‖ ≤ ρ we may assume

that un ⇀ uǫ in H1(Ω) and L2∗(Ω) and moreover un → uǫ in Lq(Ω) for 1 ≤ q < 2∗.

Also, we may assume that ‖un‖ ≤ ρ

2
because Jλ,ǫ(u) ≥ β2 > 0 for ‖un‖ = ρ. By the

Ekeland variational principle Jλ,ǫ(un) → 0 in H−1(Ω). First we show that uǫ 6≡ 0 on

Ω. Indeed, we have

−a ≥ dλ,ǫ ≥ lim inf
n→∞

[

Jλ,ǫ(un) −
1

2∗
〈J ′

λ,ǫ(un), un〉

]

(6.1)

= lim inf
n→∞

[

1

N

∫

Ω

|∇un|
2 dx+

λ

2∗

∫

Ω

Pu2
n

(

u2
n + ǫ

)− 1+γ

2 dx

−
λ

1 − γ

∫

Ω

P
(

u2
n + ǫ

)
1−γ

2 dx

]

.

Assume that uǫ = 0 on Ω. It is easy to show that (6.1) cannot be satisfied for ǫ > 0

sufficiently small and we get a contradiction. Obviously uǫ satisfies (1.4) in a weak

sense. By the Harnack inequality uǫ > 0 on Ω̄. Letting n→ ∞ in (6.1) we get

dλ,ǫ ≥
1

N

∫

Ω

|∇uǫ|
2 dx+

λ

2∗

∫

Ω

Pu2
ǫ

(

uǫ + ǫ
)− 1+γ

2 dx−
λ

1 − γ

∫

Ω

P
(

uǫ + ǫ
)

1−γ

2 dx

= Jλ,ǫ(uǫ) −
1

2∗
〈J ′

λ,ǫ(uǫ), uǫ〉 = Jλ,ǫ(uǫ) ≥ dλ,ǫ

as ‖uǫ‖ ≤ ρ. Hence we have Jλ,ǫ(uǫ) = dλ,ǫ. �

Theorem 6.2. Suppose that 0 < γ < 1. For every 0 < λ ≤ λ◦ problem (1.1) has a

solution u such that Jλ(u) < 0.

Proof Let {uǫ}, 0 < ǫ ≤ ǫ◦, be a family of solution of problem (1.4) obtained

in Proposition 6.1. Since uǫ is bounded in H1(Ω) there exists a sequence ǫn → 0
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such that un := uǫn
⇀ u in H1(Ω) and L2∗(Ω) and moreover un → u in Lq(Ω) for

1 ≤ q < 2∗. We now observe that for every n we have

−a ≥ dλ,ǫn
= Jλ,ǫn

(un) = Jλ,ǫn
(un) −

1

2∗
〈J ′

λ,ǫn
(un), un〉 (6.2)

=
1

N

∫

Ω

|∇un|
2 dx+

λ

2∗

∫

Ω

Pu2
n

(

u2
n + ǫ

)− 1+γ

2 dx

−
λ

1 − γ

∫

Ω

P
(

u2
n + ǫ

)
1−γ

2 dx.

From this we easily deduce that u 6≡ 0. It is clear that estimate (3.8) remains true

in the critical case. This estimate allows us to show that u satisfies (1.1) in the weak

sense (see the final part of the proof of Theorem 3.2). Finally, we show that Jλ(u) < 0.

Letting n → ∞ in (6.2) and using the lower semi-continuity of norm with respect to

weak convergence, we obtain

0 > −a ≥
1

N

∫

Ω

|∇u|2 dx+
λ

2∗

∫

Ω

Pu1−γ dx−
λ

1 − γ

∫

Ω

Pu1−γ dx.

Since u satisfies (1.1) we get
∫

Ω

|∇u|2 dx =

∫

Ω

Qup+1 dx+ λ

∫

Ω

Pu1−γ dx.

Combining the last two relations we obtain Jλ(u) ≤ a < 0. �
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