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ABSTRACT. We consider a semilinear Dirichlet elliptic problem with a right-hand side nonlin-

earity which exhibits an asymmetric growth near +∞ and near −∞. Namely, it is (sub-)linear near

−∞ and superlinear near +∞. However, it need not satisfy the Ambrosetti–Rabinowitz condition on

the positive semiaxis. Combining variational methods with Morse theory, we show that the problem

has at least two nontrivial solutions, one of which is negative.
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1. INTRODUCTION

Let Ω ⊂ R
N be a bounded domain with a C2-boundary ∂Ω. We consider the

following semilinear Dirichlet problem:
{

−∆u(z) = f(z, u(z)) in Ω,

u = 0 on ∂Ω.
(1.1)

The aim of this paper is to prove a multiplicity theorem for problem (1.1) when

the reaction term f(z, ·) exhibits an asymmetric behavior as x ∈ R approaches +∞

and −∞. More precisely, we assume that for a.a. z ∈ Ω, f(z, ·) grows superlinearly

near +∞, while near −∞ it has a (sub-)linear growth. In the past, problems with

asymmetric nonlinearities were investigated using the Fuč́ık spectrum of the operator

(−∆, H1
0 (Ω)). This approach requires that f(z, ·) exhibits linear growth near both

+∞ and −∞ and that the limits limx→±∞
f(z,x)
x

exist and belong to R. We mention

the works of Các [4], Dancer and Zhang [7], Magalhães [12], de Paiva [16], Schechter
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[20] and the references therein. Equations with nonlinearities which are superlinear in

one direction and (sub-)linear in the other were investigated by Arcoya and Villegas

[1], de Figueiredo and Ruf [9], Perera [18]. In [1], [18], the nonlinearity f(z, ·) is

linear near −∞, while in [9] it is sublinear. In [9], [18], it is assumed that N = 1,

i.e., the equation is an ordinary differential equation. In [1], [18], which assume

linear growth near −∞, the limit limx→−∞
f(z,x)
x

exists. All three works express

the superlinear growth near +∞ using the Ambrosetti–Rabinowitz condition (AR-

condition, for short). In [1], [9], the nonlinearity f(z, x) is jointly continuous, while

in [18], f ∈ C1([0, 1] × R). Arcoya and Villegas [1], de Figueiredo and Ruf [9] prove

existence theorems, while Perera [18] has a multiplicity theorem. Here, we relax

several of the above restrictions on the nonlinearity f(z, x). Our nonlinearity is only

measurable in z ∈ Ω. The limit as x → −∞ of f(z,x)
x

need not exist and the growth

near −∞ can be linear or sublinear. Finally, for the superlinear growth near +∞, we

do not use the AR-condition. Recall that a function g : R → R is said to satisfy the

AR-condition in the positive direction if there exist µ > 2 and M > 0 such that

0 < µG(x) ≤ g(x)x for all x ≥M, (1.2)

where G(x) =
∫ x

0
g(s) ds (the primitive of g). Integrating (1.2), we obtain the weaker

condition

c0x
µ ≤ G(x) for all x ≥M and some c0 > 0. (1.3)

In particular, (1.3) implies that G(·) is superquadratic near +∞ and so it satisfies

the much weaker condition

lim
x→+∞

G(x)

x2
= +∞. (1.4)

Here, we use (1.4) with an additional asymptotic condition (see (3.4)), which is weaker

than AR-condition.

Our approach combines variational methods based on the critical point theory,

together with Morse theory. In the next section, for the convenience of the reader,

we present the main mathematical tools that we will use in the sequel. In Section 3,

we establish the compactness property of the Euler functional for the problem (1.1)

and we study its critical groups at +∞ and at 0. Section 4 presents our multiplicity

result.

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote

the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies

the Cerami condition (the (C)-condition, for short) if every sequence {xn}n≥1 ⊂ X

such that {ϕ(xn)}n≥1 is bounded and (1 + ‖xn‖)ϕ
′(xn) → 0 in X∗ as n→ ∞ admits

a strongly convergent subsequence.
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We introduce the following sets: ϕc = {x ∈ X : ϕ(x) ≤ c}, ϕ̇c = {x ∈ X :

ϕ(x) < c} (c ∈ R) and K = {x ∈ X : ϕ′(x) = 0}. Given a topological pair (Y1, Y2)

with Y2 ⊂ Y1 ⊂ X, for every integer k ≥ 0, by Hk(Y1, Y2) we denote the kth relative

singular homology group for the pair (Y1, Y2) with integer coefficients. If x0 ∈ X is

an isolated critical point of ϕ and c = ϕ(x0), then the critical groups of ϕ at x0 are

defined by

Ck(ϕ, x0) = Hk(ϕ
c ∩ U, ϕc ∩ U \ {x0}) for all integers k ≥ 0,

where U is a neighborhood of x0 such that K ∩ ϕc ∩ U = {x0} (see [5], [13]). The

excision property of singular homology implies that the definition of critical groups

is independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the (C)-condition and inf ϕ(K) > −∞. We

choose c < inf ϕ(K). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all integers k ≥ 0

(see, e.g., Bartsch and Li [2]). From the deformation theorem, we see that the above

definition is independent of the particular choice of c < inf ϕ(K). If c < inf ϕ(K)

then

Ck(ϕ,∞) = Hk(X, ϕ̇
c) for all integers k ≥ 0. (2.1)

To see this, let b < c < inf ϕ(K). Then ϕb is a strong deformation retract of ϕ̇c (see,

e.g., [11]), hence Hk(X,ϕ
b) = Hk(X, ϕ̇

c) for all integers k ≥ 0, which leads to (2.1).

We recall the following result from Perera [19, Lemma 2.2].

Proposition 2.1. If D1 ⊂ D ⊂ E ⊂ E1 ⊂ X and for some integer k ≥ 0 we have

Hk(E,D) 6= 0 and Hk(E1, D1) = 0, then either Hk+1(E1, E) 6= 0 or Hk−1(D,D1) 6= 0.

In the analysis of problem (1.1), we will use the spaces H1
0 (Ω) endowed with the

norm ‖ · ‖, and

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

The space C1
0 (Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has nonempty interior given by

intC+ =

{

u ∈ C+ : u(z) > 0 for z ∈ Ω and
∂u

∂n
(z) < 0 for z ∈ ∂Ω

}

.

Here n(·) stands for the outward unit normal on ∂Ω.

Recall that the negative Dirichlet Laplacian (denoted by (−∆, H1
0 (Ω))) is the

operator −∆ ∈ L(H1
0 (Ω), H−1(Ω)), where H−1(Ω) = H1

0 (Ω)∗, defined by

〈−∆u, y〉 =

∫

Ω

(Du,Dy)RN dz for all u, y ∈ H1
0 (Ω)
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(by 〈·, ·〉 we denote the duality brackets for the pair (H−1(Ω), H1
0 (Ω))). Let us briefly

recall the spectral properties of (−∆, H1
0 (Ω)). We consider the following linear eigen-

value problem:
{

−∆u(z) = λu(z) in Ω,

u = 0 on ∂Ω.
(2.2)

We know that problem (2.2) admits a sequence {λk}k≥1 ⊂ R+ of distinct eigenvalues

satisfying 0 < λ1 < λ2 < · · · < λk < λk+1 → +∞ as k → +∞. For every integer

k ≥ 1, by E(λk) we denote the eigenspace corresponding to the eigenvalue λk . We

know that for every integer k ≥ 1, E(λk) is finite dimensional, E(λk) ⊂ C1
0(Ω), and it

has the unique continuation property, which means that if u ∈ E(λk) vanishes on a set

of positive measure, then u ≡ 0 on Ω. The space E(λ1) is one-dimensional. Moreover,

only the eigenfunctions corresponding to the first eigenvalue λ1 have constant sign.

The eigenfunctions corresponding to the eigenvalues λk , k ≥ 2, are nodal (sign-

changing).

Let k ≥ 1 be an integer and consider the following two spaces

Hk =

k
⊕

i=1

E(λi) and Ĥk = H
⊥

k =
⊕

i≥k+1

E(λi) .

Using these spaces, we have the following variational characterizations of the eigen-

values of (−∆, H1
0 (Ω)):

λ1 = min

{

‖Du‖2
2

‖u‖2
2

: u ∈ H1
0 (Ω) \ {0}

}

, (2.3)

and for k ≥ 2,

λk = max

{

‖Du‖2
2

‖u‖2
2

: u ∈ Hk \ {0}

}

= min

{

‖Dû‖2
2

‖û‖2
2

: û ∈ Ĥk−1 \ {0}

}

. (2.4)

The minimum in (2.3) is attained on the eigenspace E(λ1) = Ru1, where u1 ∈ intC+

denotes the L2-normalized principal eigenfunction of (−∆, H1
0 (Ω)). The maximum

and the minimum in (2.4) are realized on E(λk), k ≥ 2.

We shall need the following lemma from [15].

Lemma 2.2. If k ≥ 0 is an integer, ξ ∈ L∞(Ω)+, ξ(z) ≤ λk+1 a.e. on Ω and the

inequality is strict on a set of positive measure, then there exists γ̂0 > 0 such that

‖Dû‖2
2 −

∫

Ω

ξû2 dz ≥ γ̂0‖Dû‖
2
2 for all û ∈ Ĥk ,

with Ĥ0 := H1
0 (Ω).

In what follows, 2∗ denotes the critical Sobolev exponent defined by

2∗ =

{

2N
N−2

if N ≥ 3,

+∞ if N = 1, 2 .
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By | · |N we denote the Lebesgue measure on R
N , and for every x ∈ R we use the

notation x+ = max{x, 0}, x− = max{−x, 0}.

3. COMPACTNESS CONDITION. CRITICAL GROUPS

First, let us state the hypotheses on the nonlinearity f(z, x):

(H) f : Ω × R → R is a function such that

(i) for all x ∈ R, z 7→ f(z, x) is measurable;

(ii) for a.a. z ∈ Ω, x 7→ f(z, x) is C1 and f(z, 0) = 0;

(iii) for a.a. z ∈ Ω and all x ∈ R, we have

|f ′
x(z, x)| ≤ a(z) + c|x|r−2,

with a ∈ L∞(Ω)+, c > 0 and 2 < r < 2∗;

(iv) there exist ϑ ∈ L∞(Ω)+, ϑ(z) ≤ λ1 a.e. on Ω with strict inequality on a set of

positive measure, σ, β ∈ R, ξ > 0, and τ ∈ ((r − 2) max{1, N
2
}, r] with τ ≥ 1

such that for F (z, x) =
∫ x

0
f(z, s) ds, we have

σ ≤ lim inf
x→−∞

f(z, x)

x
≤ lim sup

x→−∞

f(z, x)

x
≤ ϑ(z) uniformly for a.a. z ∈ Ω, (3.1)

lim sup
x→−∞

(2F (z, x) − f(z, x)x) ≤ β uniformly for a.a. z ∈ Ω, (3.2)

lim
x→+∞

F (z, x)

x2
= +∞ uniformly for a.a. z ∈ Ω, (3.3)

lim inf
x→+∞

f(z, x)x − 2F (z, x)

xτ
≥ ξ uniformly for a.a. z ∈ Ω; (3.4)

(v) there exist η, η̂ ∈ L∞(Ω)+ and an integer m ≥ 2 such that

λm ≤ η(z) ≤ η̂(z) ≤ λm+1 for a.a. z ∈ Ω,

the first and the last inequality are strict on sets (not necessarily the same) of

positive measure, and

η(z) ≤ f ′
x(z, 0) = lim

x→0

f(z, x)

x
≤ η̂(z) uniformly for a.a. z ∈ Ω.

Remark 3.1. From condition (3.1), it is clear that for a.a. z ∈ Ω, f(z, ·) is (sub-)

linear near −∞, while condition (3.3) implies that for a.a. z ∈ Ω, f(z, ·) is superlinear

near +∞. However, we do not assume the AR-condition (see (1.2)). Instead, we use

(3.4), which is a weaker condition. Such conditions were also used by Costa and

Magalhães [6] and Fei [8].
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Example 3.2. The following function satisfies hypotheses (H) (for the sake of sim-

plicity, we drop the z-dependence):

f(x) =



















−4ηx−2 − 3ηx−3 if x < −1

ηx if x ∈ [−1, 1]

2η
3

(x(ln x+ 1
2
) + 1) if x > 1,

with η > λ1, η 6∈ σ(−∆, H1
0 (Ω)).

Example 3.3. The following function satisfies hypotheses (H) (for the sake of sim-

plicity, we drop the z-dependence):

f(x) =



















θ(x+ ln |x|) + θ − η

2
if x < −1

η

2
x2 + ηx if x ∈ [−1, 1]

η

2
x(ln x+ 3) if x > 1,

with 0 < θ < λ1 < η, η 6∈ σ(−∆, H1
0 (Ω)).

Let ϕ : H1
0 (Ω) → R be the Euler functional for problem (1.1), defined by

ϕ(u) =
1

2
‖Du‖2

2 −

∫

Ω

F (z, u(z)) dz for all u ∈ H1
0 (Ω).

Hypotheses (H) imply that ϕ ∈ C2(H1
0 (Ω)).

Proposition 3.4. If hypotheses (H) hold, then ϕ satisfies the (C)-condition.

Proof. We consider a sequence {un}n≥1 ⊂ H1
0 (Ω) such that

|ϕ(un)| ≤M1 for all n ≥ 1, (3.5)

for some M1 > 0, and

(1 + ‖un‖)ϕ
′(un) → 0 in H−1(Ω) as n→ ∞. (3.6)

Note that ϕ′(u) = −∆u − N(u), with N(u)(·) = f(·, u(·)) for all u ∈ H1
0 (Ω). From

(3.6), we have
∣

∣

∣

∣

〈−∆un, y〉 −

∫

Ω

f(z, un)y dz

∣

∣

∣

∣

≤
εn

1 + ‖un‖
‖y‖ for all y ∈ H1

0 (Ω), (3.7)

with εn ↓ 0.

Suppose that ‖u−n ‖ → ∞ as n → ∞. We set vn = u−n
‖u−n ‖

, n ≥ 1. Then ‖vn‖ = 1

for all n ≥ 1, and so we may assume that

vn
w
→ v in H1

0 (Ω) and vn → v in Lr(Ω) as n→ ∞. (3.8)

Choosing y = −u−n ∈ H1
0 (Ω) in (3.7), we see that

‖Du−n ‖
2
2 −

∫

Ω

f(z, un)(−u
−
n ) dz ≤ εn for all n ≥ 1. (3.9)
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Multiplying (3.9) with 1
‖u−n ‖2 , we obtain

‖Dvn‖
2
2 −

∫

Ω

f(z,−u−n )

‖u−n ‖
(−vn) dz ≤

εn

‖u−n ‖
2

for all n ≥ 1. (3.10)

Note that −u−n (z) → −∞ for a.a. z ∈ {v > 0}. Then using hypothesis (3.1) in

(H) (iv) as well as (H) (v) (ensuring that |f(z, x)| ≤ c̃|x| for a.a. z ∈ Ω, all x ≤ 0, for

some c̃ > 0), and reasoning as in the proof of Proposition 5 in [14], we can show that

N(−u−n )

‖u−n ‖

w
→ −gv in Lr

′

(Ω) as n→ ∞, (3.11)

for 1
r
+ 1

r′
= 1, with g ∈ L∞(Ω)+, g(z) ≤ ϑ(z) a.a. on Ω. Hence if in (3.10) we pass to

the limit as n→ ∞ and we use (3.8), (3.11), we obtain

‖Dv‖2
2 ≤

∫

Ω

gv2 dz ≤ λ1‖v‖
2
2 (3.12)

(see hypothesis (H) (iv)). From the variational characterization of λ1 > 0 (see (2.3)),

we infer that v = tu1, for some t > 0, or v = 0.

If v = tu1, for some t > 0, then from the first inequality in (3.12), since g ≤ ϑ

and using the hypothesis on ϑ (see (H) (iv)) and the fact that v(z) > 0 for all z ∈ Ω,

we obtain ‖Du1‖
2
2 < λ1‖u1‖

2
2 , which is a contradiction.

Suppose v = 0. Choosing y = vn ∈ H1
0 (Ω) in (3.7) and multiplying the equation

with 1
‖u−n ‖

, we have

∣

∣

∣

∣

‖Dvn‖
2
2 −

∫

Ω

f(z,−u−n )

‖u−n ‖
vn dz

∣

∣

∣

∣

≤ ε′n , (3.13)

with ε′n ↓ 0. By virtue of hypothesis (H) (iii) and (3.8), we have
∫

Ω

f(z,−u−n )

‖u−n ‖
vn dz → 0 as n→ ∞,

and thus, due to (3.8) and (3.13), we get ‖Dvn‖
2
2 → 0 , which contradicts that ‖vn‖ =

1. This proves that

{u−n }n≥1 is bounded in H1
0 (Ω). (3.14)

Next we choose y = u+
n ∈ H1

0 (Ω) in (3.7), and then we have

−‖Du+
n ‖

2
2 +

∫

Ω

f(z, u+
n ) u+

n dz ≤ εn for all n ≥ 1. (3.15)

In addition, from (3.5) and (3.14), we deduce that

‖Du+
n ‖

2
2 −

∫

Ω

2F (z, u+
n ) dz ≤M2 for all n ≥ 1, (3.16)

for some M2 > 0. Adding (3.15) and (3.16), we obtain
∫

Ω

(f(z, u+
n )u+

n − 2F (z, u+
n )) dz ≤M3 for all n ≥ 1, (3.17)
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for some M3 > 0. By virtue of (3.4) in hypothesis (H) (iv), we can find ξ0 > 0 and

M4 > 0 such that

0 < ξ0x
τ ≤ f(z, x)x− 2F (z, x) for a.a. z ∈ Ω and all x ≥M4. (3.18)

On the other hand, hypothesis (H) (iii) implies that

|f(z, x+)x+ − 2F (z, x+)| ≤M5 for a.a. z ∈ Ω and all x < M4, (3.19)

for some M5 > 0. From (3.18) and (3.19), it follows that

ξ0(x
+)τ −M6 ≤ f(z, x+)x+ − 2F (z, x+) for a.a. z ∈ Ω and all x ∈ R, (3.20)

with M6 > 0. Using (3.20) in (3.17), we obtain

{u+
n }n≥1 is bounded in Lτ (Ω). (3.21)

From hypothesis (H) (iii), we have

|f(z, x+)x+| ≤ a(z)x+ +
c

r − 1
(x+)r for a.a. z ∈ Ω, all x ∈ R. (3.22)

Choosing y = u+
n ∈ H1

0 (Ω) in (3.7), we see that

‖Du+
n ‖

2
2 −

∫

Ω

f(z, u+
n )u+

n dz ≤ εn ,

which combined with (3.22) yields

‖Du+
n ‖

2
2 ≤ εn + c1(‖u

+
n ‖1 + ‖u+

n ‖
r
r) for all n ≥ 1, (3.23)

for some c1 > 0.

Assume for the moment that N > 2. Since τ ≤ r < 2∗ (see (H) (iv)), there is a

unique t ∈ [0, 1) such that 1
r

= 1−t
τ

+ t
2∗

. Invoking the interpolation inequality (see,

e.g., [10, p. 905]), we have ‖u+
n ‖r ≤ ‖u+

n ‖
1−t
τ ‖u+

n ‖
t
2∗ for all n ≥ 1, and using (3.21) we

get

‖u+
n ‖

r
r ≤M7‖Du

+
n ‖

tr
2 for all n ≥ 1, (3.24)

for some M7 > 0. This also holds for N ≤ 2 by applying the interpolation inequality

with τ ≤ r < q, for q > 2τ
τ+2−r

. Using (3.24) in (3.23), we obtain

‖Du+
n ‖

2
2 ≤ εn + c2(‖Du

+
n ‖2 + ‖Du+

n ‖
tr
2 ) for all n ≥ 1, (3.25)

for some c2 > 0. Note that the condition τ > (r−2) max{1, N
2
} in (H) (iv) guarantees

that tr < 2. This and (3.25) yield that

{u+
n }n≥1 is bounded in H1

0 (Ω). (3.26)

From (3.14) and (3.26), it follows that {un}n≥1 is bounded in H1
0 (Ω). Hence we may

assume that

un
w
→ u in H1

0 (Ω) and un → u in Lr(Ω) as n→ ∞. (3.27)
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From (3.7) with y = un − u ∈ H1
0 (Ω), we have

|〈−∆un, un − u〉 −

∫

Ω

f(z, un)(un − u) dz| ≤ εn . (3.28)

Note that
∫

Ω
f(z, un)(un − u) dz → 0 (see (3.27)). Then from (3.28) we obtain that

lim
n→∞

〈−∆un, un − u〉 = 0, which implies that un → u in H1
0 (Ω). This proves that ϕ

satisfies the (C)-condition.

Proposition 3.5. If hypotheses (H) hold, then

Ck(ϕ,∞) = 0 for all integers k ≥ 0.

Proof. Let ψ = ϕ|C1
0 (Ω) . Regularity theory (see, e.g., [10, pp. 738–739]) implies that

the critical points of ϕ are in C1
0 (Ω). Hence ψ and ϕ have the same critical set. Since

C1
0(Ω) is dense in H1

0 (Ω), invoking Proposition 16 of Palais [17], we have

Hk(H
1
0 (Ω), ϕ̇a) = Hk(C

1
0(Ω), ψ̇a) for all a ∈ R and all integers k ≥ 0. (3.29)

Assuming that the critical set K of ϕ (and of ψ) is finite (otherwise we have an infinity

of solutions), then for a < 0 with |a| large enough, by (2.1) we have

Hk(H
1
0 (Ω), ϕ̇a) = Hk(H

1
0 (Ω), ϕa) = Ck(ϕ,∞) for all integers k ≥ 0 (3.30)

and

Hk(C
1
0(Ω), ψ̇a) = Hk(C

1
0(Ω), ψa) = Ck(ψ,∞) for all integers k ≥ 0. (3.31)

From (3.29), (3.30) and (3.31), we see that in order to prove the proposition, it suffices

to show that

Hk(C
1
0(Ω), ψa) = 0 for all a < 0 with |a| large and all integers k ≥ 0. (3.32)

In order to prove (3.32), we proceed as follows. We introduce the sets

∂Bc
1 = {u ∈ C1

0 (Ω) : ‖u‖C1
0 (Ω) = 1}

and

∂Bc
1,+ = {u ∈ ∂Bc

1 : u(z) > 0 for some z ∈ Ω}.

We consider the map h+ : [0, 1] × ∂Bc
1,+ → ∂Bc

1,+ defined by

h+(t, u) =
(1 − t)u+ tu1

‖(1 − t)u+ tu1‖C1
0 (Ω)

for all (t, u) ∈ [0, 1] × ∂Bc
1,+.

Clearly, h+ is well-defined and continuous. Moreover, we have that h+(0, ·) = id|∂Bc
1,+

and h+(1, u) = u1

‖u1‖C1
0
(Ω)

∈ ∂Bc
1,+ . Therefore the set ∂Bc

1,+ is contractible in itself.

By virtue of (3.3) in hypothesis (H) (iv), given any γ > 0, we can find M8 =

M8(γ) > 0 such that

F (z, x) ≥
γ

2
x2 for a.a. z ∈ Ω and all x ≥M8. (3.33)
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Similarly, from (3.1) in hypothesis (H) (iv), and by choosing M8 > 0 even bigger if

necessary, we see that there is a number σ0 > 0 such that

F (z, x) ≥ −
σ0

2
x2 for a.a. z ∈ Ω and all x ≤ −M8. (3.34)

Moreover, by hypothesis (H) (iii), we have

|F (z, x)| ≤ c3 for a.a. z ∈ Ω and all |x| < M8, (3.35)

for some c3 > 0.

Let u ∈ ∂Bc
1,+ . By (3.33), (3.34), (3.35), (2.3), for all t > 0 we can write

ϕ(tu) =
t2

2
‖Du‖2

2 −

∫

Ω

F (z, tu) dz

=
t2

2
‖Du‖2

2 −

∫

{tu≥M8}

F (z, tu) dz −

∫

{tu≤−M8}

F (z, tu) dz

−

∫

{|tu|<M8}

F (z, tu) dz

≤
t2

2
‖Du‖2

2 −
t2

2
γ

∫

{tu≥M8}

u2 dz +
t2

2
σ0

∫

{tu≤−M8}

u2 dz + c3|Ω|N

≤
t2

2

[(

1 +
σ0

λ1

)

‖Du‖2
2 − γ

∫

{tu≥M8}

u2 dz

]

+ c3|Ω|N . (3.36)

Since u ∈ ∂Bc
1,+, we can find t∗ > 0 and µ > 0 such that

∫

{tu≥M8}

u2 dz ≥ µ for all t ≥ t∗ .

Recalling that γ > 0 is arbitrary, we can choose γ > 0 large such that

γµ−

(

1 +
σ0

λ1

)

‖Du‖2
2 =: µ0 > 0.

Then from (3.36), we have ϕ(tu) ≤ t2

2
(−µ0) + c3|Ω|N for all t ≥ t∗ , and thus

ϕ(tu) → −∞ as t→ ∞. (3.37)

From (3.4) in hypothesis (H) (iv), we see that there exist ξ0 > 0 and M9 > 0 such

that

f(z, x)x− 2F (z, x) ≥ ξ0x
τ for a.a. z ∈ Ω and all x ≥M9. (3.38)

Using hypothesis (H) (iii) and (3.2) in hypothesis (H) (iv), we obtain

2F (z, x) − f(z, x)x ≤ c4 for a.a. z ∈ Ω and all x < M9, (3.39)
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for some c4 > 0. By (3.38), (3.39), for any u ∈ H1
0 (Ω) we have

∫

Ω

(2F (z, u) − f(z, u)u) dz

=

∫

{u≥M9}

(2F (z, u) − f(z, u)u) dz +

∫

{u<M9}

(2F (z, u) − f(z, u)u) dz

≤ −ξ0

∫

{u≥M9}

uτ dz + c5, (3.40)

where c5 = c4|Ω|N . Let i : C1
0(Ω) → H1

0 (Ω) be the continuous embedding map. Let

〈·, ·〉0 denote the duality brackets for the pair (C1
0(Ω)∗, C1

0(Ω)). We have ψ = ϕ ◦ i,

and so

ψ′(u) = i∗ϕ′(i(u)) for all u ∈ C1
0 (Ω). (3.41)

Let u ∈ ∂Bc
1,+. Using (3.41), (3.40), for all t > 0 we have

d

dt
ψ(tu) = 〈ψ′(tu), u〉0 = 〈ϕ′(tu), u〉 = t‖Du‖2

2 −

∫

Ω

f(z, tu)u dz

≤
1

t
(2ϕ(tu) + c5) .

Then, owing to (3.37), we obtain

d

dt
ψ(tu) < 0 for all t > 0 large such that ϕ(tu) < −

c5

2
. (3.42)

From hypothesis (H) (iii) and (3.1) in hypothesis (H) (iv), we see that given ε > 0,

we can find ξε > 0 such that

F (z, x) ≤
1

2
(ϑ(z) + ε)x2 + ξε for a.a. z ∈ Ω and all x ≤ 0. (3.43)

Using (3.43) and Lemma 2.2, we have

ϕ(v) ≥
1

2
‖Dv‖2

2 −
1

2

∫

Ω

ϑv2 dz −
ε

2
‖v‖2

2 − ξε|Ω|N

≥
1

2

(

γ̂0 −
ε

λ1

)

‖Dv‖2
2 − ξε|Ω|N for all v ∈ −C+.

Taking ε ∈ (0, γ̂0λ1), it follows that ϕ|−C+ is coercive, thus we can find c6 > 0 such

that ϕ|−C+ ≥ −c6. We pick

a < min

{

−
c5

2
, −c6, inf

∂Bc
1

ψ

}

.

Then (3.42) implies that we can find unique k(u) > 1 such that










ψ(tu) > a if t ∈ [0, k(u)),

ψ(tu) = a if t = k(u),

ψ(tu) < a if t > k(u) .

Moreover, the implicit function theorem implies that k ∈ C(∂Bc
1,+, [1,∞)).
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By the choice of a, we have

ψa = {tu : u ∈ ∂Bc
1,+ , t ≥ k(u)}. (3.44)

We introduce the set E+ = {tu : u ∈ ∂Bc
1,+ , t ≥ 1}. The map ĥ+ : [0, 1]×E+ → E+

defined by

ĥ+(s, tu) =

{

(1 − s)tu+ sk(u)u if 1 ≤ t < k(u)

tu if t ≥ k(u)
, s ∈ [0, 1], (3.45)

is a continuous deformation of E+, ĥ+(1, E+) ⊂ ψa and ĥ+(s, ·)|ψa = id|ψa for all

s ∈ [0, 1] (see (3.44) and (3.45)). Therefore, ψa is a strong deformation retract of E+.

Moreover, using the radial retraction, we see that E+ and ∂Bc
1,+ are homotopically

equivalent. Hence we have

Hk(C
1
0 (Ω), ψa) = Hk(C

1
0(Ω), E+) = Hk(C

1
0 (Ω), ∂Bc

1,+) for all k ≥ 0. (3.46)

Recall that in the first part of the proof, we established that ∂Bc
1,+ is contractible.

This yields

Hk(C
1
0(Ω), ∂Bc

1,+) = 0 for all integers k ≥ 0

(see [11, p. 389]). Combining with (3.46) leads to (3.32), which completes the proof.

Proposition 3.6. If hypotheses (H) hold and d = dimHm , then

Cd(ϕ, 0) 6= 0.

Proof. By virtue of hypotheses (H) (v), given ε > 0, we can find δ = δ(ε) > 0 such

that
1

2
(η(z) − ε)x2 ≤ F (z, x) for a.a. z ∈ Ω and all |x| ≤ δ. (3.47)

Since Hm =
m

⊕
i=1

E(λi) is finite dimensional, all norms are equivalent. Thus we can

find ρ1 > 0 small such that

‖u‖ ≤ ρ1 ⇐⇒ ‖u‖∞ ≤ δ for all u ∈ Hm . (3.48)

Taking (3.47) and (3.48) into account, for all u ∈ Hm with ‖u‖ ≤ ρ1 we have

ϕ(u) ≤
1

2

∫

Ω

(λm − η(z))u(z)2 dz +
ε

2
‖u‖2

2 . (3.49)

Consider the functional

ζ(u) =

∫

Ω

(η(z) − λm)u(z)2 dz for all u ∈ Hm ∩ ∂BL2

1 ,

where ∂BL2

1 = {u ∈ L2(Ω) : ‖u‖2 = 1}. Evidently, ζ(·) is continuous, while the set

Hm ∩ ∂BL2

1 is compact (recall that Hm is finite dimensional). Therefore we can find

u0 ∈ Hm ∩ ∂BL2

1 such that

m0 := inf
{

ζ(u) : u ∈ Hm ∩ ∂BL2

1

}

= ζ(u0).
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From the unique continuation property and the hypothesis on η (see (H) (v)), we have

m0 = ζ(u0) > 0.

Choose 0 < ε < m0. Then from (3.49) and for u ∈ Hm with ‖u‖ ≤ ρ1, u 6= 0, we

have
1

‖u‖2
2

ϕ(u) ≤
1

2

∫

Ω

(λm − η(z))
u(z)2

‖u‖2
2

dz +
ε

2
≤ −

1

2
m0 +

ε

2
< 0 ,

and thus

ϕ(u) ≤ 0 for all u ∈ Hm with ‖u‖ ≤ ρ1. (3.50)

On the other hand, combining hypotheses (H) (iii) and (v), given ε > 0, we can

find cε > 0 such that

F (z, x) ≤
η̂(z) + ε

2
x2 + cε|x|

r for a.a. z ∈ Ω and all x ∈ R. (3.51)

By (3.51), (2.4) and Lemma 2.2, we have

ϕ(u) ≥
1

2
‖Du‖2

2 −
1

2

∫

Ω

η̂u2 dz −
ε

2λm+1
‖Du‖2

2 − ĉε‖Du‖
r
2

≥
1

2

(

γ̂0 −
ε

λm+1

)

‖Du‖2
2 − ĉε‖Du‖

r
2 for all u ∈ Ĥm , (3.52)

for some ĉε > 0. Choosing ε < γ̂0λm+1 and since r > 2, from (3.52), we infer that for

ρ2 ∈ (0, 1) small we have

ϕ(u) > 0 for all u ∈ Ĥm with 0 < ‖u‖ ≤ ρ2 . (3.53)

Let ρ = min{ρ1, ρ2}. From (3.50) and (3.53), it follows that

ϕ(u)

{

≤ 0 if u ∈ Hm , ‖u‖ ≤ ρ

> 0 if u ∈ Ĥm , 0 < ‖u‖ ≤ ρ ,

i.e., ϕ has a local linking at 0. Then invoking Proposition 2.3 of Bartsch and Li [2],

we conclude that Cd(ϕ, 0) 6= 0.

4. MULTIPLICITY THEOREM

First we produce a nontrivial smooth solution of constant sign (negative).

Proposition 4.1. If hypotheses (H) hold, then problem (1.1) has a solution v0 ∈

−intC+ which is a local minimizer of ϕ.

Proof. We consider the negative truncation of the nonlinearity f(z, ·), namely

f−(z, x) =

{

f(z, x) if x < 0

0 if x ≥ 0 .
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Evidently, this is a Carathéodory function (i.e., for all x ∈ R, z 7→ f−(z, x) is measur-

able, and for a.a. z ∈ Ω, x 7→ f−(z, x) is continuous). We set F−(z, x) =
∫ x

0
f−(z, s) ds

and consider the C1-functional ϕ− : H1
0 (Ω) → R defined by

ϕ−(u) =
1

2
‖Du‖2

2 −

∫

Ω

F−(z, u(z)) dz for all u ∈ H1
0 (Ω).

Hypotheses (H) (iii) together with (3.1) in hypothesis (H) (iv) imply that given ε > 0,

we can find cε > 0 such that

F−(z, x) ≤
1

2
(ϑ(z) + ε)x2 + ξε for a.a. z ∈ Ω and all x ∈ R

(note that F−(z, x) = 0 for a.a. z ∈ Ω and all x ≥ 0). Hence, by Lemma 2.2 and

(2.3), we have

ϕ−(u) ≥
1

2
‖Du‖2

2 −
1

2

∫

Ω

ϑu2 dz −
ε

2
‖u‖2

2 − ξε|Ω|N

≥
1

2

(

γ̂0 −
ε

λ1

)

‖Du‖2
2 − ξε|Ω|N for all u ∈ H1

0(Ω). (4.1)

Choosing ε ∈ (0, γ̂0λ1), from (4.1) we infer that ϕ− is coercive. In addition, exploiting

the compact embedding of H1
0 (Ω) into L2(Ω), we see that ϕ− is sequentially weakly

lower semicontinuous. Thus we can find v0 ∈ H1
0 (Ω) such that

ϕ−(v0) = inf ϕ− =: m−. (4.2)

By hypothesis (H) (v), given ε ∈ (0, λm − λ1), we can find δ = δ(ε) > 0 such that

1

2
(η(z) − ε)x2 ≤ F−(z, x) for a.a. z ∈ Ω, all x ∈ [−δ, 0]. (4.3)

Since u1 ∈ intC+, there exists θ > 0 small such that −θu1(z) ∈ [−δ, 0] for all z ∈ Ω.

Then, taking into account (4.3), (2.3), that ‖u1‖2 = 1, (H) (v), and the choice of

ε > 0, we obtain

ϕ−(−θu1) =
θ2

2
λ1 −

∫

Ω

F−(z,−θu1) dz

≤
θ2

2
λ1 −

θ2

2

∫

Ω

ηu2
1 dz +

εθ2

2
≤
θ2

2
(λ1 − λm + ε) < 0,

and thus, by (4.2), ϕ−(v0) ≤ ϕ−(−θu1) < 0 = ϕ−(0), so v0 6= 0.

From (4.2), we have ϕ′
−(v0) = 0, that is,

−∆v0 = N−(v0), (4.4)

where N−(u)(·) = f−(·, u(·)) for all u ∈ H1
0 (Ω). Acting on (4.4) with v+

0 ∈ H1
0 (Ω), we

obtain ‖Dv+
0 ‖

2
2 = 0, i.e., v+

0 = 0, and so v0 ≤ 0, v0 6= 0. Therefore from (4.4) we have
{

−∆v0(z) = f−(z, v0(z)) = f(z, v0(z)) in Ω,

v0 = 0 on ∂Ω,
(4.5)
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thus v0 solves (1.1), and from regularity theory, v0 ∈ −C+. From (3.1) in hypothesis

(H) (iv) and from hypothesis (H) (v), we have

|f−(z, x)| ≤ c̃|x| for a.a. z ∈ Ω and all x ∈ R, (4.6)

for some c̃ > 0. Then from (4.5) and (4.6), we have

∆(−v0)(z) ≤ c̃(−v0)(z) for a.a. z ∈ Ω.

From this inequality and the maximum principle of Vázquez [21], we have that v0 ∈

−intC+. Noting that ϕ−|−C+ = ϕ|−C+ , it follows that v0 is a local C1
0(Ω)-minimizer

of ϕ. Invoking the result of Brezis and Nirenberg [3], we conclude that v0 is a local

H1
0 (Ω)-minimizer of ϕ.

Since v0 ∈ −intC+ is a local minimizer of ϕ, from the characterization of the

critical groups of a C1-functional at a local minimizer (see [5, p. 33] or [13, p. 175]),

we have:

Corollary 4.2. If hypotheses (H) hold and v0 ∈ −intC+ is the solution obtained in

Proposition 4.1, then

Ck(ϕ, v0) = δk,0Z for all integers k ≥ 0.

Now we are ready for the multiplicity result concerning problem (1.1).

Theorem 4.3. If hypotheses (H) hold, then problem (1.1) has at least two nontrivial

smooth solutions

v0 ∈ −intC+ and x0 ∈ C1
0 (Ω).

Proof. From Proposition 4.1 we have one solution v0 ∈ −intC+ of (1.1) and

Ck(ϕ, v0) = δk,0Z for all integers k ≥ 0 (4.7)

(see Corollary 4.2). Let θ ∈ R, ε > 0 be such that θ < m− = ϕ(v0) < −ε (see (4.2)).

We consider the sublevel sets

ϕθ ⊂ ϕ−ε ⊂ ϕε ⊂ H1
0 (Ω).

Suppose that 0 and v0 are the only critical points of ϕ. Otherwise, we have a second

nontrivial smooth (by regularity theory) solution and so we are done. From the

definition of critical groups at infinity and Proposition 3.5, we have

Hk(H
1
0 (Ω), ϕθ) = Ck(ϕ,∞) = 0 for all integers k ≥ 0. (4.8)

We know that ϕ satisfies the (C)-condition (see Proposition 3.4). Hence choosing

ε > 0 small, we have

Hd(ϕ
ε, ϕ−ε) = Cd(ϕ, 0) 6= 0 (4.9)
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(see Proposition 3.6 and [2, Remark 2.2]). Because of (4.8) and (4.9), applying Propo-

sition 2.1, we obtain

Hd+1(H
1
0 (Ω), ϕε) 6= 0 or Hd−1(ϕ

−ε, ϕθ) 6= 0.

If Hd+1(H
1
0 (Ω), ϕε) 6= 0, then there is a critical point x0 ∈ H1

0 (Ω) of ϕ such that

ϕ(v0) = m− < 0 = ϕ(0) < ε ≤ ϕ(x0),

so x0 6= 0, v0, it solves (1.1), and, by regularity theory, x0 ∈ C1
0 (Ω).

If Hd−1(ϕ
−ε, ϕθ) 6= 0, then there is a critical point x0 ∈ H1

0 (Ω) of ϕ such that

Cd−1(ϕ, x0) 6= 0. (4.10)

Since d ≥ 2, from (4.7) and (4.10), we see that x0 6= v0. In addition, we have

θ ≤ ϕ(x0) ≤ −ε < 0 = ϕ(0), and thus x0 6= 0. Therefore x0 is a solution of (1.1)

distinct from 0, v0, and, by regularity theory, x0 ∈ C1
0 (Ω).
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[12] C. A. Magalhães, Multiplicity results for a semilinear elliptic problem with crossing of multiple

eigenvalues, Differential Integral Equations 4 (1991), 129–136.

[13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag,

New York, 1989.



MULTIPLE SOLUTIONS FOR DIRICHLET PROBLEMS 357

[14] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple

solutions of constant sign for nonlinear elliptic equations, Manuscripta Math. 124 (2007), 507–

531.

[15] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions

for asymptotically linear, noncoercive elliptic equations, Monatsh. Math., in press.

[16] F. O. de Paiva, Multiple solutions for a class of quasilinear problems, Discrete Contin. Dyn.

Syst. 15 (2006), 669–680.

[17] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

[18] K. Perera, Existence and multiplicity results for a Sturm-Liouville equation asymptotically

linear at −∞ and superlinear at +∞, Nonlinear Anal. 39 (2000), 669–684.

[19] K. Perera, Critical groups of critical points produced by local linking with applications, Abstr.

Appl. Anal. 3 (1998), 437–446.
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