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1. INTRODUCTION

In this paper we shall investigate the existence of weak solutions of the Dirichlet

p-Laplacian problem: {
−∆pu = V (x)f(u) in Ω

u = 0 on ∂Ω ,

where Ω is a bounded smooth open set of R
d and p > 1. We will exhibit a sufficient

condition on the norm of the positive function V which belong to a certain space

depending on the position of p and d. The map f considered here is supposed

continuous, positive and non decreasing. The case p = 2 was treated in [12]. Along

this investigation we will use some regularity results (see [10] or [19]) and estimations

(see [14]) for the potential to replace the lack of linearity. The proof in the case p = 2

can be seen as a direct approach using estimations for the Green function. We will

show also a kind of sharpness of our estimations for certain class of functions V .

There are two different cases to distinguish for the study of this problem:

• The case where f(0) > 0, the trivial solution is eliminated. We will show the

existence of a positive solution using the topological degree theory applied to the

operator TV : C0

(
Ω
)
−→ C0

(
Ω
)
. This operator is defined by TV (v) = u if and only

if u satisfies {
−∆pu = V (x)f(v) in Ω

u = 0 on ∂Ω .

• The second case where f(0) = 0, we shall find a way to eliminate the trivial solution.

Therefore we will use a classical minimization technic and we will show that the energy

of the solution is negative, so the problem have a non trivial solution.
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2. MAIN RESULTS

Let us consider the Dirichlet problem
{

−∆pu = V (x)f(u) in Ω

u = 0 on ∂Ω
(P)

where Ω is a bounded smooth open set of R
d and V is a positive function which

belong to a certain space depending on the value of 1 < p <∞. The non linearity f

is a nondecreasing continuous positive function.

We will denote

E =





Lq(Ω), q > d
p
, if p < d

L1(Log(L)β)(Ω), β > d− 1, if p = d

Lq(Ω), q ≥ 1 if p > d

and ‖ ‖E the corresponding norm.

The main result of this paper can be stated as follows.

Theorem 2.1. Let 1 < p < ∞, if V ∈ E, then there exists a constant c = c(d, p,Ω)

such that, if f(0) > 0 and V satisfies

‖V ‖E < c sup
α>0

αp−1

f(α)
(2.1)

then (P) have at least one positive bounded solution u. Furthermore, this solution is

stable i.e. d(I − TV ,M, 0) = 1 where M is a set to be pointed out later in the proof.

Theorem 2.2. Under the same assumptions of Theorem 2.1, if we suppose further-

more that
(
λ−γV (x

λ
)
)
λ>0

converges weakly in measure to a positive Radon measure µ

when λ −→ ∞ for a constant γ > p and that 0 is an isolated zero of f , then (P)

have at least one positive solution.

As an example for such function V one can think about a −γ-homogeneous

function, or a combination of an approximation of the identity and an homogeneous

function such that
(
λ−γV (x

λ
)
)
λ>0

converges to a Dirac.

Now if Ω′ is an open set contained in Ω, we denote λ1(Ω
′, ψ) the first eigenvalue

of the p-Laplace operator in the set Ω′ with weight function ψ, i.e

λ1(Ω
′, ψ) = inf

{∫

Ω′

|∇u|p ;

∫

Ω′

|u|p ψ = 1, u ∈ H1
0 (Ω′)

}
.

So we can state the following theorem.

Theorem 2.3. Assume that Ṽ = V
‖V ‖E

∈ Hψ(Ω
′) = {v ∈ E; v > ψ on Ω′}, where

ψ ∈ E is a positive function, then there exist λ∗ ∈ [0,+∞] such that:

i) if ‖V ‖E < λ∗, problem (P) have at least one positive solution.

ii) if ‖V ‖E > λ∗, problem (P) have no positive solution.
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Moreover, we have the following estimation :

c(p, d,Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤ λ1(Ω

′, ψ) sup
α>0

αp−1

f(α)
.

Corollary 2.4. Assume that Ṽ = V
‖V ‖E

∈ Hδ(Ω) = {v ∈ E; v > δ}, then there exist

λ∗ ∈ [0,+∞] such that :

i) if ‖V ‖E < λ∗, problem (P) have at least one positive solution.

ii) if ‖V ‖E > λ∗, problem (P) have no positive solution.

Moreover, we have the following estimation :

c(p, d,Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤

λ1

δ
sup
α>0

αp−1

f(α)
.

3. PRELIMINARY RESULTS

Lemma 3.1. Let u1, u2 ∈W 1,p
0 (Ω), there exist a constant cp such that

〈−∆pu1 − (−∆pu2), u1 − u2〉 ≥





cp |∇u1-∇u2|
p , if p ≥ 2

cp
|∇u1-∇u2|

2

(|∇u1| + |∇u2|)
2−p , if 1 < p < 2

Consider the problem
{

−∆pu = f(x, u) in Ω

u = 0 on ∂Ω ,
(3.1)

where f : Ω × R → R is a Carathéodory function.

Definition 3.2. We say that U is a super-solution of (3.1) if U ∈ W 1,p
0 (Ω) ∩ L∞(Ω)

and {
−∆pU ≥ f(x, U) in Ω

U ≥ 0 on ∂Ω .

Respectively, we say that U is a sub-solution of (3.1) if U ∈W 1,p
0 (Ω) ∩ L∞(Ω) and

{
−∆pU ≤ f(x, U) in Ω

U ≤ 0 on ∂Ω .

Theorem 3.3 ([7]). Let us assume the following conditions :

i) The problem (3.1) have a sub-solution U and a super-solution U such that

U ≤ U .

ii) There exist K ∈ Lq (Ω), q > (p∗)′, such that

|f(x, s)| ≤ K(x), a.e, x ∈ Ω, ∀s : U(x) ≤ s ≤ U(x).

Then (3.1) have at least one solution between U and U .

Let us define the Orlicz-Zygmund space LsLogβL, 1 ≤ s, β ∈ R.
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Definition 3.4. Let f be a measurable function in Ω, we say that

f ∈ LsLogβL (Ω) if
∫
Ω
|f |s logβ (e+ |f |) < +∞.

This space is equipped with the Luxemburg norm defined by

‖f‖LsLogβL = inf

{
λ > 0;

∫

Ω

|f |s

|λ|s
logβ

(
e+

|f |

|s|

)
≤ 1

}

Remark that for β ≥ 0, LsLogβL (Ω) ⊂ Ls (Ω) and if we note

[f ]α,s =

∫

Ω

|f |s logβ
(
e+

|f |

‖f‖Ls

)
,

then

‖f‖LsLogβL ≤ [f ]α,s ≤ 2 ‖f‖LsLogβL .

4. PROOF OF THEOREMS

4.1. Proof of Theorem 2.1. Step 1: Boundedness results.

We start with the case p < d.

Lemma 4.1 ([1]). Let u ∈ W 1
0 (Ω) and f ∈W−1,r(Ω) where r > d

p−1
and p < d, such

that {
−∆pu = f in Ω

u = 0 on ∂Ω
(4.1a)

then u ∈ L∞(Ω), furthermore if we take F such that f = divF then

‖u‖L∞(Ω) ≤ c(p, d,Ω) ‖F‖
1

p−1

Lr .

Before proving this lemma we will use the following result, introduced by Stam-

pacchia for the study of the regularity of elliptic equation in [17].

Lemma 4.2 ([12]). Let ϕ : [k0,+∞[ −→ R+ be non decreasing function, such that if

k0 ≤ k < h then ϕ(h) ≤ c
(h−k)αϕ(k)β, where c, α and β are given positive constants.

If β > 1, then ϕ(k0 + l) = 0 where

lα = c [ϕ(k0)]
β−1 2

αβ

β−α .

Proof. To proof these theorem we will use the classical Stampacchia approach.

Since f ∈W−1,r(Ω), there exist F ∈ Lr(Ω) such that f = divF and then we have
∫

Ω

|∇u|p−2 ∇u∇v =

∫

Ω

F · ∇v, ∀v ∈W 1,p
0 (Ω). (4.2)

So if we take for k > 0 the following test function

v = sign(u− k)(|u| − k)+ =





u− k if u > k

0 if −k ≤ u ≤ k

u+ k if −k > u.
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(4.2) become ∫

A(k)

|∇v|p =

∫

Ω

F · ∇v,

where A(k) = {|u| > k}. Using Hôlder inequality, we have

∫

Ω

F · ∇v ≤ mes (A(k))1− 1
p
− 1

r



∫

A(k)

|F |q




1
r


∫

A(k)

|∇v|p




1
r

.

So that 

∫

A(k)

|∇v|p




1− 1
p

≤ mes (A(k))1− 1
p
− 1

r



∫

A(k)

|F |r




1
r

.

Using Sobolev embeddings, there exist C > 0 such that

C



∫

A(k)

|∇v|p
∗




p

p∗

≤ mes (A(k))1− 1
p
− 1

r



∫

A(k)

|F |r




1
r

note that if 0 < k < h then A(h) ⊂ A(k) and that implies

mes (A(h))
1

p∗ (h− k) =



∫

A(h)

(h− k)p
∗




1
p∗

≤



∫

A(h)

|v|p
∗




1
p∗

≤



∫

A(k)

|v|p
∗




1
p∗

finally we have

mes (A(h)) ≤
‖F‖

p∗

p−1

Lr

C
p∗

p (h− k)p∗
mes (A(k))p

∗( 1
p
− 1

(p−1)r
)

and using the fact that r > d
p−1

, we have p∗(1
p
− 1

(p−1)r
) > 1 so we apply the Stam-

pacchia’s lemma to ϕ(h) = mes (A(h)) to obtain

‖u‖∞ ≤ c
‖F‖

1
p−1

Lr

C
1
p

mes (Ω)( 1
p
− 1

(p−1)r
)− 1

p∗ .

The case d = p is more different than the previous.

The Orlicz-Zygmund spaces are defined using the function Pβ : R
+ −→ R such

that Pβ(t) = t log(e+ sβ).

Lemma 4.3. If c > 1 then for s small enough,

sP−1
β

(
1

s

)
≤

c
(
log(e+ 1

s
)
)β .
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Proof. It is easy to show that

lim
x−→+∞

1

x
Pβ(

cx

(log(e+ x))β
) = c > 1,

and so the lemma is proved.

Now we can state a result similar to Lemma 4.1

Lemma 4.4 ([4]). Let u ∈W 1,d
0 (Ω) satisfying −∆du = f , assume that f ∈ L1 (logL)β (Ω),

where β > d− 1 then u ∈ L∞(Ω). More precisely

‖u‖L∞ ≤ C(Ω, d)
(
‖f‖L1(logL)β(Ω)

) 1
d−1

.

Proof. We know that ∫

Ω

|∇u|d−2 ∇u∇v =

∫

Ω

fv

for every test function v ∈W 1,d(Ω). We define for k > 0,

Tk(s) =

{
s if |s| < k

k s
|s|

if |s| ≥ k

and for ε > 0 we take vε = 1
ε
(Tk+ε(u) − Tk(u)). Since Ω is bounded, vε ∈ W 1,1

0 (Ω)

and by the Sobolev imbedding we obtain

Cd ‖vε‖
L

d
d−1

≤ ‖∇vε‖L1 =
1

ε

∫

{k<|u|<k+ε}

|∇u| .

We define Fε(t) = min(t+, 1), so

Cd ‖Fε (|u| − k)‖
L

d
d−1

≤
1

ε

∫

{k<|u|<k+ε}

|∇u| .

In the other side, we have for s > 1,

ϕ(k + ε) =

∫

{|u>k+ε|}

≤

∫

Ω

|Fε (|u| − k)|s

where ϕ (k) = mes {|u| > k}. And for s = d
d−1

we have

ϕ(k + ε) ≤

(
1

ε

∫

{k<|u|<k+ε}

|∇u|

) d
d−1

.

By Hölder’s inequality we have

ϕ(k + ε) ≤

(
1

ε

∫

{k<|u|<k+ε}

|∇u|d
) 1

d−1
(

mes ({k < |u| < k + ε})

ε

)

≤

(
1

ε

∫

{k<|u|<k+ε}

|∇u|d
) 1

d−1
(
ϕ(k) − ϕ(k + ε)

ε

)
.
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Finally we note

Φk,ε(s) =





0, if 0 ≤ s ≤ k

s− k, if k ≤ s ≤ k + ε

ε, if s ≥ k + ε ,

so we have
∫

{k<|u|<k+ε}

|∇u|n = 〈−∆nu,Φk,ε(u)〉 ≤

∫

Ω

fΦk,ε(u) ≤ ε

∫

{|u>k|}

|f | .

But we know that in the dual space we have

‖χE‖(L1(logL)β(Ω))
∗ ≤ mes (E)P−1

β (
1

mes (E)
),

then if we use Lemma 4.2 we obtain
∫

{|u>k|}

|f | ≤ ‖f‖L1(logL)β(Ω)

c
(
log
(
1 + 1

ϕ(k)

))β .

Thus

ϕ(k + ε) ≤ C ‖f‖
1

d−1

L1(logL)β(Ω)

1
(
log
(
1 + 1

ϕ(k)

)) β

d−1

(
ϕ(k) − ϕ(k + ε)

ε

)
,

then

ϕ(k) ≤ −C ‖f‖
1

d−1

L1(logL)β(Ω)

1
(
log
(
1 + 1

ϕ(k)

)) β

d−1

ϕ′(k),

so

1 ≤ −C ‖f‖
1

d−1

L1(logL)β(Ω)

1
(
log
(
1 + 1

ϕ(k)

)) β

d−1

ϕ′(k)

ϕ(k)
.

After integration we obtain

1

γ


 1(

log( 1
mes Ω

)
)γ −

1(
log( 1

ϕ(t)
)
)γ


 ≥ t

[
C ‖f‖

1
d−1

L1(logL)β(Ω)

]−1

,

where γ = β

d−1
− 1. Then

1(
log( 1

mes Ω
)
)γ − γt

[
C ‖f‖

1
d−1

L1(logL)β(Ω)

]−1

≥
1(

log( 1
ϕ(t)

)
)γ

and consequently we have the existence of t0 such that ϕ(t0) = 0 and moreover

‖u‖L∞ ≤ C(Ω, d)
(
‖f‖L1(logL)β(Ω)

) 1
n−1

.

The case p > d is a trivial case. It is a direct consequence from the Sobolev

embedding.
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Lemma 4.5. Let u ∈W 1,p
0 (Ω) and f ∈ L1 (Ω) such that

{
−∆pu = f in Ω

u = 0 on ∂Ω .
(4.3a)

Then u ∈ L∞(Ω), furthermore there exists c = c(d,Ω, p) such that

‖u‖L∞ ≤ c ‖f‖
1

p−1

L1 .

Remark 4.6. i) The spaces used in this proof are in some way optimal if d > 2, in

fact we can show that the problem
{

−∆pu = f in Ω

u = 0 on ∂Ω
(4.4)

have a non bounded solution if f ∈ L1 (logL)d−1 (Ω). We consider the function

f(r) = r−d |log(r)|−d |log |log r||−α .

We have, if α > 1, f ∈ L1 (logL)d−1 (Ω) where Ω is a small ball, and f /∈ L1 (logL)β (Ω)

for all β > d − 1. And we can show that the corresponding solution of (4.4) is not

bounded if α ≤ d− 1.

ii) In the case p = d = 2, we can use the Hardy spaces and we can show the

optimality of these spaces (see [12]).

The coming two steps are common for all cases of p.

Step 2: The super-solution.

Let α > 0 and U the solution of
{

−∆pu = V (x)f(α) in Ω

u = 0 on ∂Ω .

Since V ∈ E, we have, using Lemma 4.1, 4.4 or 4.5,

∥∥U
∥∥
L∞(Ω)

≤ c(p, d,Ω) ‖V ‖
1

p−1

E f(α)
1

p−1 .

So if

‖V ‖Lq < c sup
α>0

αp−1

f(α)
,

then there exist α > 0 such that
∥∥U
∥∥
L∞(Ω)

≤ α, and consequently, U is a super-

solution of (P).

Step 3: Existence and stability.

Let us define

f̃(s) =





f(U) if s ≥ U

f(s) if 0 ≤ s ≤ U

f(0) if 0 ≥ s .
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We note T̃V : C0(Ω) −→ C0(Ω) the operator defined by T̃V (v) = u if and only if
{

−∆pu = V (x)f̃(v) in Ω

u = 0 on ∂Ω .

We know that T̃V is a compact operator and if v ∈ C0(Ω) then

T̃V (v) ∈ B

(
0, c(p, n,Ω) ‖V ‖

1
p−1

E f̃(
∥∥U
∥∥
∞

)
1

p−1

)
.

So T̃V is uniformly bounded. This imply the existence of an R0 > 0 such that

∀R > R0, d(I − T̃V , B(0, R), 0) = 1,

where d denote the topological degree in C0(Ω). In fact, let us consider the homotopy

H(·, t) = I − tT̃V , ∀t ∈ [0, 1] .

This homotopy is admissible for R sufficiently large. Because if there exists u ∈ C0(Ω)

such that ‖u‖∞ = R and u = tT̃V (u), then R = ‖u‖∞ = t
∥∥∥T̃V (u)

∥∥∥ ≤ R0 which is

impossible. So it follow that

d(H(·, 1), B(0, R), 0) = d(H(·, 0), B(0, R), 0) = d(I, B(0, R), 0) = 1.

Consider now, the operator TV defined by TV (v) = u iff
{

−∆pu = V (x)f(v) in Ω

u = 0 on ∂Ω .

We have the fact that TV = T̃V in MR = B(0, R) ∩
{
v ∈ C0(Ω); 0 < v < U

}
. It is

easy to show that 0 /∈ (I − TV ) (∂MR). We conclude that

∀R > R0, d(I − TV , B(0, R) ∩MR, 0) = d(I − T̃V , B(0, R), 0) = 1.

Remark 4.7. We can also obtain the existence of a minimal solution using the

monotone iteration method of Theorem 3.3, but we lose the relative result of stability

obtained by the degree theory (for further results concerning the degree theory we

can see for example [11]).

4.2. Proof of Theorem 2. Here we have f(0) = 0, so we must find a solution

different from the trivial one.

We consider then the function fK defined by

fK(s) =

{
f(s) if 0 ≤ s ≤ K

f (K) if s ≥ K.

We expand V by zero outside Ω. In this case, fK is a continuous bounded function.

Since there exists an 0 < s0 < K such that f(s0) > 0, we have F (s0) > 0 where

F (s) =
∫ s
0
fK(t)dt. So we consider the energy functional E defined on W 1,p

0 (Ω) by

E(u) =
1

p

∫

Ω

|∇u|p −

∫

Ω

V F (u).
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Without loss of generality, we can suppose that 0 ∈ Ω. Let ϕ ∈ D (Ω) such that:

ϕ ≥ 0, ϕ = s0 in B(0, R
2
) and 0 outside B(0, R). We define also the scaled function

ϕλ(x) = ϕ(λx). After all these definitions we can start the proof.

It is easy to check that E is bounded from below on W 1,p
0 (Ω) and E(0) = 0.

E(ϕλ) =
1

p

∫

Ω

|∇ϕλ|
p −

∫

Ω

F (ϕ(λx))V (x)dx

=
λp−d

p

∫

Ω

|∇ϕ|p −

∫

B(0,R
λ

)

F (ϕ(λx))V (x)dx

=
λp−d

p

∫

Ω

|∇ϕ|p − λ−d
∫

B(0,R)

F (ϕ(x))V (
x

λ
)dx

= λ−d
(
λp

p

∫

Ω

|∇ϕ|p − λγ
∫

B(0,R)

F (ϕ(x))λ−γV (
x

λ
)dx

)
.

Since
(
λ−γV (x

λ
)
)
λ

converge weakly in measure to µ > 0. We have

E(ϕλ) ∼
∞

−λγ−d
∫

B(0,R)

F (ϕ(x))dµ(x).

We deduce that inf
u∈W 1,p

0 (Ω)
E(u) < 0. It follows by usual minimization technics that

E have a critical point u1 with negative energy, which correspond to a non trivial

solution of {
−∆pu = V (x)fK(u) in Ω

u = 0 on ∂Ω .

Using the same a priori estimates as in the previous proof, we have

‖u‖L∞ ≤ c(Ω, d, p)f(K)
1

1−p ‖V ‖
1

1−p

E .

Since V satisfies (2.1), there exists K such that

‖u‖L∞ ≤ c(Ω, d, p)f(K)
1

1−p ‖V ‖
1

1−p

E ≤ K.

It follows that u is a solution of (P).

5. NONEXISTENCE RESULTS

In this section we will proof Theorem 2.3 and Corollary 2.4. So we suppose that

Ω is a bounded domain of R
d.

Let us remind an interesting result concerning the first eigenvalue of the p-Laplace

operator defined by:

λ1 (Ω) = inf

{∫

Ω

|∇u|p ; u ∈ W 1,p
0 (Ω) ,

∫

Ω

|u|p = 1

}
.
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We can define also the first eigenvalue with weight V ≥ 0 and V ∈ Lq (Ω), where

q > d
p

if p ≤ d and q = 1 if p > d, by

λ1 (Ω, V ) = inf

{∫

Ω

|∇u|p ; u ∈W 1,p
0 (Ω) ,

∫

Ω

V |u|p = 1

}
.

We know, (see [8] or [4]), that this minimum is achieved in a function ϕ1 that satisfies

the Euler equation: {
−∆pϕ1 = λ1V |ϕ1|

p−2 ϕ1 in Ω

ϕ1 = 0 in ∂Ω

and have the following result:

Theorem 5.1 ([6]). Let V : Ω −→ R be a given function such that V + 6= 0. Assume

that V ∈ Lq (Ω), where q > d
p

if p ≤ d and q = 1 if p > d, then λ1 (Ω, V ) is simple,

isolated, and the corresponding eigenfunction is positive and belong to C1,α (Ω) for

some α ∈ ]0, 1[.

Remark 5.2. The signification of “λ1 (Ω, V ) is simple” is that any other eigenfunction

ψ with fixed sign is of the form ψ = βϕ1.

We consider for 0 ≤ h ∈ Lq (Ω), where q > d
p

if p ≤ d and q = 1 if p > n, the set

Hh(Ω) = {V ∈ E; V > h} .

Using this result we will show that for ‖V ‖E sufficiently large, the problem (P)

have no solution if Ṽ = V
‖V ‖E

∈ Hψ(Ω). In fact suppose that (P) has a positive

solution u for every V . Let Ṽ = V
‖V ‖E

and ϕ1 the first eigenfunction associated to
{

−∆pϕ1 = λ1h |ϕ1|
p−2 ϕ1 in Ω

ϕ1 = 0 on ∂Ω .

Since ϕ1 > 0 and ∂ϕ1

∂ν
< 0, there exist t > 0 such that Ψ = tϕ1 < u in Ω. Assume

that

λ = ‖V ‖E > λ1 (Ω, h) sup
α>0

αp−1

f(α)
,

then for ε > 0 sufficiently small and λε = λ1 + ε we have

−∆pΨ = λ1h |Ψ|p−2 Ψ ≤ λεh |Ψ|p−2 Ψ ≤ λεṼ |u|p−2 u ≤ λṼ f(u) = −∆pu.

So the problem {
−∆pv = λε |v|

p−2 v on Ω

v = 0 in ∂Ω
(5.1)

have a sub and super-solution. Using Theorem 3.3 the problem (5.1) have a positive

solution and this is a contradiction because λ1 is isolated. Then we have the existence

of a constant λ∗ = λ∗(p, d,Ω) > 0 such that: If ‖V ‖E < λ∗, the problem (P) have at
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least one positive solution; If ‖V ‖E > λ∗, the problem (P) have no positive solution.

Moreover

c(p, d,Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤ λ1 (Ω, h) sup

α>0

αp−1

f(α)
,

and that shows the sharpness of our estimation.

We can also define for a subdomain Ω̃ ⊂ Ω the set Hh(Ω̃) =
{
V ∈ E; V > h in Ω̃

}
.

Then we have

c(p, d,Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤ λ1(Ω̃, h) sup

α>0

αp−1

f(α)
.

The proof is the same, since we will consider the restriction of our problem to Ω̃.

Remark 5.3. We can see also that if we assume that Ṽ = V
‖V ‖E

∈ Hδ(Ω
′) =

{v ∈ E; v > δ on Ω′}, then we get the existence of λ∗ ∈ [0,+∞] such that:

i) if ‖V ‖E < λ∗, problem (P) have at least one positive solution.

ii) if ‖V ‖E > λ∗, problem (P) have no positive solution.

Moreover, we have the following estimation:

c(p, d,Ω) sup
α>0

αp−1

f(α)
≤ λ∗ ≤

λ1(Ω
′)

δ
sup
α>0

αp−1

f(α)
.

6. OTHER EXISTENCE RESULTS

Now we are going to weaken the hypothesis of monotonicity of f .

Proposition 6.1. Assume that f is an absolutely continuous function, then f = f+f ,

where f is a continuous nondecreasing function and f is a nonincreasing function.

Let us define the set

D+
f (I) =

{
g : I −→ R; g is nondecreasing, g(0) = f(0) and

there exists a nonincreasing function h : I −→ R such that f = g + h

}
.

Theorem 6.2. Assume that f : R −→ R
+ is an absolutely continuous function such

that f(0) > 0. If V ∈ E and

‖V ‖E < c(p, d,Ω) sup
g∈D+

f
(R+)

sup
α>0

αp−1

g(α)
,

then (P) have at least one positive solution.

Proof. We know that 0 is a subsolution of (P), so our propose is to find a supersolu-

tion. But since f is absolutely continuous, f ≤ g for every g ∈ D+
f (R+), and using

Theorem 2.1 the problem
{

−∆pu = V (x)g(u) in Ω

u = 0 on ∂Ω

have at least one positive solution. So this solution is a supersolution of (P) and that

achieve the proof using Theorem 3.3.
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Theorem 6.3. Assume that f : R −→ R
+ is a continuous function such that f(0) >

0. If V ∈ E and

‖V ‖E < c(p, d,Ω) sup
α>0

inf
γ∈[0,α]

αp−1

f(γ)
,

then (P) have at least one positive solution.

Proof. Let TV : C0(Ω) −→ C0(Ω) the operator defined by TV (v) = u, if
{

−∆pu = V (x)f(v) in Ω

u = 0 on ∂Ω .

If v ∈ B (0, α), for some α > 0, using the previous a priori estimates, we get

‖TV (v)‖∞ ≤ C(p, d,Ω) ‖V f(v)‖
1

p−1

E ≤ C(p, d,Ω)

(
‖V ‖E sup

γ∈[0,α]

f(γ)

) 1
p−1

.

So if ‖V ‖E < c(p, d,Ω) infγ∈[0,α]
αp−1

f(γ)
, then TV applies the ball B (0, α) to it self. Now

using the fact that if v ∈ C0(Ω) then TV (v) ∈ C1,ν(Ω) (Di Benedetto, Tolksdorf). We

obtain the compacity of the operator TV . So by the Schauder fixed point theorem,

TV have a fixed point u, which correspond to a solution of (P).

Remark 6.4. The previous result is a generalization of Theorem 2.1. But remark

that we loose the result of stability obtained by the degree theory.

7. AN EXTENSION TO THE WHOLE SPACE

Let us define the set

H =
{
ψ : R

+ −→ R; ψ is measurable,

(N(ψ))
1

p−1 =

∫ +∞

0

1

sd−1

(∫ s

0

td−1 |ψ(t)| dt

) 1
p−1

ds <∞},

and consider the problem 



−∆pu = ψ in R

d

lim
|x|−→+∞

u(x) = 0.
(7.1a)

Proposition 7.1. If f is a positive radial function such that ψ(x) = ψ̃(|x|) where

ψ̃ ∈ H, then problem (7.1a) has a positive bounded solution uψ given by

uψ(x) =

∫ +∞

|x|

1

sd−1

(∫ s

0

td−1ψ̃(t)dt

) 1
p−1

ds.

In particular ‖u‖∞ ≤
(
N(ψ̃)

) 1
p−1

.

Proof. Simple calculation.
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If V is a measurable function, we define

LV =
{
ψ ∈ H; |V (x)| ≤ ψ (|x|) , a.e in R

d
}
,

and

h(V ) = inf
ψ∈LV

N(ψ).

Theorem 7.2. Let us consider a positive measurable function V ∈ L1
(
R
d
)

such that

h(V ) <∞. If

h (V ) < sup
α>0

αp−1

f(α)
,

the problem 



−∆pu = V (x)f(u) in R
d

lim
|x|−→+∞

u(x) = 0
(7.2)

where f : R+ −→ R
∗
+ is a continuous nondecreasing function, have at least one

positive solution.

Proof. Consider the problem




−∆pu = V (x) in R
d

lim
|x|−→+∞

u(x) = 0
(7.3)

Like the proof of Theorem 2.1 we need 3 steps:

Step 1: Boundedness.

Let us consider the approximation problem
{

−∆puk = Vk(x) in B(0, k)

uk(x) = 0 if |x| = k,

where Vk(x) = min(V (x), k)χB(0,k). It is clear that such solution uk exists. Further-

more, using the weak comparison theorem and Proposition 7.1, the sequence (uk) is

uniformly bounded in L∞
(
R
d
)

by h (V ). It follows that
∫

Rd

|∇uk|
p ≤ ‖V ‖L1 h(V ),

and we deduce the boundedness of (uk) in W 1,p
(
R
d
)
. So there exist a subsequence

which will be denoted (uk) and u ∈W 1,p
(
R
d
)

such that




uk −→ u a.e on R
d

uk −→ u in Lqloc
(
R
d
)
, p ≤ q < p∗

uk ⇀ u in W 1,p
(
R
d
)

〈−∆puk, uk − u〉 =

∫

Rd

|∇uk|
p−2 ∇uk (∇uk −∇u) =

∫

Rd

Vk (uk − u) ≤

∫

Rd

V (uk − u) .
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Since uk ⇀ u in L∞ (Ω) weak-∗, we have the convergence of uk −→ u in W 1,p
(
R
d
)
.

Thus we obtain the desired solution of (7.3) such that ‖u‖L∞ ≤ h(V ).

Step 2: Super-solution.

Since h (V ) < sup
α>0

αp−1

f(α)
, we have the existence of

ψ ∈ H such that V (x) ≤ ψ(|x|) and N(ψ) < sup
α>0

αp−1

f(α)
.

So, u =
∫ +∞

|x|
1

sd−1

(∫ s
0
td−1ψ(t)dt

) 1
p−1 ds, is a super-solution of (7.2).

Step 3: Monotone iteration.

Now we consider the sequence (uk)k defined by u0 = u and




−∆puk+1 = V (x)f(uk)

lim
|x|−→+∞

uk+1 = 0.

By the maximum principle, we have the fact that the sequence (uk)k non increasing

and 0 < uk ≤ u. Using the same arguments of the first step, we obtain the convergence

of uk in W 1,p
(
R
d
)
.
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