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ABSTRACT. We establish the existence of two nontrivial solutions for the semilinear elliptic

problem

—Au=g(z,u) in
u=20 on 09,

where  C RY is a smooth bounded domain, g € C*(2 x R\ {0},R) is such that g(x,0) = 0 and

asymptotically linear. Our proofs are based on minimax methods and critical groups.
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1. INTRODUCTION

Let Q be a smooth bounded domain in RY. We study the existence of two
nontrivial solutions of the elliptic problem

—Au=g(z,u) in Q

u=>0 on 0f),

where g € C1(Q2 x R\ {0}, R) is such that g(x,0) = 0. Furthermore, it is required
that there exist

(1.1)

g(z,1)

oy = tlirin , a4+ € R, uniformly in €; (1.2)
and .
By = liréli g(:z, ), G+ € R, uniformly in €. (1.3)
t—

Without loss of generality, we can assume that a_ < a,. It is well known that
existence and multiplicity of solutions for problem (1.1) rely strongly on the position

of the pairs (a_, ;) and (04, B+), with respect to eigenvalues of (—A, Hj(Q)).

Similar multiplicity results for problem (1.1) were investigated by many authors.
See for instance Ahmad [1], Ambrosetti and Mancine [2], Bartsch et al. [3], Castro and
Lazer [5], Hirano [9, 10], Li et al. [12], Li and Su [14], Li and Willem [15], Mizoguchi

[17], de Paiva [18, 19], Zou [21] and references therein. There are several techniques

Received January 15, 2009 1083-2564 $15.00 ©Dynamic Publishers, Inc.



376 F. O. DE PAIVA

used to study this problem. For example, Morse theory (critical groups and Morse
inequalities) was used in [3, 12, 14, 15, 18, 19, 21]. In [1, 2, 9], the authors used degree
theory based on Leray-Schauder degree. The Lyapunov-Schmmidt method combined
with critical point theory was applied in [5, 15]. In [17], the author used minimax
theorems combined with Conley index theory. Our approach is based on minimax

theorems and critical groups (Morse theory).
The paper is organized as follows: in Section 2 we collect some preliminaries

needed to prove the theorems. Section 3 is devoted to present and prove the main

results.

2. PRELIMINARIES

For the convenience of the reader, we recall some notation and results of Morse
Theory. Let H be a Hilbert space and f : H — R be a functional of class C'. We
assume that f satisfies the Palais-Smale condition (we write it (PS) for short). We
will also assume that the set of critical points of f, denoted by K, is finite. Let y € H
be a critical point of f with ¢ = f(y). The group

Cofy) = Hp(f5 1\ A{w}), p=0,1,2,.,

is called the p'" critical group of f at y, where f¢={z € H : f(x) <c} and H,(-,") is
the singular relative homology group with integer coefficients. The p!”* critical groups

of f at infinity is defined as
Cp(.fa OO) = Hp(Hv fa)a

where o < inf f(K). The next result is extremely useful in Morse theory (see for

instance [4]).

Proposition 2.1. If a < b are regular values of f and H(f°, f*) # 0, for some
k € N, then f has a critical point y with Cy(f,y) # 0. Moreover, if there is a critical
point y with f(y) € (a,b) and Cy(f,y) # Hp(f° f%), then there are other critical
points than y.

Now, we present an application of the previous proposition (see the proof of
Theorem 3.8 in [3]).

Proposition 2.2. Assume that 0 is a critical point of f with f(0) =0 and Cy(f,0) #
0. If H(H, f*) = 0, then there is a critical point y such that either Cy_1(f,y) # 0

or Cr1(f,y) # 0.
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Proof. By Ci(f,0) # 0, for € > 0 small enough we have Hy(f¢, f~¢) # 0. Consider

the following diagram

Hk+1(H7 f5> - Hk(fgvfa> - Hk(H7 fOl)
l
Hk(.fea f_e)
l
Hk—l(f_ea fa).

The property of exactness of the Homology implies that either

Hya(f75f*) #0 or Hppi(H, f€) #0,

since Hy(f¢, f~¢) # 0 and Hy(H, f*) = 0. By the previous proposition, we conclude

that there is a nontrivial critical point y that satisfies either

Ce1(foy) #0 or Cra(f,y) #0,

which is the desired conclusion. O

The classical solutions of problem (1.1) correspond to critical points of the C?~°-
functional, denoted by F, defined on H} = HJ () by

1
F(u) = §/Q|Vu|2d:)s—/QG(at,u)d:B, u € Hy, (2.1)

where G(z,t) = f(f g(x, s)ds. The following nonresonance condition will be assumed

throughout the paper: the problem
—~Au=oa,ut —a_u", ueH,

has only the trivial solution. Under this assumption the functional F' satisfies the
Palais-Smale compactness condition. In order to apply Morse theory to obtain multi-
plicity of critical points of F', we need to compute the critical groups of known critical
points and the critical groups at infinity. In this direction we have the following result

(see for instance [6, 13]).

Proposition 2.3. (i) If Ay, < ax < Ay, then Cp(F, 00) = 0pnZ.
(ii) If there is 6 > 0 such that A\, < @ < k1, Vo € Qand 0 < |t| < 0, then
Cp(F,0) = 0pkZ.

Remark 2.4. Assume the hypotheses of the previous proposition with m # k. Propo-
sition 2.1 implies that there is a nontrivial critical point u; with C,,(F,u;) # 0.
Moreover, Proposition 2.2 implies that there is a nontrivial critical point us such that
either Cy_1(F,uy) # 0 or Cpy1(F,us) # 0. In order to prove that u; # uy we will
assume some additional conditions, see Theorems 3.1 and 3.2 in the next section. Our

results were motivated by [3, 15|, where similar results have been obtained.
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Now, we present a version of the Shifting Theorem for C*~%-functionals. Take
X = C}(Q2) and w a nontrivial critical point of F. We have that F’ € C'(D, H}) and
F"(ug) is a bounded linear operator from X to H}, where D is a neighborhood of
up in the X-topology. The Morse index pu(ug) of up measures the dimension of the
maximal subspace of X on which F"(ug) is negative definite. The nullity of u, is the
dimension of the kernel of F”(ug), we denote it by v(ug). The authors in [12] were
able to give a version of the Shifting Theorem to this case. We summarize it in the

next proposition.

Proposition 2.5. Assume that u is a nontrivial critical point of F with finite Morse

index p and nullity v, then either
(i) Co(Fiu) =0 forp<pandp>pu+v, or
(i) Cp(F,u) = 6puZ, or

(iii) CP(F, u) = 5P(M+V)Z‘

Another useful tool that we will make use of are the spectral properties of
weighted eigenvalue problems. Let p(x) be a bounded function in  with nontrivial

positive part. Consider the eigenvalue problem

—Av=Ap(z)v in

2.2
v=20 on Of). (2:2)

This problem have a sequence of eigenvalues 0 < Ai(p) < Aa(p) < --- < Aj(p) —
0o, and the associated eigenfunctions satisfies the Unique Continuation Property.
Moreover, if p(z) < g(z), with strict inequality holding on a set of positive measure,
then A;(p) > A;(¢). For all this properties and more we refer to [8]. We remark that
in the case p = 1 we denote A\;(1) by A;.

3. MAIN RESULTS AND PROOFS
We will denote by ¢, the normalized eigenfunction associated to \; and H; :=
span{er, -+ 5}

Theorem 3.1. Suppose that there exist k and m > k + 1 such that M\._1 < B4 < A\

and Ny, < ax < Apr1. Moreover, assume that one of the following conditions holds:

(a) ¢'(z,t) > g(x,t)/t, for all x € Q and all t € R;
(b) k=2 and ¢'(z,t) < A\py1, for allz € Q and t € R.

Then problem (1.1) has at least two nontrivial solutions.

Proof. From \,, < ax < A\,+1 the functional F' satisfies the (P.S) condition and has

the geometry of Saddle Point Theorem. More precisely, we have

(i) F(u) — —o0, as ||u|| — oo, for u € H,,; and
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(i) F(u) — oo, as ||u|| — oo, for u € H-.
It is follows that there exists a critical point u; of F' such that, see [6, 16],
Con(Fyup) #0. (3.1)

Using 51 < A, we can prove that (F”(0)p;, ¢;) > 0 for all j > k. Then p(0)+2(0) <
k — 1 and, by the Proposition 2.5, we have C,(F,0) = 0 for all p > k. Therefore u;

is a nontrivial critical point of F' provided m > k + 1.
Proof of (a): By A1 < By < A\ and ¢'(z,t) > g(z,t)/t, we can show that

(i) there is R > 0 such that F(u) < 0 for all u € {tpr +u; t > 0,u € Hi_1} with
|ul] < R; and
(i) there are 7 > 0 and a > 0 such that F(u) > a for all w € Hit | with ||u]| = r.

So, the functional F satisfies the hypotheses of the Linking Theorem. We can conclude

that there is a critical point u, that satisfies
Cr(F,uy) # 0, (3.2)

and so uy is nontrivial. The proof of (a) is complete by the assumption m > k, (3.1),
and showing that:

Claim: Cy,(F,uz2) = 0.

Indeed, consider the eigenvalue problem
—Av = va, v € Hy.
Uz

Using that wus solves (1), we can conclude that 1 is an eigenvalue of the above
problem and wus is the associated eigenfunction. Moreover, we can certainly as-
sume that g(z,us)/us > A1 in a set of positive measure. Indeed, if not, then
g(x,us)/us = A\p_1, SO us = cpp_1 and we can also show that ¢'(x,us) = \p_;. But,
in this case, we have that sp;_; is a solution of (1.1) for all 0 < s < ¢, and it is easy
to see that the claim is true in that case. Now, assuming g(z, us)/us > Ap_1 in a set
of positive measure to hold, we have \;(g(z, us)/us) < A\j(Ag—1) < 1foralli <k —1.
Since 1 is an eigenvalue, we can conclude that \g(g(z, u2)/ug) < 1. If we assume that
g (x,u2) > g(x,u2)/us in a set of positive measure, then we have \g(¢'(z,uq)) < 1.
This implies that pu(us) > k, but u(us) < k since (3.2) holds, so pu(us) = k. Then,
by (3.2) and the item (ii) in Proposition 2.5, we have the desired conclusion in this
case. On the other hand, if we have ¢'(x,us) = g(x,us)/us < Apyq for all x € Q,
then A,11(g'(x,us)) > 1, which implies p(uq) + v(uz) < m. Now, if p(us) = k the
conclusion follows by item (ii) in Proposition 2.5, and if u(us) < k the conclusion

follows by item (i) in Proposition 2.5. 92

Proof of (b): Let u; be a nontrivial solution such that C,,(F,u;) # 0. Let us first
prove that:
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Claim 1: Cp(F,u1) = dpmG.
In fact, by the Proposition 2.5, we have that u(u;) +v(u1) > m. Let ¢ € H: by

g'(z,t) < A\py1 and the strict inequality holding in a set of positive measure, we have
(F"(u)p, ) = / IVel? = gz, ur)
Q

> / Vol? = Ansre? > 0,
Q

where we use the variational characterization of A, ;1. Follows that p(u1)4v(u1) < m,
and so p(u1) + v(u;) = m. The claim follows from (3.1) and the item (iii) of the
Proposition 2.5. &

The proof (b) follows from the next claim and by the assumption m > 2.

Claim 2: There exists a critical point uy of F' such that

CQ(F, ’LLQ) §£ 0.

First note that the flux of —VF is well defined in X = C} and D = PU (—P) is

an invariant set, where P = {u € X; u > 0} (see [7]). Moreover, we have that

(i) there is R > 0 such that F'(u) < 0 for any v € Hy with ||u]| > R; and
(i) there are a,r > 0 such that F(u) > a for any v € Hi- with ||u]| = 7.

The rest of the proof follows as in [3, Theorem 3.6]. We only show the main ideas of
the proof. Set
B:={u=sp;+tys; |s| <R, 0<t<R}
and
0B = {sp1 +tpa; |s| = Rorte{0,R}}.
Denoting F = F|y and using (i), we have 9B C FOU D. Let v = max F(B) so that
(B,dB) <> (F7U D, F° U D). Now, by (ii), we have

(B,0B) < (F"UD,F°UD) <% (X, X\ {u € Hi: ||u|| = r}).

Using that Hy(B,0B) TN Hy(X, X \ {u € H{"; |Ju]| = r}) is nontrivial, follows that
Hy(B,0B) %5 Hy(FY U D, FOU D) is nontrivial. Let £ € Hy(F? U D, FOU D) defined
by £ =i.(1), where 1 € Z = Hy(B,0B). Define

['={0 € R; £ €image(is)} and ¢ =infl,

where i5 : Hy(FOUD, F°UD) — Ho(F7UD, FOU D)} is induced by the inclusion. It
was proved in [3] that ¢ is a critical value of F' and 0 < ¢ < . Furthermore, there is a

critical point of F at level ¢ that satisfies the conditions required in the claim. { O

Theorem 3.2. Suppose that there exist m and k > m+ 2 such that A\, < a+ < A\ppa1

and N\, < B+ < Apr1. Moreover, assume that one of the following conditions holds:
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(a) ¢'(z,t) < g(x,t)/t, for all x € Q and all t € R;
(b) m =1 and g(x,t)/t < Agx1, for all x € Q and all t € R.

Then problem (1.1) has at least two nontrivial solutions.

Proof. Proof of (a): As in the proof of previous theorem, we have that there exists u;
a critical point of F' such that

Moreover, we can show that

(i) 3 r > 0 such that sup,cq F'(u) < 0, where S := {u € Hy; ||u]| =r};
(ii) F(u) >0 for all u € H*; and
(ii) F is bounded below on {s¢y +u; s > 0,u € Hi-}.

Then, by [20, Theorem 3.2], there is a critical point us of F' such that
Cr-1(F,ug) # 0.

By M\ < O < Apy1 and g(x,t)/t < Mgy, follows that C,(F,0) = d,Z. Thus uy and
uy are nontrivial critical points of F'. The proof follows from the next claim and by
the assumption £ — 1 > m.

Claim: Cy,(F,uz2) = 0.

In fact, by the item (i) in Proposition 2.5, we have that u(ug) > k — 1. We can
assume that g(z,us)/us < Ap+1 in a set of positive measure. Thus X;(g(x, ug)/ug) >
Ai(Aky1) > 1, for all i > k£ + 1. Now, using that uy solves (1.1), we have

AT
Uz

2.

This implies that \g(g(z,u2)/ug) > 1. Then, assuming ¢'(z,us) < g(z,us)/us in a
set of positive measure, we have py(¢'(x,u2)) > 1. This implies that p(us) < k — 1,
and so pu(uz) = k— 1. The item (i) of the Proposition 2.5 and (3.2) imply the Claim.
If ¢'(x,u2) = g(x,us)/us for all x € Q, then ¢'(z,uz) > A,,. Hence A\, (¢'(z,u2)) < 1
and follows that u(us) > m. Now, if pu(us) = k — 1 the conclusion follows by item
(ii) in Proposition 2.5, and if p(uz) > k — 1 the conclusion follows by item (i) in
Proposition 2.5. &

Proof of (b): As in the proof of (a), we have a nontrivial critical point uy such that
Ck—l(Fv Uz) # 0.

The proof follows from the next claim and the assumption k& > 2.

Claim 2: There exists a critical point u; of F' such that

CP(F, U1> = pJZ.
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By the characterization of mountain pass, it is sufficient to prove the existence

of a critical point u; of F' such that Cy(F,u;) # 0 (see [6]). But it follows as in the

case (a) since m = 1. O
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