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1. INTRODUCTION

In this paper we use critical point theory to establish some existence results for

the Hammerstein integral equation

u(x) =

∫

Ω

k(x, y) f(y, u(y)) dy for x ∈ Ω; (1.1)

here Ω is a closed bounded subset of Rn. We look for solutions to (1.1) in C(Ω).

Throughout this paper we will also use the usual Lebesgue space L2(Ω) with norm

| · |L2 and inner product (·, ·). A discussion of (1.1) using variational methods can be

found in the books [3, 8]. For a more recent treatment using the ideas in [3, 8] we

refer the reader to [4]. The results we present here are new and are based on critical

groups and the multiplicity theory was motivated from ideas in [1, 7].

Throughout this paper we assume the kernel k : Ω×Ω → R satisfies the following:

k ∈ C(Ω × Ω,R) (1.2)

k(x, y) = k(y, x) for x, y ∈ Ω (1.3)

and ∫

Ω×Ω

k(x, y) u(x)u(y) dx dy ≥ 0 ∀u ∈ L2(Ω). (1.4)

Let

K u(x) =

∫

Ω

k(x, y) u(y) dy for x ∈ Ω and u ∈ C(Ω).
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It is well known [3, 8] that K : L2(Ω) → L2(Ω) is a linear, completely continuous, self

adjoint, nonnegative (i.e. (Ky, y) ≥ 0 for all y ∈ L2(Ω)) operator. Also the square

root operator of K, K
1

2 : L2(Ω) → L2(Ω) exists. From the spectral theory of such

operators [9] we know that K has a countably infinite number of real eigenvalues (µi)

(recall µi is an eigenvalue of K if there exists a ψi ∈ L2(Ω) with µiKψi = ψi) with

µi > 0 for all i. ASSUME throughout this paper that if Kψ = 0 for some ψ ∈ L2(Ω)

then ψ = 0. Then we can relabel the eigenvalues (µi) so that

µ1 ≤ µ2 ≤ µ3 ≤ · · ·

and note µ1 > 0.

Also we assume

f : Ω ×R → R is continuous. (1.5)

Let

Nf u(x) = f(x, u(x)) for x ∈ Ω and u ∈ C(Ω).

It is well known [3, 4, 8] that

u = KNf u (1.6)

has a solution in C(Ω) if and only if

v = K
1

2 Nf K
1

2 v (1.7)

has a solution in L2(Ω).

Let Φ : L2(Ω) → R be given by

Φ(u) =
1

2
|u|2L2 −

∫

Ω

∫ K
1

2 u(x)

0

f(x, v) dv dx for u ∈ L2(Ω). (1.8)

Again it is well known [3, 4, 8] that if there exists a v ∈ L2(Ω) with

Φ′(v) = 0 (1.9)

then v is a solution of (1.7).

Remark 1.1. It is worth pointing out here that one could extend the results of this

paper so that f : Ω×Rn → Rn above and indeed one could look at the more general

problem

u(x) =

∫

Ω

k(x, y) f(y, u(y)) dy for a.e. x ∈ Ω;

here we look for solutions in Lp(Ω). Also here the continuity of f is replaced by f is

(p, q) Carathéodory of potential type (see [8, Chapter 6 and 7]) and (1.2) is replaced

by a condition to guarantee that K : Lq0(Ω) → Lp0(Ω); here p, q, p0, q0 are as in [8,

Chapter 6 and 7].

We will obtain a variety of existence results for (1.7) in the next two sections

using Morse theory. For convenience we recall here some results which we will need
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in Section 2 and Section 3. Let Φ be a real valued function on a real Banach space

W and assume Φ ∈ C1(W,R). For every c ∈ R let

Φc = {x ∈W : Φ(x) ≤ c} (the sublevel sets at c)

and

K = {x ∈W : Φ′(x) = 0} (the set of critical points of Φ).

In Morse theory the local behavior of Φ near an isolated critical point u is described

by the sequence of critical groups

Cq(Φ, u) = Hq(Φc ∩ U,Φc ∩ U\{u}), q ≥ 0

where c = Φ(u) is the corresponding critical value and U is a neighborhood of u

containing no other critical points of Φ. When the critical values are bounded from

below and Φ satisfies (PS) the global behavior of Φ can be described by the critical

groups at infinity

Cq(Φ,∞) = Hq(W,Φa), q ≥ 0

where a is less than all critical values. A critical point u of Φ with C1(Φ, u) 6= 0 is

called a mountain pass point.

Next we discuss the variational eigenvalues from [7] in our situation here. Con-

sider

u = λK u

where K : L2(Ω) → L2(Ω). Let

M = {u ∈ L2(Ω) :
1

2
(u, u) = 1}, J(u) =

1

2
(K u, u)

with

Ψ(u) =
1

J(u)
, u ∈ L2(Ω)\{0} and Ψ̃ = Ψ|M .

Let F denote the class of symmetric subsets of M and i(M0) the Fadell–Rabinowitz

cohomological index of M0 ∈ F . Then

λk = inf
M0∈F, i(M0)≥k

sup
u∈M0

Ψ̃(u), 1 ≤ k ≤ ∞.

We know from Theorem 4.2.1 (ii) of [7] that λ1 = µ1 where

µ1 = min
u 6=0

(u, u)

(Ku, u)
.

Remark 1.2. In fact in our situation (i.e. for the Hammerstein integral equation

described above) λk = µk for all k as was noted by Kanishka Perera. Suppose for

simplicity that all the µi’s described above are simple with

µ1 < µ2 < µ3 < · · · .

Fix k ≥ 1 so if µk < µ < µk+1 the set Ψ̃µ deformation retracts (see the introduction

of [7]) to the intersection of M with the subspace spanned by the eigenvectors of
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µ1, . . . , µk, which is a (k − 1)-dimensional sphere, so (4.2.6) of [7] holds with all the

λ′s replaced by µ’s. This together with (4.2.6) of [7] itself gives λk = µk.

Now from Proposition 9.4.1 (ii) of [7] (noteK
1

2NfK
1

2 : L2(Ω) → L2(Ω) is compact

(completely continuous)) we have the following result in our situation.

Theorem 1.3. Suppose

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx =
λ

2
(Ku, u) + o(|u|2L2) as u→ 0

and zero is an isolated critical point.

(i). If λ < λ1 then Cq(Φ, 0) = δq,0Z2.

(ii). If λk < λ < λk+1 then Ck(Φ, 0) 6= 0.

In our main multiplicity result of Section 2 we will use Theorem 1.3 together with

the following result in [2, 5].

Theorem 1.4. Let Φ be a C1 functional defined on a Banach space. If Φ is bounded

from below, satisfies (PS) and Ck(Φ, 0) 6= 0 for some k ≥ 1, then Φ has two nontrivial

critical points.

2. MAIN RESULTS IN SUBLINEAR CASE

We begin with an easy result.

Theorem 2.1. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume there

exists a λ < µ1 and a C > 0 with

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx ≤
λ

2
(Ku, u) + C ∀ u ∈ L2(Ω). (2.1)

Then Φ given in (1.8) is coercive, satisfies (PS) and is bounded from below. Also Φ

has a global minimum on L2(Ω). Moreover if Φ has a finite number of critical points

then Cq(Φ,∞) = δq,0Z2 and Φ has a global minimizer u with Cq(Φ, u) = δq,0Z2.

Remark 2.2. Note (Ku, u) = (K
1

2 u,K
1

2 u) = |K
1

2 u|2
L2 for u ∈ L2(Ω).
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Proof. Replacing λ with max{λ, 0} if necessary we may assume λ ≥ 0. Then for

u ∈ L2(Ω) we have

Φ(u) =
1

2
|u|2L2 −

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx

≥
1

2
|u|2L2 −

λ

2
(Ku, u) − C

≥
1

2
|u|2L2 −

λ

2

1

µ1
|u|2L2 − C

=
1

2

(
1 −

λ

µ1

)
|u|2L2 − C

→ ∞ as |u|L2 → ∞.

Every (PS) sequence is bounded by coercivity and hence has a convergent subsequence

from Lemma 3.1.3 of [7]. Also since Φ(u) ≥ −C from above then Φ is bounded from

below. Now Theorem 4.4 of [6] (or Proposition 3.5.1 of [7]) guarantees that Φ has

a global minimum on L2(Ω) (note Φ : L2(Ω) → R is Fréchet differentiable; see [3,

4, 8]). If Φ has a finite number of critical points then Corollary 3.5.3 of [7] (note

Φ is bounded from below) guarantees that Cq(Φ,∞) = δq,0Z2 and Φ has a global

minimizer u with Cq(Φ, u) = δq,0Z2.

Remark 2.3. Suppose there exists λ < µ1, 0 ≤ γ < 1, b > 0 and C > 0 with

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx ≤
λ

2
(Ku, u) + b [(Ku, u)]γ + C ∀ u ∈ L2(Ω).

It follows immediately that we can find a µ < µ1 and a constant C1 > 0 with

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx ≤
µ

2
(Ku, u) + C1 ∀ u ∈ L2(Ω).

We are now ready to prove our main result in this section.

Theorem 2.4. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume there

exists a λ > µ1 with λ 6= λi(= µi) for i ∈ {2, 3, . . .} and with

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx =
λ

2
(Ku, u) + o(|u|2L2) as u→ 0 (2.2)

and also assume f(x, 0) = 0 for x ∈ Ω. Finally suppose there exists a constant γ,

0 ≤ γ < 1, a constant b < µ1, and a constant C ≥ 0 with

∫

Ω

∫ K
1
2 u(x)

0

f(x, w) dw dx ≤
b

2
(Ku, u) + C ([(Ku, u)]γ + 1) ∀ u ∈ L2(Ω). (2.3)

Then Φ has two nontrivial critical points.
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Proof. Without loss of generality assume b ≥ 0. For any u ∈ L2(Ω) we have

Φ(u) ≥
1

2
|u|2L2 −

b

2
(Ku, u)− C [(Ku, u)]γ − C

≥
1

2

(
1 −

b

µ1

)
|u|2L2 −

C

µ
γ
1

|u|2γ

L2 − C.

Since 0 ≤ γ < 1 we see that Φ is bounded from below and coercive, so Φ satisfies

the (PS) condition. Note Φ′(0) = 0 since f(x, 0) = 0 for x ∈ Ω. We may assume the

origin is an isolated critical point (otherwise we have a sequence of nontrivial critical

points of Φ and we are finished). Now Theorem 1.3 guarantees that Ck(Φ, 0) 6= 0 for

some k ≥ 1. Then Φ has two nontrivial critical points by Theorem 1.4.

Our next two results follow immediately from Theorem 7.2.2 and Theorem 7.4.1

of [7] respectively (note λk = µk for all k).

Theorem 2.5. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume either

λk

2
(Ku, u) ≤

∫

Ω

∫ K
1
2 u(x)

0

f(x, w) dw dx <
λk+1

2
(Ku, u) ∀ u ∈ Bρ(0)\{0}

for some k such that λk < λk+1 and ρ > 0, or

λ⋆

2
(Ku, u)+o(|u|2L2) ≤

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx ≤
λ⋆

2
(Ku, u)+o(|u|2L2) as u→ 0

for some λk < λ⋆ ≤ λ⋆ < λk+1. Also suppose (2.1) holds and assume f(x, 0) = 0 for

x ∈ Ω. Then (1.7) has a positive solution v1 6= 0. If k ≥ 2 then there is a second

solution v2 6= 0.

Remark 2.6. The result in Theorem 2.5 can be improved if we use the ideas in

Theorem 2.4. In fact in Theorem 2.5 there is a second solution v2 6= 0 if k ≥ 1. To

see this (again without loss of generality assume the origin is an isolated critical point)

note [7, Lemma 7.2.1] guarantees that Ck(Φ, 0) 6= 0 and of course (2.1) guarantees

that Φ is bounded from below and satisfies the (PS) condition. The result now follows

from Theorem 1.4.

Theorem 2.7. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume

f(x,−u) = − f(x, u) for all (x, u) ∈ Ω ×R

and that (2.1) holds. Finally assume

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx ≥
λ⋆

2
(Ku, u) + o(|u|2L2) as u → 0

for some λ⋆ > λm. Then (1.7) has m distinct pairs (note Φ is even) of solutions (at

positive levels).
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2. MAIN RESULTS IN SUPERLINEAR CASE

For notational purposes for u ∈ L2(Ω) let

F (u) =

∫

Ω

∫ K
1

2 u(x)

0

f(x, w) dw dx

and

Hµ(u) = F (u) −
1

µ
(K

1

2 Nf K
1

2 u, u), µ > 0.

We begin with our main result in this section.

Theorem 3.1. Suppose (1.2), (1.3), (1.4) and (1.5) hold. In addition assume

f(x, 0) = 0 for x ∈ Ω (3.1)

F is bounded from below (3.2)

Hµ is bounded from above for some µ > 2 (3.3)

and

lim
t→∞

F (t u)

t2
= ∞ ∀ u 6= 0. (3.4)

Finally suppose there exists λ with λ 6= λi(= µi) for i ∈ {1, 2, . . .} and with

F (u) =
λ

2
(K u, u) + o(|u|2L2) as u → 0.

Then Φ has a nontrivial critical point.

Proof. Note Φ′(0) = 0 from (3.1). Suppose Φ has no nontrivial critical points. Then

Cq(Φ, 0) = Hq(Φ0,Φ0\{0}), q ≥ 0.

By the second deformation lemma (see Lemma 3.2.5 of [7] with b = ∞ and b = 0)

Φ0 is a deformation retract of L2(Ω) and Φ0\{0} deformation retracts to Φa for any

a < 0 so

Cq(Φ, 0) = Hq(L2(Ω),Φa). (3.5)

We know from Theorem 5.3.2 of [7] that Φ satisfies (PS). In Section 5.3 of [7] we

proved for any u in the unit sphere S that

d

d t
Φ(t u) ≤

2

t
(Φ(t u) − a0)

where

a0 = inf
1

2
( [µ− 2]F − µHµ)

so all the critical values of Φ are greater than or equal to a0 (note 2Φ(u) − Φ′(u) =

(µ − 2)F (u) − µHµ(u)). Note a0 ≤ 0 since F (0) = Hµ(0) = 0. Also in Lemma 5.3.1

of [7] we showed for each a < a0 there is a C1 map Ta : S → (0,∞) such that

Φa = {t u : u ∈ S : t ≥ Ta(u)} ∼= S.
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As a result if |a| is sufficiently large (here a < 0), Φa is homotopic to S and hence

contractible so from (3.5) we have

Cq(Φ, 0) = 0 ∀ q. (3.6)

On the other hand since λ 6= λi for i ∈ {1, 2, . . .} and since zero is an isolated critical

point (note Φ′(0) = 0 and we assumed Φ has no nontrivial critical points) we know

from Theorem 1.3 that Ck(Φ, 0) 6= 0 for some k ≥ 0. This is a contradiction. Thus

Φ has a nontrivial critical point.

Remark 3.2. To see how conditions (3.2), (3.3) and (3.4) relate to subcritical growth

and the Ambrosetti–Rabinowitz condition we refer the reader to Example 5.3.3 in [7].

Our next two results follow immediately from Theorem 7.1.3 and Theorem 7.2.3

of [7] respectively (note λk = µk for all k).

Theorem 3.3. Suppose (1.2), (1.3), (1.4), (1.5), (3.1), (3.2), (3.3) and (3.4) hold.

In addition assume Φ has a finite number of critical points and either

F (u) ≤
λ1

2
(Ku, u) ∀ u ∈ Bρ(0)

for some ρ > 0, or

F (u) ≤
λ⋆

2
(Ku, u) + o(|u|2L2) as u→ 0

for some 0 ≤ λ⋆ < λ1. Then (1.7) has a mountain pass solution v 6= 0.

Theorem 3.4. Suppose (1.2), (1.3), (1.4), (1.5), (3.1), (3.2), (3.3) and (3.4) hold.

In addition assume Φ has a finite number of critical points and either

λk

2
(Ku, u) ≤ F (u) <

λk+1

2
(Ku, u) ∀ u ∈ Bρ(0)\{0}

for some k such that λk < λk+1 and ρ > 0, or

λ⋆

2
(Ku, u) + o(|u|2L2) ≤ F (u) ≤

λ⋆

2
(Ku, u) + o(|u|2L2) as u → 0

for some λk < λ⋆ ≤ λ⋆ < λk+1. Then (1.7) has a solution v 6= 0 with either Φ(v) < 0

and Ck−1(Φ, v) 6= 0 or Φ(v) > 0 and Ck+1(Φ, v) 6= 0.

Remark 3.5. We can remove the condition that Φ has a finite number of critical

points in Theorem 3.4 and then we deduce that (1.7) has a solution v 6= 0. Of course

the result is immediate from Theorem 3.4. Alternately the proof is exactly the same

as in Theorem 3.1 except here we deduce Ck(Φ, 0) 6= 0 from [7, Lemma 7.2.1].

Our final result is a multiplicity result which follows immediately from Theorem

7.4.3 of [7].
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Theorem 3.6. Suppose (1.2), (1.3), (1.4), (1.5), (3.2), (3.3) and (3.4) hold. In

addition assume

f(x,−u) = − f(x, u) for all (x, u) ∈ Ω ×R

and

F (u) ≤
λ⋆

2
(Ku, u) + o(|u|2L2) as u→ 0

for some λ⋆ < λk. Then (1.7) has infinite distinct pairs (note Φ is even) of solutions

(at positive levels).
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