
Communications in Applied Analysis 13 (2009), no. 3, 411–430

ON A MIN-MAX PRINCIPLE FOR NON-SMOOTH

FUNCTIONS AND APPLICATIONS

ROBERTO LIVREA1 AND SALVATORE A. MARANO2
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ABSTRACT. Extensions of the seminal Ghoussoub’s min-max principle [15] to non-smooth func-

tionals given by a locally Lipschitz continuous term plus a convex, proper, lower semi-continuous

function are presented and discussed in this survey paper. The problem of weakening the Palais-

Smale compactness condition is also treated. Some abstract consequences as well as applications to

elliptic hemivariational or variational-hemivariational inequalities are then pointed out.
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1. INTRODUCTION

The critical point theory for C1 functions in a Banach space X is by now well

established and excellent monographs devoted to various aspects of it are already

available; see for instance [33, 36, 8]. A trend in today’s literature is the attempt to

weaken, in a fruitful way, the key assumptions of the famous Mountain Pass Theorem

(briefly, MPT) by Ambrosetti-Rabinowitz [33, Theorem 2.2], namely

(a) the Mountain Pass geometry,

(b) the Palais-Smale compactness condition, and

(c) the regularity of the involved functional.

These questions have been widely investigated in latest years. As an example, [16, 35]

contain meaningful generalizations of (a)–(b), while [28, 29, 14] mainly deal with (c).

The book [18] represents a general reference on the subject.

Starting from the seminal papers by Chang [9] and Szulkin [37], a version of

the MPT that applies to functionals f : X → R ∪ {+∞} fulfilling the structural

hypothesis
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(Hf ) f(x) := Φ(x) + ψ(x) for all x ∈ X, where Φ : X → R is locally Lipschitz con-

tinuous while ψ : X → R ∪ {+∞} is convex, proper, and lower semi-continuous

has been established by Motreanu-Panagiotopoulos [28, Theorem 3.2]. Critical points

of f are defined as solutions to the problem

Find x ∈ X such that Φ0(x; z − x) + ψ(z) − ψ(x) ≥ 0 ∀z ∈ X, (1.1)

with Φ0(x; z − x) being the generalized directional derivative [10, p. 25] of Φ in x

along the direction z−x. The standard Palais-Smale condition at a given level a ∈ R

takes here the form:

(PS)a Every sequence {xn} ⊆ X such that limn→+∞ f(xn) = a and

Φ0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −ǫn‖z − xn‖ ∀n ∈ N , z ∈ X ,

where ǫn → 0+, possesses a convergent subsequence.

When Φ ∈ C1(X,R), problem (1.1) reduces to a variational inequality, and the rele-

vant critical point theory as well as significant applications are developed in [37]. If

ψ ≡ 0, then (1.1) coincides with the problem treated by Chang [9], who also exploits

various abstract results to study elliptic equations having discontinuous nonlinear

terms. Finally, when both Φ ∈ C1(X,R) and ψ ≡ 0, then problem (1.1) becomes the

Euler equation Φ′(u) = 0, and the theory is classical [33, 36].

To the best of our knowledge, Ghoussoub’s min-max principle [15, Theorem 1]

(cf. also [35]) represents a very fruitful attempt in weakening assumption (a) of the

MPT. Besides the existence of critical points, it provides valuable information about

their location; see [16, Chapter 5] and [13]. The interest for such a matter stems from

both the natural question of whether the critical set contains saddle points (which is

suggested by its construction) and the emergence of applications depending on the

type of critical point rather than its mere existence. Ghoussoub’s result has recently

been extended in [20] to Motreanu-Panagiotopoulos’ framework [28, Chapter 3] by

chiefly adapting the technical approach developed in [15] for C1 functions and using

the structural hypothesis

(H′
f ) f satisfies (Hf). Moreover, ψ is continuous on any nonempty compact set A ⊆ X

such that supx∈A ψ(x) < +∞.

Although less general than (Hf), this condition still works in all the most important

concrete situations. The structure of min-max generated critical set is treated in

Section 4 of [20], and the obtained results extend previous ones on the same subject.

The problem of studying whether the MPT holds true under conditions weaker

than (c) is by now widely investigated, and [35] provides an excellent overview on this

topic. Very recently, in [21], Theorem 1 of [15] has been extended to locally Lipschitz

continuous functions satisfying a weak Palais-Smale hypothesis, which includes both
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the usual one [9, Definition 2] and the non-smooth Cerami condition [19, p. 248];

cf. [21, Theorem 3.1]. From a technical point of view, Ghoussoub’s approach is

adapted to the new framework and Ekeland’s Variational Principle is exploited with

a suitable metric of geodesic type. When the functional turns out to be C1 while the

compactness condition is that of Cerami, this idea basically goes back to Ekeland [12,

p. 138].

Finally, Theorem 3.1 in [21] can actually be generalized to functions f fulfilling the

structural hypothesis (H′
f); see [25, Theorem 2.1]. For this purpose, suitable versions

of two auxiliary lemmas of [24] are first provided. Through them and Ekeland’s

Variational Principle employed as in [21], Ghoussoub’s technique is then adapted to

the new setting. We state here only the corresponding critical point result, where an

appropriate weak Palais-Smale assumption is taken on.

The present survey collects main results from [20, 21, 25], some abstract con-

sequences [7, 22, 6, 4], and applications to elliptic hemivariational or variational-

hemivariational inequality problems [7, 22, 23, 27].

2. PRELIMINARIES

Let (X, ‖ · ‖) be a real Banach space. If U is a subset of X, we write Ū for the

closure of U and ∂U for the boundary of U . Moreover, when x ∈ X and r > 0, we

define B(x, r) := {z ∈ X : ‖z − x‖ < r}, Br := B(0, r), as well as

d(x, U) := inf
z∈U

‖x− z‖ , Nr(U) := {z ∈ X : d(z, U) < r} .

The symbol X∗ indicates the dual space of X, while 〈·, ·〉 stands for the duality pairing

between X∗ and X. A function Φ : X → R is called coercive provided

lim
‖x‖→+∞

Φ(x) = +∞ .

If to every x ∈ X there correspond a neighborhood Vx of x and a constant Lx ≥ 0

such that

|Φ(z) − Φ(w)| ≤ Lx‖z − w‖ ∀ z, w ∈ X ,

then we say that f is locally Lipschitz continuous (briefly, l.L.c.). In this case Φ0(x; z),

x, z ∈ X, indicates the generalized directional derivative of Φ at the point x along

the direction z, namely

Φ0(x; z) := lim sup
w→x,t→0+

Φ(w + tz) − Φ(w)

t
.

It is known [10, Proposition 2.1.1] that Φ0 is upper semi-continuous on X ×X. The

generalized gradient of the function Φ in x, denoted by ∂Φ(x), is the set

∂Φ(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ Φ0(x; z) ∀ z ∈ X} .
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Proposition 2.1.2 of [10] ensures that ∂Φ(x) is nonempty, convex, in addition to weak*

compact, and that

Φ0(x; z) = max{〈x∗, z〉 : x∗ ∈ ∂Φ(x)} .

Hence, it makes sense to put

mΦ(x) := min{‖x∗‖X∗ : x∗ ∈ ∂Φ(x)} .

Now, let ψ : X → R ∪ {+∞} be convex, proper, and lower semi-continuous. The

function ψ is continuous on int(Dψ), where, as usual, Dψ := {x ∈ X : ψ(x) < +∞}.

If ∂ψ(x) indicates the sub-differential of ψ at the point x ∈ X, D∂ψ := {x ∈ X :

∂ψ(x) 6= ∅}, and X is reflexive then

int(Dψ) = int(D∂ψ) .

Finally, let f be a function on X complying with hypothesis (Hf). We say that x ∈ X

is a critical point of f when

Φ0(x; z − x) + ψ(z) − ψ(x) ≥ 0 ∀ z ∈ X.

Given a real number a, write

Ka(f) := {x ∈ X : f(x) = a, x is a critical point of f} ,

besides fa := {x ∈ X : f(x) ≥ a} and fa := {x ∈ X : f(x) ≤ a}.

3. CRITICAL POINTS OF NON-SMOOTH FUNCTIONS

In this section we shall extend the results of [15] (cf. also [17]) to functions f satisfying

the structural condition (H′
f). A key role is played by the next deformation theorem,

which represents a non-differentiable version of [15, Lemma 1].

Lemma 3.1. Suppose (H′
f ) is fulfilled, ε > 0, while B,C are two nonempty closed

sets in X. If C is compact, B ∩ C = ∅, C ⊆ Dψ, and, moreover,

(a1) to each x ∈ C there corresponds a point ξx ∈ X such that

Φ0(x; ξx − x) + ψ(ξx) − ψ(x) < −ε‖ξx − x‖ ,

then for every k > 1 there exist t0 ∈ (0, 1], α ∈ C0([0, 1]×X,X), and ϕ ∈ C0(X,R+
0 )

with the following properties:

(i1) α(t, Dψ) ⊆ Dψ ∀ t ∈ [0, t0) and α(t, x) = x ∀ (t, x) ∈ [0, t0) × B.

(i2) ‖α(t, x) − x‖ ≤ kt ∀ (t, x) ∈ [0, t0) ×X.

(i3) f(α(t, x)) − f(x) ≤ −εϕ(x)t ∀ (t, x) ∈ [0, t0) ×Dψ.

(i4) ϕ(x) = 1 ∀x ∈ C.
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For the proof we refer the reader to [20, Theorem 2.2].

Let B be a nonempty closed subset of X and let F be a class of compact sets in

X. According to [15, Definition 1], we say that F is a homotopy stable family with

extended boundary B when for every A ∈ F and every η ∈ C0([0, 1]×X,X) such that

η(t, x) = x in ({0} ×X) ∪ ([0, 1] × B) one has η({1} × A) ∈ F .

Some meaningful situations are special cases of this notion. For instance, if Q

denotes a compact set in X, Q0 is a nonempty closed subset of Q, γ0 belongs to

C0(Q0, X), Γ := {γ ∈ C0(Q,X) : γ|Q0
= γ0}, and F := {γ(Q) : γ ∈ Γ}, then F

enjoys the above-mentioned property with B := γ0(Q0). In particular, it holds true

when Q denotes a compact topological manifold in X having a nonempty boundary

Q0 while γ0 = id|Q0
.

The following assumptions will be posited in the sequel.

(a2) F is a homotopy-stable family with extended boundary B, the function f fulfils

(H′
f), and

c := inf
A∈F

sup
x∈A

f(x) < +∞. (3.1)

(a3) There exists a closed subset F of X such that

(A ∩ F ) \B 6= ∅ ∀A ∈ F , (3.2)

while moreover,

sup
x∈B

f(x) ≤ inf
x∈F

f(x). (3.3)

Thanks to (3.3) one has

inf
x∈F

f(x) ≤ c .

Theorem 3.2. Let (a2) and (a3) be satisfied. Then to every sequence {An} ⊆ F such

that limn→+∞ supx∈An
f(x) = c there corresponds a sequence {xn} ⊆ X \ B having

the following properties:

(i5) limn→+∞ f(xn) = c.

(i6) Φ0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −εn‖z − xn‖ ∀n ∈ N, z ∈ X, where εn → 0+.

(i7) limn→+∞ d(xn, F ) = 0 provided infx∈F f(x) = c.

(i8) limn→+∞ d(xn, An) = 0.

This result furnishes a general procedure to construct Palais-Smale sequences.

A straightforward, although meaningful, consequence is the next extension of The-

orem 1.bis and Corollary 2 in [15]. We shall employ the following weaker form of

(PS)a, a ∈ R, where U denotes a nonempty closed set in X.

(PS)U,a Every sequence {xn} ⊆ X such that limn→+∞ d(xn, U) = 0, limn→+∞ f(xn) = a,

and

Φ0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −ǫn‖z − xn‖ ∀n ∈ N, z ∈ X ,
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where ǫn → 0+, possesses a convergent subsequence.

For U := X it evidently coincides with condition (PS)a.

Theorem 3.3. Let (a2) and (a3) be fulfilled. Suppose that either (PS)c or (PS)F,c

holds according to whether infx∈F f(x) < c or infx∈F f(x) = c. Then Kc(f) 6= ∅. If,

moreover, infx∈F f(x) = c, the Kc(f) ∩ F 6= ∅.

Making suitable choices of F , B, and F , more refined versions of several results

can be drawn from Theorem 3.3. For instance, the result below includes Theorem 3.1

in [24] and Theorem 3.2 of [28] with (Hf) replaced by (H′
f), Theorems 1 and 2 in [34]

(vide also [8, Theorem 7.3.1]), as well as Theorem (1.bis) of [17].

Theorem 3.4. Let f satisfy the following assumptions, in addition to (H′
f ).

(a4) supx∈Q f(γ(x)) < +∞ for some γ ∈ Γ.

(a5) There exists a closed subset F of X such that (γ(Q) ∩ F ) \ γ0(Q0) 6= ∅ ∀ γ ∈ Γ

and, moreover, supx∈Q0
f(γ0(x)) ≤ infx∈F f(x).

(a6) Setting

c := inf
γ∈Γ

sup
x∈Q

f(γ(x)), (3.4)

either (PS)c or (PS)F,c is fulfilled, according to whether infx∈F f(x) < c or

infx∈F f(x) = c.

Then the conclusion of Theorem 3.3 holds true.

We conclude this section by pointing out that the preceding results, when com-

bined with appropriate topological arguments, yield information on the structure of

Kc(f). As a sample, let us state here the maybe most evocative theorem, which

determines a class of non-smooth functions whose critical sets exhibit saddle points.

It contains Theorem 8 of [32], concerning the C1 framework, as well as a variant for

locally Lipschitz continuous functions established in [2].

Recall that a critical point x ∈ X is called a saddle point for f provided to every

δ > 0 there correspond x′, x′′ ∈ B(x, δ) such that f(x′) < f(x) < f(x′′).

Theorem 3.5. Suppose X is infinite dimensional, the function f satisfies (H′
f), and

x0, x1 ∈ Dψ. If

(a7) condition (PS)c holds, while the set f c is closed, and

(a8) max{f(x0), f(x1)} < c,

then Kc(f) possesses a saddle point.

For other structure results and the proofs of Theorems 3.2–3.5 we refer to [20].
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4. FURTHER RESULTS

One may evidently ask whether classical critical point theorems can be reformulated

when the involved function f fulfils (H′
f ). The following versions of the Saddle Point

Theorem and of the Generalized MPT are established in [7]; see [7, Theorems 2.2 and

2.3].

Theorem 4.1. Let X := V ⊕ E, where V 6= {0} is finite dimensional, and let f

satisfy (H′
f). Assume there exists an r > 0 such that

(a9) supx∈B̄r∩V ψ(x) < +∞,

(a10) supx∈∂Br∩V f(x) ≤ infx∈E f(x), and

(a11) either (PS)c or (PS)E,c holds true, according to whether infx∈E f(x) < c or

infx∈E f(x) = c, where c is given by (3.4) written for Q := B̄r∩V , Q0 := ∂Br∩V .

Then Kc(f) 6= ∅. If, moreover, infx∈E f(x) = c then Kc(f) ∩ E 6= ∅.

Theorem 4.2. Suppose X := V ⊕E, where V is finite dimensional, (H′
f ) holds, and

there are r > 0, e ∈ ∂Br ∩ V , ρ ∈]0, r[ such that

(a′4) supx∈Q ψ(x) < +∞,

(a′5) supx∈Q0
f(x) ≤ infx∈F f(x),

and (a6) is fulfilled for Q := (B̄r ∩ V ) ⊕ [0, ρe], Q0 the boundary of Q relative to

V ⊕ span{e}, F := ∂Bρ ∩ E.

Then the conclusion of Theorem 4.1 remains true.

These results are fruitfully employed in [7] to get other critical point theorems

where no compactness assumption of Palais-Smale type is explicitly adopted, but X

is supposed to be reflexive and

Φ(x) := Φ1(x) + Φ2(x) , x ∈ X , (4.1)

for appropriate Φ1,Φ2 : X → R locally Lipschitz continuous functions. In particular,

Theorem 4.2 produces the following [7, Theorem 3.1]

Theorem 4.3. Let X, f, Q, Q0, F be as in Theorem 4.2 and let (a′4), (a′5), (4.1) be

satisfied. Assume that

(a12) if {xn} ⊆ Dψ, xn ⇀ x in X, and there exists a {ξ∗n} ⊆ X∗ fulfilling

ξ∗n ∈ ∂Φ1(xn) ∀n ∈ N , lim sup
n→+∞

〈ξ∗n, xn − x〉 ≤ 0 ,

then {xn} has a strongly convergent subsequence,

(a13) lim supn→+∞ Φ0
2(xn; xn − x) ≤ 0 provided {xn} ⊆ Dψ and xn ⇀ x in X.

If either Dψ is bounded or infx∈F f(x) = c, with c given by (3.4), then Kc(f) 6= ∅.

Moreover, when infx∈F f(x) = c one has Kc(f) ∩ F 6= ∅.
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Through Theorem 4.1 we achieve the next result [7, Theorem 3.4].

Theorem 4.4. Let X be as in Theorem 4.1 and let (a9)–(a10) be satisfied for some

r > 0. If (H′
f), (4.1), (a12)–(a13) hold true, while

(a14) there exist c1, c2 ∈ R, δ > 0, θ : R
+
0 → R such that

lim inf
t→+∞

θ(t)

t
> c1

and to each x ∈ Dψ, x = x̄ + x̃ with ‖x̃‖ > δ, there corresponds a ζ̄∗ ∈ ∂ψ(x̄)

fulfilling

〈ζ∗ + ζ̄∗, x̃〉 ≥ θ(‖x̃‖) − c1‖x̃‖ − c2 ∀ ζ∗ ∈ ∂Φ(x) ,

(a15) limn→+∞ |f(xn)| = +∞ whenever {xn} ⊆ Dψ, xn = x̄n + x̃n ∈ V ⊕ E, n ∈ N,

with ‖x̄n‖ → +∞ and {x̃n} bounded,

then the function f has a critical point.

The result below, concerning the merely locally Lipschitz continuous case, is a

consequence of Theorem 4.4. It contains [1, Theorem 2.3], where the function Φ2 is

required to be globally Lipschitz continuous.

Theorem 4.5. Let ψ ≡ 0 and let Φ be as in (4.1). Suppose (a12)–(a13) are satisfied,

in addition to

(a16) Φ1(x) ≤ β(x̃) ∀x ∈ X, x = x̄+ x̃ with x̄ ∈ V, x̃ ∈ E,

(a17) there exists a function θ : R
+
0 → R fulfilling limt→+∞

θ(t)
t

= +∞ as well as

〈ξ∗, x̃〉 ≥ θ(‖x̃‖) ∀ ξ∗ ∈ ∂Φ1(x), x ∈ X ,

(a18) lim sup‖x̃‖→+∞
Φ0

2(x̄+x̃;−x̃)

‖x̃‖
≤ c3, where c3 ∈ R, uniformly in x̄ ∈ V ,

(a19) there is a constant L ≥ 0 such that

|Φ2(x̄+ x̃) − Φ2(x̄))| ≤ L‖x̃‖ ∀ x̄ ∈ V , x̃ ∈ E ,

(a20) lim‖x̄‖→+∞ Φ2|V (x̄) = −∞,

(a21) lim‖x̃‖→+∞
Φ1|E(x̃)

‖x̃‖
= +∞.

Then the function f admits a critical point.

Still concerning splitting, Theorem 3.4 represents the main tool to achieve a non-

smooth version of the famous Brézis-Nirenberg critical point theorem [5, Theorem 5].

In fact, if X is reflexive and X = V ⊕E, with 0 < dim(V ) < +∞, dim(E) > 0, then

the result below holds; cf. [22, Theorem 3.1]. As usual, the symbol (PS) indicates

(PS)a for all a ∈ R.

Theorem 4.6. Assume that

(f1) f turns out to be bounded below and fulfils (PS) besides (H′
f),
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(f2) x0 ∈ X is a global minimum point of the function f ,

(f3) the set X \ fa is open for some a > 0,

(f4) there is an r ∈ ]0, ‖x0‖/2[ such that f|B̄r∩E ≥ 0, f|B̄r∩V < 0, and f|∂Br∩V < 0.

If, moreover, infx∈X f(x) < f(0) and f(0) = 0 then the function f possesses at least

two nontrivial critical points.

Remark 4.7. Hypothesis (f4) is obviously satisfied in the meaningful special case

when

(f ′4) for some r > 0 one has f|B̄r∩E ≥ 0 as well as f|B̄r∩V \{0} < 0,

namely 0 turns out to be a local minimum of f |E and a proper local maximum for

f |V . If dim(V ) ≥ 2 then (f4) may be replaced by the more general condition:

(f ′′4 ) There is an r ∈ ]0, ‖x0‖/2[ such that f |B̄r∩E ≥ 0, f |B̄r∩V ≤ 0, f |B̄r∩V \{0} 6= 0.

We conclude the section by noting that Ghoussoub’s min-max principle can be

formulated also for symmetric non-smooth functions. As before, the first step is

to construct a suitable deformation; see [6, Theorem 2.2]. This result represents a

symmetric variant of Lemma 3.1.

Let B be a nonempty, closed, symmetric subset of X and let F be a class of

compact and symmetric sets in X. We say that F is a symmetric homotopy-stable

family with extended boundary B when for every A ∈ F and every η ∈ C0([0, 1]×X,X)

such that η(t, ·) is odd for all t ∈ [0, 1] and η(t, x) = x in ({0}×X)∪ ([0, 1]×B) one

has η({1} × A) ∈ F .

The following assumptions will be posited in the sequel.

(a22) Let {Fα} be a family of symmetric homotopy-stable classes with extended bound-

aries {Bα} and let F̃ :=
⋃
αF

α. The function f satisfies (H′
f), Φ and ψ are

both even, while

c := inf
A∈ eF

sup
x∈A

f(x) < +∞ .

(a23) There exists a closed symmetric subset F of X such that

(F ∩A) \Bα 6= ∅ , A ∈ F̃ ,

for all α, and

sup
x∈Bα

f(x) ≤ inf
x∈F

f(x) .

From (a22)–(a23) it results in

inf
x∈F

f(x) ≤ c .

Theorem 4.8. If (a22) and (a23) hold true then to every sequence {An} ⊆ F̃ such

that limn→+∞ supx∈An
f(x) = c there corresponds a sequence {xn} ⊆ X having the

following properties:
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(i′5) limn→+∞ f(xn) = c.

(i′6) Φ0(xn; z − xn) + Ψ(z) − Ψ(xn) ≥ −ǫn‖z − xn‖ ∀n ∈ N, z ∈ X, where ǫn → 0+.

(i′7) limn→+∞ d(xn, F ) = 0 provided infx∈F f(x) = c.

(i′8) limn→+∞ d(xn, An) = 0.

For the proof we refer the reader to [6, Theorem 3.1].

This result leads to the next non-differentiable Z2-symmetric version of the MPT,

which extends Corollary 7.22 in [16].

Theorem 4.9. Let X = Y ⊕ Z, where dim(Y ) = k < +∞, and let f satisfy (H′
f),

with Φ and ψ both even, as well as (PS). Assume that f(0) = 0 in addition to:

(a24) For suitable ρ > 0, β ≥ 0 one has infx∈∂Bρ∩Z f(x) ≥ β.

(a25) There are R > ρ and a subspace E of X such that Y ⊆ E, dim(E) = n > k,

supx∈∂BR∩E f(x) ≤ 0.

Then, there exist critical values cj (1 ≤ j ≤ n− k) for f such that

(i′9) 0 ≤ c1 ≤ · · · ≤ cn−k, and

(i′10) f possesses at least n− k distinct pairs of non-trivial symmetric critical points.

Moreover, when cj = β for some j ∈ {1, 2, . . . , n− k} we also have

γ(Kβ(f) ∩ ∂Bρ ∩ Z) ≥ j ,

with γ being the Z2-index of Krasnoselski.

Finally, the result stated below (see [6, Theorem 4.2]) guarantees the existence

of an unbounded sequence of critical values.

Theorem 4.10. Let X = Y ⊕ Z, where dim(Y ) = k < +∞, and let f fulfil (H′
f),

with Φ and ψ both even, as well as (PS). Suppose that f(0) = 0, (a24) of Theorem 4.9

holds, and, moreover,

(a′25) there exists an increasing sequence {En} of finite-dimensional subspaces of X

such that limn→+∞ dim(En) = +∞, Y ⊆ En, supx∈∂BRn∩En
f(x) ≤ 0 for some

Rn > ρ and all n ∈ N.

Then f has an unbounded sequence of critical values.

5. WEAKENING THE PALAIS-SMALE CONDITION: THE l.L.c.

CASE

Throughout this section, (X, ‖ · ‖) denotes a real Banach space while f : X → R

is locally Lipschitz continuous, i.e., ψ ≡ 0 in (Hf). Let h : [0,+∞[→ [0,+∞[ be a

continuous function enjoying the following property:
∫ +∞

0

1

1 + h(ξ)
dξ = +∞ . (5.1)
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We say that f satisfies a weak Palais-Smale condition at the level c ∈ R when for

some h as above one has:

(PS)hc Every sequence {xn} ⊆ X such that limn→+∞ f(xn) = c and

lim
n→+∞

(1 + h(‖xn‖))mf(xn) = 0

possesses a convergent subsequence.

Remark 5.1. If h(ξ) ≡ 0 then (PS)hc reduces to [9, Definition 2]. Setting h(ξ) := ξ,

ξ ∈ [0,+∞[, we obtain a non-smooth version of Cerami’s compactness assumption

[18, Section 13.1].

Given x, z ∈ X, write P(x, z) for the family of all piecewise C1 paths p : [0, 1] → X

such that p(0) = x and p(1) = z. Moreover, put

lh(p) :=

∫ 1

0

‖p′(t)‖

1 + h(‖p(t)‖)
dt , p ∈ P(x, z) ,

as well as

δh(x, z) := inf{lh(p) : p ∈ P(x, z)} . (5.2)

For h(ξ) := ξ, ξ ∈ [0,+∞[, the function δh : X ×X → IR defined by (5.2) coincides

with the geodesic distance introduced in [12, p. 138]. Exploiting (5.1) and the argu-

ments of [12, p. 138] (cf. besides [11, Section 4], where a more general situation is

treated) yields the following basic properties of δh.

(p1) δh(x, z) ≤ ‖x− z‖ for all x, z ∈ X.

(p2) If U is a nonempty bounded subset of X then there exists a constant cU > 0 such

that

δh(x, z) ≥ cU‖x− z‖ ∀x, z ∈ U .

(p3) δh turns out to be a distance on X and the metric topology derived from δh

coincides with the norm topology.

(p4) δh-bounded and norm-bounded sets in X are the same.

Through (p1), (p2), and (p4) one easily verifies that the metric space (X, δh) is com-

plete.

The following assumptions will be posited in the sequel.

(b1) F denotes a homotopy-stable family with extended boundary B.

(b2) There exists a nonempty closed subset F of X such that (3.2) holds and, more-

over,

sup
x∈B

f(x) ≤ inf
x∈F

f(x) . (5.3)

(b3) h : [0,+∞[→ [0,+∞[ is a continuous function fulfilling (5.1), while δh indicates

the metric defined by (5.2).
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Set, as usual,

c := inf
A∈F

max
x∈A

f(x) . (5.4)

Thanks to (5.3) one has

inf
x∈F

f(x) ≤ c .

Theorem 5.2. Let (b1)–(b3) be satisfied. Then to every sequence {An} ⊆ F such

that limn→+∞ maxx∈An
f(x) = c there corresponds a sequence {xn} ⊆ X \ B having

the following properties:

(i1) limn→+∞ f(xn) = c.

(i2) (1 + h(‖xn‖))f
0(xn; z) ≥ −ǫn‖z‖ for all n ∈ N, z ∈ X, where ǫn → 0+.

(i3) limn→+∞ δh(xn, F ) = 0 provided infx∈F f(x) = c.

(i4) limn→+∞ δh(xn, An) = 0.

For the proof we refer the reader to [21, Theorem 3.1].

The next critical point result is an almost direct but meaningful consequence of

Theorem 5.2.

Theorem 5.3. Suppose (b1)–(b3) and (PS)hc , with c given by (5.4), hold true. Then

Kc(f) 6= ∅. If, moreover, infx∈F f(x) = c then Kc(f) ∩ F 6= ∅.

Proof. Let {xn} ⊆ X \ B fulfil (i1)–(i4) of Theorem 5.2. Conclusion (i2) actually

means

lim
n→+∞

(1 + h(‖xn‖))mf(xn) = 0 . (5.5)

In fact, due to [37, Lemma 1.3], for any n ∈ N there exists a z∗n ∈ X∗ such that

‖z∗n‖X∗ ≤ 1 and

ǫ−1
n (1 + h(‖xn‖))f

0(xn; z) ≥ 〈z∗n, z〉 ∀ z ∈ X .

Hence,

ǫn(1 + h(‖xn‖))
−1z∗n ∈ ∂f(xn) ,

which gives

(1 + h(‖xn‖))mf(xn) ≤ ǫn‖z
∗
n‖X∗ ≤ ǫn , n ∈ N .

Now (5.5) immediately comes out from ǫn → 0+. Thanks to (PS)hc we may thus

assume that xn → x in X, where a subsequence is considered when necessary. At

this point, (i2) and the upper semi-continuity of f 0 yield f 0(x; z) ≥ 0 for all z ∈ X,

namely x ∈ Kc(f), because f(x) = c by (i1). Next, suppose that infx∈F f(x) = c.

On account of (p3) the set F turns out to be δh-closed. So, (i3) forces x ∈ F , i.e.,

Kc(f) ∩ F 6= ∅.

Theorem 5.3 might be employed to get valuable information about the nature of

min-max generated critical points. For instance one has [4, Theorems 2.3 and 2.4]
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Theorem 5.4. Let (b1), (b3), and (PS)hc , with c as in (5.4), be satisfied. Assume

also that:

(b4) The members of F are path-wise connected and contain B.

(b5) supx∈B f(x) < c.

Then Kc(f) possesses a nonlocal minimum point.

Theorem 5.5. Suppose (b3) and (PS)ha, a ∈ R, hold true. If x0, x1 ∈ X are two local

minima of f then it has at least three critical points.

Theorem 5.4 extends [16, Corollary 4.14] while Theorem 5.5 represents a non-

smooth variant of the famous [31, Corollary 1]. Other structure results can be found

in [2].

Combining [3, Theorem 3.1] with Theorem 5.5 yields the multiplicity result below.

We shall assume that:

(b6) X is reflexive. Moreover, there exists a Banach space X̃ such that X compactly

embeds in X̃.

(b7) Φ,Ψ : X̃ → R turn out to be locally Lipschitz continuous, Φ(0) = Ψ(0) = 0, and

Φ|X is coercive.

(b8) For some r > 0, x1 ∈ X one has r < Φ(x1) as well as

sup
z∈Φr

Ψ(z) < r
Ψ(x1)

Φ(x1)
.

To shorten notation, define

fλ := Φ − λΨ , λ ∈ Λr , (5.6)

where

Λr :=

]
Φ(x1)

Ψ(x1)
,

r

supz∈Φr
Ψ(z)

[
.

(b9) fλ fulfils (PS)ha, a ∈ R, and is coercive for all λ ∈ Λr.

Theorem 5.6. Let (b3) and (b6)–(b9) be satisfied. Then the function fλ given by

(5.6) possesses at least three critical points (two local minima and a nonlocal minimum

point) provided λ ∈ Λr.

The proof of this result is analogous to that of [4, Theorem 2.6]. So, we omit it.

6. THE MOTREANU-PANAGIOTOPOULOS CASE

Let (X, ‖ · ‖) be a real reflexive Banach space, let f : X → R ∪ {+∞} comply with

(H′
f), and let h : [0,+∞[→ [0,+∞[ be continuous and enjoying property (5.1). We

say that the function f fulfils a weak Palais-Smale condition at the level c ∈ R when

for some h as above one has:
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(PS)hc Every sequence {xn} ⊆ X such that limn→+∞ f(xn) = c and there exist y∗n ∈

∂Φ(xn), z
∗
n ∈ ∂ψ(xn), n ∈ N, satisfying

lim
n→+∞

(1 + h(‖xn‖))‖y
∗
n + z∗n‖X∗ = 0

possesses a convergent subsequence.

Remark 6.1. For ψ ≡ 0, namely in the locally Lipschitz continuous framework,

(PS)hc reduces to hypothesis (PS)hc .

Theorem 6.2. Suppose (b1)–(b3) of Section 5 and (3.1) hold true for f as above. If,

moreover, f fulfils (PS)hc , and there exist r, µ > 0 such that Nr(f
c+µ) ⊆ Dψ, then

Kc(f) 6= ∅. When infx∈Ff(x) = c one actually has Kc(f) ∩ F 6= ∅.

For the proof we refer the reader to [25, Theorem 2.2].

Remark 6.3. If infx∈F f(x) = c condition (PS)hc that appears in Theorem 6.2 can

be replaced by the following weaker one, as an elementary argument shows.

(PS)hF,c Every sequence {xn} ⊆ X such that limn→+∞ δh(xn, F ) = 0, limn→+∞ f(xn) = c,

and there exist y∗n ∈ ∂Φ(xn), z
∗
n ∈ ∂ψ(xn), n ∈ N, satisfying

lim
n→+∞

(1 + h(‖xn‖))‖y
∗
n + z∗n‖X∗ = 0

possesses a convergent subsequence.

Remark 6.4. Theorem 6.2 might be exploited to get further information on the

critical set Kc(f), as already made in [20, 4] for h ≡ 0 or ψ ≡ 0, respectively.

7. SOME APPLICATIONS

The results of Sections 3–6 can be used to study elliptic variational-hemivariational

inequalities in the sense of Panagiotopoulos [30] besides hemivariational inequality

problems.

Let Ω a nonempty bounded domain of the real Euclidean N -space (RN , | · |),

N ≥ 3 having a smooth boundary ∂Ω. The symbol |Ω| stands for the Lebesgue

measure of Ω, while H1
0 (Ω) indicates the closure of C∞

0 (Ω) with respect to the norm

‖u‖ :=

(∫

Ω

|∇u(x)|2dx

)1/2

.

Denote by 2∗ the critical exponent for the Sobolev embeddingH1
0 (Ω) →֒ Lp(Ω). Recall

that 2∗ = 2N
N−2

, if p ∈ [1, 2∗] then there exists a positive constant cp such that

‖u‖Lp(Ω) ≤ cp‖u‖ (7.1)

for all u ∈ H1
0 (Ω) and, in particular, the embedding is compact whenever p ∈ [1, 2∗[;

see [33, Proposition B.7]. Now, let {λn} be the sequence of eigenvalues of the operator
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−∆ in H1
0 (Ω), with 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · · , and let {ϕn} be a corresponding

sequence of eigenfunctions normalized as follows:

‖ϕn‖
2 = 1 = λn‖ϕn‖

2
L2(Ω), n ∈ N ,

∫

Ω

∇ϕm(x) · ∇ϕn(x)dx =

∫

Ω

ϕm(x)ϕn(x)dx = 0 provided m 6= n.

Define

J(x, ξ) :=

∫ ξ

0

−j(x, t)dt, (x, t) ∈ Ω × R , (7.2)

where j : Ω × R → R satisfies the conditions

(j1) j is measurable with respect to each variable separately,

(j2) there exist a1 > 0, p ∈ [1, 2∗] such that

|j(x, t)| ≤ a1(1 + |t|p−1) ∀ (x, t) ∈ Ω × R .

Under (j1)–(j2), the function J turns out well defined, J(·, ξ) is measurable, while

J(x, ·) is locally Lipschitz continuous. So it make sense to consider its generalized

directional derivative J0
x with respect to the variable ξ.

Finally, given k ∈ N such that λk < λk+1, consider the orthogonal decomposition

H1
0 (Ω) = V ⊕ E, where

V := span{ϕ1, ϕ2, . . . , ϕk} , E := V ⊥ .

Using Theorem 4.3 yields the following result [7, Theorem 4.2].

Theorem 7.1. Let λ ∈ [λk, λk+1] and let j : Ω×R → R fulfil (j1)–(j2) with p ∈ ]2, 2∗ [.

If, moreover,

(j3) for some a2 > 0, q ∈ ]2, p] one has J(x, ξ) ≤ min{0, a2(1 + |ξ|q)} in Ω× R, and

(j4) there exists a ρ > 0 such that inf ũ∈∂Bρ∩E

∫
Ω
J(x, ũ(x))dx ≥ −1

2

(
1 − λ

λk+1

)
,

where the function J is given by (7.2), then to any sufficiently large R > 0 there

corresponds a function u ∈ B̄R \ {0} ⊆ H1
0 (Ω) satisfying

−

∫

Ω

∇u(x) · ∇(v− u)(x)dx+ λ

∫

Ω

u(x)(v(x)− u(x))dx ≤

∫

Ω

J0
x(u(x); v(x)− u(x))dx

for all v ∈ B̄R.

Through Theorem 4.4 we obtain the result [7, Theorem 4.3] below, where PV

indicates the projection of H1
0 (Ω) onto V .

Theorem 7.2. Let λ ∈ [λk, λk+1[ and let j : Ω × R → R satisfy (j1)–(j2) with

p ∈ ]2, 2∗ [. If, moreover,

(j′3) for some a2 > 0, q ∈ ]2, p] one has J(x, ξ) ≤ a2(1 + |ξ|q)} in Ω × R,
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where J is given by (7.2), then there exists a function u ∈ H1
0 (Ω) such that

−
∫
Ω
∇u(x) · ∇(v − u)(x)dx+ λ

∫
Ω
u(x)(v(x) − u(x))dx

≤
∫
Ω
J0
x(PV (u)(x);PV (v − u)(x))dx ∀ v ∈ H1

0 (Ω) .

The next application (see [7, Theorem 4.4]) stems from Theorem 4.1.

Theorem 7.3. Suppose B is a nonempty, convex, closed subset of H1
0 (Ω) such that

(B̄r ∩ V ) ⊕ E ⊆ B for some r > 0, while the function j : Ω × R → R fulfils (j1) and

(j2) with a1 ∈ ]0, λk+1 − λk [, p = 2. If, moreover,

(j5) for suitable a3 ∈ ]0, (λk+1 − λk)/2] one has −a3ξ
2 ≤ J(x, ξ) ≤ 0 in Ω × R,

where J is given by (7.2), then there exists an ũ ∈ B ∩ E such that

−

∫

Ω

∇ũ(x) · ∇(v− ũ)(x)dx+ λ

∫

Ω

ũ(x)(v(x)− ũ(x))dx ≤

∫

Ω

J0
x(ũ(x); v(x)− ũ(x))dx

for all v ∈ B.

Now, let the function j : Ω × R → R satisfy the following condition.

(j6) j is locally bounded and measurable in Ω × R. Moreover,

−∞ < lim inf
|t|→+∞

j(x, t)

t
≤ lim sup

|t|→+∞

j(x, t)

t
< λ1

uniformly in x ∈ Ω.

Using (j6) provides constants ε ∈ ]0, λ1[, r > 0 such that

j(x, t) < (λ1 − ε)t

for all |t| ≥ r and x ∈ Ω. Define

M := sup
(x,t)∈Ω×[−r,r]

|j(x, t)| .

Clearly, M < +∞. As a consequence of Theorem 4.6 we obtain the following [27,

Theorem 4.1]

Theorem 7.4. Let j : Ω×R → R fulfil (j6) and let K be a nonempty, convex, closed

subset of H1
0 (Ω) such that B̄rκ ⊆ K for some κ > 0, where rκ :=

√
2
ε
λ1 (κ+Mr|Ω|).

Assume also that

lim sup
ξ→0

J(x, ξ)

|ξ|2
< −

λk
2
, lim sup

|ξ|→0

j(x, ξ)

ξ
< λk+1

uniformly in x ∈ Ω, with J being as in (7.2). Then there exist u1, u2 ∈ K \ {0} such

that ∫

Ω

∇ui(x) · ∇(v − ui)(x)dx ≤

∫

Ω

J0(u(x); v(x) − ui(x))dx , i = 1, 2,

for all v ∈ K.
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Remark 7.5. Write, provided (x, t) ∈ Ω × R,

j−(x, t) := lim
δ→0

inf
|ξ−t|<δ

j(x, ξ) , j+(x, t) := lim
δ→0

sup
|ξ−t|<δ

j(x, ξ) ,

and suppose j−, j+ : Ω × R → R superposition measurable. Choosing K := H1
0 (Ω),

Theorem 7.4 gives at least two nontrivial solutions of the following multi-valued

Dirichlet problem:

Find u ∈ H1
0 (Ω) such that

{
−∆u ∈ [j−(x, u), j+(x, u)] in Ω,

u = 0 on ∂Ω.

Next, let a ∈ L∞(Ω), let λ1, λ2, . . . the eigenvalues of −∆+ a in H1
0 (Ω), and let {ϕn}

be a corresponding sequence of eigenfunctions normalized as follows:
∫

Ω

(|∇ϕn(x)|
2 + a(x)ϕn(x)

2)dx = λn

∫

Ω

ϕn(x)
2dx = λn, n ∈ N ;

∫

Ω

(∇ϕm(x) · ∇ϕn(x) + a(x)ϕm(x)ϕn(x))dx =

∫

Ω

ϕm(x)ϕn(x)dx = 0

provided m 6= n.

Assume that

λ1 < λ2 ≤ · · · ≤ λs < 0 < λs+1 ≤ · · · (7.3)

and consider the orthogonal decomposition H1
0 (Ω) = V ⊕ E, where

V := span{λ1, λ2, . . . , λs}, E := V ⊥ .

If ĵ : R → R satisfies the conditions

(̂j1) ĵ is measurable,

(̂j2) there exist a1 > 0, p ∈]2, 2∗[ such that |ĵ(t)| ≤ a1(1 + |t|p−1) ∀ t ∈ R ,

then the function Ĵ : R → R defined by

Ĵ(ξ) :=

∫ ξ

0

−ĵ(t)dt , ξ ∈ R ,

turns out well defined and locally Lipschitz continuous. So, it make sense to consider

its generalized directional derivative Ĵ0. For our application, we will further suppose

that

(̂j3) limt→0
ĵ(t)
t

= 0,

(̂j4) lim sup|t|→+∞
ĵ(t)
t
< 0,

(̂j5) there exists a ξ0 ∈ R such that Ĵ(ξ0) < 0.

Through (ĵ4) one easily finds two positive constants β, γ satisfying

ĵ(t) ≤ −βt− γ ∀ t ≤ 0, ĵ(t) ≤ −βtγ ∀ t ≥ 0.

Define, for every let λ, µ > 0, rλ,µ := λγc1 +
√

(λγc1)2 + 2µ, with c1 given by (7.1).

Finally, a set Kλ ⊆ H1
0 (Ω) is called of type (Kĵ

λ) provided
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(Kĵ
λ) Kλ is convex closed in H1

0 (Ω). Moreover, there is a µ > 0 such that B̄rλ,µ
⊆ Kλ.

Given λ > 0 and Kλ fulfilling (Kĵ
λ), the following problem, say (P̂λ), can be treated

via Theorem 4.6:

Find u ∈ Kλ such that

−

∫

Ω

∇u(x) · ∇(v− u)(x)dx−

∫

Ω

a(x)u(x)(v− u)(x)dx ≤ λ

∫

Ω

Ĵ0(u(x); (v− u)(x))dx

for all v ∈ Kλ.

In particular, one has [22, Theorem 4.1]

Theorem 7.6. Suppose (̂j1)− (̂j5) and (Kĵ
λ) hold true. Then, for every λ sufficiently

large, problem (P̂λ) possesses at least two nontrivial solutions.

Finally, Theorem 4.6 provides also the existence of multiple weak solutions to the

hemivariational inequality problem, say (P ), with p-Laplacian
{

−∆pu ∈ ∂J(u) in Ω,
∂u
∂np

= 0 on ∂Ω,

where 2 ≤ p < +∞, ∆pu := div(|∇u|p−2∇u), the potential J : R → R is locally

Lipschitz continuous, while ∂u
∂np

= |∇u|p−2∇u · n, with n(x) being the outward unit

normal vector to ∂Ω at the point x ∈ ∂Ω.

Let p′ := p/(p − 1). A function u ∈ W 1,p(Ω) is called a weak solution to (P )

provided there exists v ∈ Lp
′

(Ω) such that v(x) ∈ ∂J(u(x)) almost everywhere in Ω

and ∫

Ω

|∇u(x)|p−2∇u(x) · ∇w(x)dx =

∫

Ω

v(x)w(x)dx ∀w ∈W 1,p(Ω) ,

namely u turns out to be a solution of the hemivariational inequality
∫

Ω

|∇u(x)|p−2∇u(x) · ∇w(x)dx ≤

∫

Ω

J0(u(x);w(x))dx, w ∈W 1,p(Ω) .

The following result is established in [23]; see [23, Theorem 3.1].

Theorem 7.7. Assume that:

(J1) J turns out to be locally Lipschitz continuous and J(0) = 0.

(J2) There exists a constant a1 > 0 such that for every ξ ∈ R one has

|y| ≤ a1(1 + |ξ|p−1) ∀ y ∈ ∂J(ξ) .

(J3) lim sup|ξ|→0
J(ξ)
|ξ|p

= 0.

(J4) lim sup|ξ|→+∞
J(ξ)
|ξ|p

< 0.

(J5) There are µ > p, M > 0 such that µJ(ξ) ≤ −J0(ξ;−ξ) for any |ξ| ≥M .

(J6) There exists a ρ > 0 such that J(ξ) > 0 provided 0 < |ξ| < ρ.

Then (P ) possesses at least two nontrivial weak solutions u1, u2 ∈W 1,p(Ω).

Further existence results concerning problem (P ) may be found in [26].
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