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ABSTRACT. We investigate several general conditions in order to determine some cores for gen-

erators of strongly continuous positive semigroups of the form Au := αu′′ on weighted spaces of

continuous functions on an arbitrary noncompact real interval. As an application we consider a

degenerate differential operator of the above mentioned form on the interval [0, +∞[ and we estab-

lish an approximation formula for the corresponding positive semigroup in terms of iterates of an

integral modification of Szász-Mirakjan operators.
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1. INTRODUCTION

For a given generator (A,D(A)) of a strongly continuous semigroup on a Banach

space E several subspaces of D(A) can be considered which, to various extent, are

useful to describe properties of A or of the semigroup itself. Among them the cores

have an important rôle because, on one hand, they determine the operator A and, on

the other, very often they allow more easily to compute it, while generally the action

of A on D(A) is more difficult to obtain (see, e.g., [7, Theorem 6.2.6], [25, Chapter II,

Section 2.8, and Chapter III, Corollary 5.8]).

Moreover, because of Trotter approximation theorem ([34, Theorem 5.2]; see also

[30, Chapter 3, Theorem 6.7]), cores are also strongly involved when investigating the

possibility to approximate a semigroup in terms of simpler semigroups or by iterates

of bounded linear operators.
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This last aspect has been investigated in many respects in the last two decades

and the relevant results have successfully led to several applications concerning the

approximation and the qualitative analysis (especially, spatial regularity) of the so-

lutions of a large class of evolution equations in spaces of real valued continuous

functions defined on compact intervals (see, e.g., [3], [10]-[12], [17], [19], [20], [31]-

[33]), on the interval [0,+∞[ (see, e.g., [6], [9], [13], [14], [18], [23], [26], [27]), on the

whole real line ([15], [16], [29]) and on convex compact subsets of R
n, n ≥ 1 (see, e.g.,

[1], [2], [7, Chapter 6], [8]).

In all these papers the determination of cores has a crucial rôle. However, devel-

oping these researches it appeared to be more and more pressing the need to have

general results to help to find cores when dealing with general differential operators.

In this paper we try to give some contributions to the above mentioned problem

by starting with a simple situation involving a second-order differential operator on a

real interval. More precisely, we provide some (rather) general and simple conditions

under which suitable linear spaces of smooth functions are cores for a large class of

(possibly degenerate) elliptic differential operators of the form Au := αu′′, in the

setting of weighted spaces of continuous functions on a noncompact real interval.

We shall assume that the coefficient α ∈ C(J) is strictly positive on
◦

J , that

0 < α(x) ≤ (x−r1)(r2−x)
2

(x ∈
◦

J) if J is bounded (here r1 and r2 are the endpoints of

J ) and that α has at most a quadratic growth at infinity whenever J is unbounded.

The domain of the operator A is a linear subspace of the weighted space Cw
0 (J) :=

{f ∈ C(J) | wf ∈ C0(J)}, where w is a bounded continuous weight on J , and it

incorporates a kind of weighted Wentzell conditions at the endpoints. However, the

construction of cores will be possible just checking α at the endpoints ri, i = 1, 2,

without no further requirements on the weight w.

Our results would be compared with the ones of [12, Theorem 3.4 and final note

added in proof], [16, Section 2] and [22, Proposition 3.1] where similar problems are

treated in other different settings.

As an application we consider a degenerate differential operator of the above

mentioned form on the interval [0,+∞[ and we establish an approximation formula for

the corresponding positive semigroup in terms of iterates of an integral modification

of Szász-Mirakjan operators introduced in [28].

2. NOTATIONS AND PRELIMINARIES

Let J be an arbitrary noncompact real interval and set r1 := inf J ∈ R ∪ {−∞}

and r2 := sup J ∈ R∪{+∞}. Throughout this paper the symbol C(J) (resp., Cb(J))

will stand for the space of all real valued continuous (resp., continuous and bounded)
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functions on J . The space Cb(J) endowed with the natural (pointwise) order and the

sup-norm ‖ · ‖∞ is a Banach lattice.

We shall also consider the spaces

C0(J) := {f ∈ C(J)| lim
x→ri

f(x) = 0 whenever ri /∈ J, i = 1, 2}

and

C∗(J) := {f ∈ C(J)| lim
x→ri

f(x) ∈ R whenever ri /∈ J, i = 1, 2}

which are closed subspaces of Cb(J).

Note that a function f ∈ C(J) belongs to C0(J) if and only if for every ε > 0

there exists a compact subset K of J such that |f(x)| ≤ ε for every x ∈ J \K.

If w is a weight on J , i.e., w ∈ Cb(J) and w(x) > 0 for all x ∈ J , we shall

denote by Cw
b (J) (resp., Cw

0 (J)) the Banach lattice of all functions f ∈ C(J) such

that wf ∈ Cb(J) (resp., wf ∈ C0(J)). The space Cw
b (J) will be endowed with the

natural order and the weighted norm ‖ · ‖w defined by ‖f‖w := ‖wf‖∞ (f ∈ Cw
b (J)).

Observe that Cb(J) ⊂ Cw
b (J) and ‖ · ‖w ≤ ‖w‖∞‖ · ‖∞ on Cb(J). In particular, if

w ∈ C0(J), then Cb(J) ⊂ Cw
0 (J). Moreover, the space C0(J) is dense in Cw

0 (J) and,

if w ∈ C0(J), then C∗(J) is dense in Cw
0 (J) as well.

Given a linear operator A : D(A) → E acting on a linear subspace D(A) of a

Banach space (E, ‖ · ‖), a linear subspace D of D(A) is called a core for (A,D(A)) if

it is dense in D(A) for the graph norm

‖u‖A := ‖u‖ + ‖Au‖ (u ∈ D(A)),

i.e., for every u ∈ D(A) there exists a sequence (un)n≥1 in D such that un → u and

Aun → Au in E.

If (A,D(A)) is closed, then a linear subspace D of D(A) is a core for (A,D(A))

if and only if the restriction A|D of A to D is closable and its closure A|D coincides

with A.

If in addition the resolvent set ρ(A) of A is non empty, then D is a core for

(A,D(A)) if and only if (λI −A)D is dense in E for one/all λ ∈ ρ(A) (here I stands

for the identity operator).

The next result shows the usefulness of cores for the approximation of semigroups.

Although it is a simple consequence of Trotter’s theorem (see [34, Theorem 5.2];

see also [30, Chapter 3, Theorem 6.7]), we present here a proof for the reader’s

convenience.

In the sequel, given a linear operator L on E and m ≥ 1, the symbol Lm denotes

the m− th iterate of L, i.e.,

Lm =





L if m = 1,

Lm−1 ◦ L if m ≥ 2.
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Theorem 2.1. Let (A,D(A)) be the generator of a C0-semigroup (T (t))t≥0 on a

Banach space E and suppose that there exist M ≥ 1 and ω ∈ R such that ‖T (t)‖ ≤

Meωt (t ≥ 0). Moreover, let D be a core for (A,D(A)) and (Ln)n≥1 a sequence of

bounded linear operators on E such that

(i) ‖Lk
n‖ ≤Meωρnk for every n ≥ 1, k ≥ 1,

(ii) lim
n→∞

Lnu−u
ρn

= Au for every u ∈ D,

where (ρn)n≥1 is a null sequence of positive real numbers.

If t ≥ 0 and if (k(n))n≥1 is a sequence of positive integers such that k(n)ρn → t

then for every f ∈ E

T (t)f = lim
n→∞

Lk(n)
n f.

Proof. Let B : D(B) ⊂ E −→ E be the linear operator defined by

Bu := lim
n→∞

Lnu− u

ρn

,

for every u ∈ D(B) :=

{
u ∈ E | there exists lim

n→∞

Lnu− u

ρn

∈ E

}
.

By (ii), D ⊂ D(B) and D is dense in E because D(A) is dense in E. Therefore

D(B) is dense in E too. Moreover, since (A,D(A)) is a generator, there exists λ > ω

such that λI−A is invertible, so that (λI−B)(D) = (λI−A)(D) is dense in E. Then,

from Trotter’s theorem (see [34, Theorem 5.2]; see also [30, Chapter 3, Theorem 6.7])

it follows that the operator (B,D(B)) is closable and its closure (B,D(B)) generates

a C0-semigroup (S(t))t≥0 on E such that

(1) ‖S(t)‖ ≤Meωt for every t ≥ 0

and

(2) S(t)f = lim
n→∞

Lk(n)
n f,

for every f ∈ E, t ≥ 0 and for every sequence (k(n))n≥1 of positive integers such that

k(n)ρn −→ t as n→ ∞.

The result will be proved once we show that S(t) = T (t) (t ≥ 0). To this end it

suffices to prove that (B,D(B)) = (A,D(A)).

First observe that, for λ > ω, the operator λI − B is invertible as well and

(λI − B)(D) = (λI − B)(D) = (λI − A)(D) is dense in E; hence D is a core for

(B,D(B)). Therefore, according to the previous remark, A = A|D = B|D = B.

Corollary 2.2. Let (A,D(A)) be the generator of a C0-semigroup (T (t))t≥0 on a

Banach space E and suppose that ‖T (t)‖ ≤ Meωt for some M ≥ 1 and ω ∈ R and

for all t ≥ 0. Let D be a core for (A,D(A)) and consider a C0-semigroup (S(t))t≥0

on E satisfying

(i) ‖S(ρn)‖ ≤Meωρn (n ≥ 1),
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(ii) lim
n→∞

S(ρn)(u)−u

ρn
= Au for every u ∈ D,

where (ρn)n≥1 is a null sequence of positive real numbers.

Then S(t) = T (t) for every t ≥ 0.

Proof. It suffices to apply Theorem 2.1 to the sequence Ln = S(ρn) (n ≥ 1).

3. SECOND-ORDER DIFFERENTIAL OPERATORS

ON REAL INTERVALS

As in the previous section let J be an arbitrary noncompact real interval and set

r1 := inf J ∈ R ∪ {−∞} and r2 := sup J ∈ R ∪ {+∞}.

Consider α ∈ C(
◦

J) and assume that

α(x) > 0 for every x ∈
◦

J (3.1)

and

α(x) = O(x2) as x→ ri whenever ri ∈ {−∞,+∞}, i = 1, 2. (3.2)

Furthermore consider a weight w on J and assume that it is twice differentiable on
◦

J and that

ω := sup
◦

J

∣∣α(2 (w′)2 − ww′′)
∣∣

w2
< +∞. (3.3)

For every u ∈ C2(
◦

J) and x ∈
◦

J , set

Au(x) := α(x)u′′(x).

Note that, if u ∈ C2(
◦

J) and if ri ∈ J for some i = 1, 2, then

lim
x→ri

w(x)α(x)u′′(x) = 0 if and only if lim
x→ri

α(x)u′′(x) = 0.

Therefore, considering the linear subspace

Dw(A) :=
{
u ∈ Cw

0 (J) ∩ C2(
◦

J) | lim
x→ri

w(x)α(x)u′′(x) = 0 for every i = 1, 2
}
,

for u ∈ Dw(A) the function Au can be continuously extended to the whole J and its

extension, which we continue to denote by Au, belongs to Cw
0 (J).

From now on the symbol (A,Dw(A)) stands for the extended operator A :

Dw(A) −→ Cw
0 (J). Thus, if u ∈ Dw(A), Au = αu′′ on

◦

J and Au = 0 on J \
◦

J

whenever J \
◦

J 6= ∅.

Analogously we may consider a similar extension Ã : D(Ã) −→ C∗(J) of A where

D(Ã) :=
{
u ∈ C∗(J) ∩ C2(

◦

J) | lim
x→ri

α(x)u′′(x) = 0 for every i = 1, 2
}
.

Again, if u ∈ D(Ã), Ãu = αu′′ on
◦

J and, if J \
◦

J 6= ∅, Ãu = 0 on J \
◦

J .

Clearly, D(Ã) ∩ C0(J) ⊂ Dw(A) and, if w ∈ C0(J), then D(Ã) ⊂ Dw(A).
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Note that, if ri ∈ {−∞,+∞} for some i = 1, 2, then, after choosing an arbitrary

x0 ∈
◦

J , from (3.2) it follows that
∫ x0

ri

∫ x

ri

1

α(t)
dt dx = +∞.

Therefore, from [6, Theorem 3.2], the following result can be easily deduced, the

detailed verification being left to the reader.

Theorem 3.1. Under assumptions (3.1), (3.2) and (3.3), the operator (A,Dw(A))

generates a positive C0-semigroup (T (t))t≥0 on Cw
0 (J) such that

‖T (t)‖ ≤ exp(ωt) for every t ≥ 0.

Moreover, the restriction of (T (t))t≥0 to C0(J) is a Feller semigroup on C0(J)

whose generator is (Ã,D(Ã) ∩ C0(J)).

Finally, if w ∈ C0(J), the restriction of (T (t))t≥0 to C∗(J) is a Feller semigroup

whose generator is (Ã,D(Ã)).

We recall here that a Feller semigroup on C0(J) or on C∗(J) is a C0-semigroup

of positive linear contractions on C0(J) or on C∗(J).

We also point out that, according to [6, Theorem 2.6], the above semigroup is also

the transition semigroup of a suitable right-continuous Markov process.

4. CORES FOR SECOND-ORDER DIFFERENTIAL OPERATORS

This section contains the main results of the paper and it is devoted to the

investigation of cores for the differential operators (A,Dw(A)). Without no further

mention we shall assume that (3.1), (3.2) and (3.3) hold true.

We begin by proving the following preliminary result.

Proposition 4.1. Consider a linear subspace D of C∗(J)∩C2(
◦

J). Then the following

statements hold true:

(1) If D is a core for (Ã,D(Ã) ∩ C0(J)), then D is a core of (A,Dw(A)) ;

(2) If w ∈ C0(J) and D is a core for (Ã,D(Ã)), then D is a core of (A,Dw(A)) .

Proof. Let λ > ω such that both λI − Ã : D(Ã) ∩ C0(J) → C0(J) (resp., λI − Ã :

D(Ã) → C∗(J)) and λI − A : Dw(A) → Cw
0 (J) are invertible.

If D is a core for (Ã,D(Ã) ∩ C0(J)) (resp., (Ã,D(Ã))), then (λI − Ã)(D) =

(λI −A)(D) is dense in C0(J) (resp., C∗(J)).

This yields that (λI−A)(D) is dense in Cw
0 (J) and so D is a core for (A,Dw(A))

as well.
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According to the previous result, we may restrict our investigation simply on the

existence of cores for (Ã,D(Ã) ∩ C0(J)) and (Ã,D(Ã)).

When α is bounded, some results to this respect have been already stated in

[22, Proposition 3.1]. Next we shall address this question without no boundedness

assumptions.

To this aim it is useful to look at the behaviour at the endpoints of the first

derivative of the function u ∈ D(Ã). Arguing as in Propositions 2.8 and 2.9 in [16],

we obtain the following lemmas.

Lemma 4.2. Let δ ∈
◦

J , h ∈ C([δ, r2[) and let ϕ : [δ, r2[ → R be a differentiable

function such that ϕ (x) 6= 0 for every x ∈ [δ, r2[. Assume that one of the following

conditions (a), (b) or (c) is satisfied:

(a) i) 1
h
∈ L1([δ, r2[) or

i’) (ϕ′h)(x) 6= 0 for x ∈ [δ, r2[ and ϕ2

ϕ′h
= O (1) as x→ r2,

and

ii) lim
x→r2

ϕ(x) = 0;

(b) i) 1
h
∈ L1([δ, r2[),

ii) 1
ϕ
/∈ L1([δ, r2[) and lim

x→r2

ϕ(x) ∈ R\{0};

(c) if r2 = +∞,

i) 1
h
∈ L1([δ,+∞[),

ii) lim
x→+∞

ϕ(x) ∈ {−∞,+∞},

iii) (ϕ′h)(x) 6= 0 for x ∈ [δ,+∞[ and ϕ2

ϕ′h
= O (1) as x→ +∞.

Then

lim
x→r2

ϕ(x)u′(x) = 0,

for every u ∈ C2(
◦

J) such that lim
x→r2

u(x) ∈ R and lim
x→r2

h(x)u′′(x) = 0.

Proof. The proof is the same as that one of Propositions 2.8 and 2.9 in [16], by

replacing there W with 1 and α with h. We leave out the details for the sake of

brevity.

Lemma 4.3. Let δ ∈
◦

J , h ∈ C2([δ, r2[) such that h(x) 6= 0 for every x ∈ [δ, r2[ and

ϕ : [δ, r2[ → R. Assume that:

(i) h′′(x) = O(1) as x → r2;

(ii) lim
x→r2

ϕ(x)
h(x)

= 0 if r2 ∈ R or ϕ(x)
h(x)

= O
(

1
x

)
as x→ +∞ if r2 = +∞.

If u ∈ C2(
◦

J) and if lim
x→r2

u(x) = lim
x→r2

h(x)u′′(x) = 0, then

lim
x→r2

ϕ(x)u′(x) = 0.
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Proof. Let u ∈ C2(
◦

J) such that lim
x→r2

u(x) = lim
x→r2

h(x)u′′(x) = 0 and fix ε > 0; observe

that, by (i), h′(x) = O(x) as x → r2, so there exist δ1 ∈]δ, r2[ and M > 0 such that,

for x ∈ [δ1, r2[,

|u (x)| ≤ ε, |(hu′′) (x)| ≤ ε, |h′(x)| ≤M |x|.

Since h′′ is bounded on [δ, r2[ and since
∫ x

δ1

(hu′′) (s) ds =h (x) u′ (x) − h (δ1) u
′ (δ1) − h′ (x) u (x) + h′ (δ1)u (δ1)

+

∫ x

δ1

h′′ (s)u (s) ds,

we get

|ϕ (x) u′ (x)| ≤

∣∣∣∣
ϕ(x)

h(x)

∣∣∣∣
[∫ x

δ1

| (hu′′) (s) |ds+ |h′ (x)| |u (x)|

+ |h′ (δ1) u (δ1) − h (δ1) u
′ (δ1) | + ‖h′′‖∞

∫ x

δ1

|u (s) |ds

]

≤

∣∣∣∣
ϕ(x)

h(x)

∣∣∣∣ ε [(1 + ‖h′′‖∞)|x− δ1| +M |x|]

+

∣∣∣∣
ϕ(x)

h(x)

∣∣∣∣ |h
′ (δ1) u (δ1) − h (δ1)u

′ (δ1) |.

The result now easily follows on account of condition (ii).

Similar results can be stated for the endpoint r1.

Next we discuss separately the cases where J is bounded and where J is un-

bounded. For the case J = R we refer the reader to [16, Section 4].

4.1. BOUNDED INTERVALS.

Let r1, r2 ∈ R and assume that

0 < α(x) ≤
(x− r1)(r2 − x)

2
for every x ∈

◦

J. (4.1)

Setting

λ(x) :=
2α(x)

(x− r1)(r2 − x)
(x ∈

◦

J) (4.2)

we get λ ∈ C(
◦

J), 0 < λ(x) ≤ 1 for every x ∈
◦

J and

α(x) =
(x− r1)(r2 − x)

2
λ(x) for every x ∈

◦

J.

For every u ∈ C2(J) and x ∈
◦

J , set

Bu(x) :=
(x− r1)(r2 − x)

2
u′′(x).
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Then the operator B can be extended to a linear operator B̃ : D(B̃) −→ C∗(J) where

D(B̃) :=
{
u ∈ C∗(J) ∩ C2(

◦

J) | lim
x→ri

(x− ri)u
′′(x) = 0 for every i = 1, 2

}
.

If f ∈ D(B̃), B̃u = Bu on
◦

J and, if J \
◦

J 6= ∅, B̃u = 0 on J \
◦

J .

Clearly D(B̃) ⊂ D(Ã); moreover, (B̃,D(B̃)) generates a Feller semigroup on

C∗(J) (see [24, Theorem 2]).

Proposition 4.4. The subspace D of D(B̃), defined by

D :=
{
u ∈ C∗(J) ∩ C2(

◦

J) | u′′ ∈ C∗(J)
}
, (4.3)

is a core for the operator (B̃,D(B̃)).

Proof. Let u ∈ D(B̃) and ε > 0. The function u is uniformly continuous and for every

i = 1, 2, by applying Lemma 4.2-(a) to ϕi(x) = hi(x) := ri − x (x ∈
◦

J), it follows

that lim
x→ri

(ri − x)u′(x) = 0.

Then there exists δi ∈
◦

J, |ri − δi| ≤ 1, such that, for every x, y ∈ I(δi, ri),

|u(x) − u(y)| ≤
ε

3
, |u′(x)(ri − x)| ≤

ε

3
, |u′′(x)(ri − x)| ≤

ε

3
,

where I(δi, ri) =]r1, δ1] if i = 1 and I(δi, ri) = [δ2, r2[ if i = 2.

Now, fixed x1 ∈]r1, δ1] and x2 ∈ [δ2, r2[, define the function v ∈ D as

v(x) :=





u(x1) + u′(x1)(x− x1) + u′′(x1)
2

(x− x1)
2 if x ∈ ]r1, x1],

u(x) if x ∈ ]x1, x2[,

u(x2) + u′(x2)(x− x2) + u′′(x2)
2

(x− x2)
2 if x ∈ [x2, r2[.

Then we have that ‖u− v‖ eB ≤ ε.

Indeed, for x ∈]x1, x2[, |u(x) − v(x)| = |B̃u(x) − B̃v(x)| = 0.

Otherwise, for x ∈ I(xi, ri) and i = 1, 2,

|u(x) − v(x)| ≤ |u(x) − u(xi)| + |u′(xi)||x− xi| +
|u′′(xi)|

2
|x− xi|

2

≤ |u(x) − u(xi)| + |u′(xi)(ri − xi)| + |u′′(xi)(ri − xi)| ≤ ε

and

|B̃u(x) − B̃v(x)| =

∣∣∣∣
(x− r1)(r2 − x)

2
u′′(x) −

(x− r1)(r2 − x)

2
u′′(xi)

∣∣∣∣

≤

∣∣∣∣
(x− r1)(r2 − x)

2
u′′(x)

∣∣∣∣ +

∣∣∣∣
(xi − r1)(r2 − xi)

2
u′′(xi)

∣∣∣∣ ≤
(r2 − r1)ε

3
.

Proposition 4.5. The operators (B̃,D(B̃)∩C0(
◦

J)) and (Ã,D(Ã)∩C0(
◦

J)) generate

some Feller semigroups on C0(
◦

J). Moreover, D ∩ C0(
◦

J) is a core for (B̃,D(B̃) ∩

C0(
◦

J)).



486 F. ALTOMARE, V. LEONESSA AND S. MILELLA

Proof. The first part of the assertion follows from Proposition 2.2 in [6].

In order to prove the last part, fix u ∈ D(B̃) ∩ C0(
◦

J) and ε > 0. Since D is a

core for (B̃,D(B̃)), there exists v ∈ D such that ‖u− v‖ eB < ε/3.

Observe that u(r1) = u(r2) = 0, so |v(ri)| ≤ ‖u− v‖∞ < ε/3 for i = 1, 2.

Consider the function

v0(x) := v(x) −
x− r1
r2 − r1

v(r2) −
r2 − x

r2 − r1
v(r1) (x ∈ J),

then v0 ∈ D ∩ C0(
◦

J). Moreover

‖u− v0‖∞ ≤ ‖u− v‖∞ + |v(r1)| + |v(r2)| < ε

and

‖B̃u− B̃v0‖∞ = ‖B̃u− B̃v‖∞ < ε.

We can describe the domain D(Ã) by the elements of D(B̃). This allows us to

find cores for (Ã,D(Ã) ∩ C0(
◦

J)) and (Ã,D(Ã)).

Proposition 4.6. Under assumption (4.1) the following equalities hold true:

D(Ã) ∩ C0(
◦

J) = {u ∈ D(Ã) | there exists (un)n≥1inD(B̃) ∩ C0(
◦

J) such that

un → u and Ãun → Ãu uniformly on J},

and

D(Ã) = {u ∈ D(Ã) | there exists (un)n≥1inD(B̃) such that un → u and

Ãun → Ãu uniformly on J}.

Proof. Consider the auxiliary function λ defined by (4.2). By Proposition 4.5 and

Corollary 2.7 in [5], the perturbated operator (λB̃,D(B̃) ∩ C0(
◦

J)) is closable and its

closure (C,D(C)) generates a Feller semigroup on C0(
◦

J).

Since λB̃ = Ã and D(B̃) ∩ C0(
◦

J) ⊂ D(Ã) ∩ C0(
◦

J), then (Ã,D(Ã) ∩ C0(
◦

J))

is a closed extension of (C,D(C)). Moreover (Ã,D(Ã) ∩ C0(
◦

J)) generates a Feller

semigroup on C0(
◦

J) and hence

D(C) = D(Ã) ∩ C0(
◦

J) and Ã
|D( eA)∩C0(

◦

J)
= C.

Accordingly, the first equality follows taking the characterization of the closure D(C)

into account ([25, Proposition B.4, p. 516]).

Now, let u ∈ D(Ã) and set v(x) := u(x) − x−r1

r2−r1
u(r2) −

r2−x
r2−r1

u(r1) (x ∈ J).

Then v ∈ D(Ã) ∩ C0(
◦

J) and there exists a sequence (vn)n≥1 ⊂ D(B̃) ∩ C0(
◦

J) such

that vn → v and Ãvn → Ãv uniformly on J.

It is easy to check that un := vn +u−v ∈ D(B̃) and that un → u and Ãun → Ãu

uniformly on J .

So the assertion is completely proved.
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Theorem 4.7. Let D be the subspace of C∗(J) ∩ C2(
◦

J) defined by (4.3). Under

assumption (4.1) the following assertions hold true:

(1) D ∩ C0(
◦

J) is a core for (Ã,D(Ã) ∩ C0(
◦

J));

(2) D is a core for (Ã,D(Ã)).

Therefore D ∩ C0(
◦

J) (resp., D whenever w ∈ C0(J)) is a core for (A,Dw(A)).

Proof. Let u ∈ D(Ã) ∩ C0(
◦

J) (resp. u ∈ D(Ã)) and ε > 0; by Proposition 4.6 there

exists v ∈ D(B̃) ∩ C0(
◦

J) (resp., v ∈ D(B̃)) such that ‖u− v‖ eA
< ε/2.

On the other hand, Proposition 4.5 (resp., Proposition 4.4) ensures thatD∩C0(
◦

J)

(resp., D) is a core for the operator (B̃,D(B̃)∩C0(
◦

J)) (resp., (B̃,D(B̃))); then there

exists h ∈ D ∩ C0(
◦

J) (resp., h ∈ D) such that ‖v − h‖ eB
< ε/2.

Therefore

‖u− h‖∞ ≤ ‖u− v‖∞ + ‖v − h‖∞ < ε

and

‖Ãu− Ãh‖∞ ≤ ‖Ãu− Ãv‖∞ + ‖λB̃v − λB̃h‖∞ < ε.

4.2. UNBOUNDED INTERVALS.

We restrict our analysis only to the cases ri ∈ R and rj ∈ {−∞,+∞}. For the

case J = R we refer the reader to [16, Section 4].

Consider the following subspaces:

D1 :=
{
u ∈ C∗(J) ∩ C2(

◦

J) | u is constant on a neighborhood of rj

and lim
x→ri

u′′(x) ∈ R

}

and

D2 :=
{
u ∈ C∗(J) ∩ C2(

◦

J) | u is constant on a neighborhood of rj

and lim
x→ri

α(x)u′′(x) = 0
}
.

Observe that, denoted by UC2
b (J) the space of all functions f ∈ C2(J) whose

second derivative is uniformly continuous and bounded, we haveD1 ⊂ UC2
b (J). More-

over, if there exist C > 0 and a ∈
◦

J such that

α(x) ≥ C > 0 for every x ∈ I(ri, a),

then D2 ⊂ {u ∈ C∗(J) ∩ C2(
◦

J) | lim
x→ri

u′′(x) = 0, for i = 1, 2} ⊂ UC2
b (J).

We discuss some cases where D1 or D2 are cores for the operator (Ã,D(Ã)).

Theorem 4.8. Assume that
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(a) there exist C0, C1, C2 > 0, a ∈
◦

J and a function p ∈ C(I(ri, a)), increasing if

i = 1 or decreasing if i = 2, such that

C0(x− ri)
2 ≤ α(x) for every x ∈ I(ri, a), (4.4)

C1p(x) ≤ α(x) ≤ C2p(x) for every x ∈ I(ri, a), (4.5)

lim
x→ri

α(x) = 0 (4.6)

and

(b) there exist b ∈
◦

J , K1, K2 > 0 and q ∈ C1(I(rj , b)) such that

K1q(x) ≤ α(x) ≤ K2q(x) for x ∈ I(rj, b). (4.7)

Then, in each of the following cases:

(1) q ∈ C2(I(rj, b)) and q′′(x) = O(1) as x −→ rj;

(2) i) 1
q
∈ L1(I(rj, b)) and lim

x→rj

q(x)
|x|

= +∞,

or

i’) lim
x→rj

q(x)
|x|

= 0;

and

ii) xq′(x) − q(x) 6= 0 for x ∈ I(rj, b) and q(x)
xq′(x)−q(x)

= O(1) as x −→ rj;

the space D1 is a core for (Ã,D(Ã)) and hence for (A,Dw(A)), provided that

w ∈ C0(J).

Proof. Assume r1 ∈ R and r2 = +∞.

We need some preliminary remarks. First, note that D1 ⊂ D(Ã) because of

condition (4.6).

Now, let u ∈ D(Ã) and ε > 0; assume preliminary that lim
x→+∞

u(x) = 0.

By (4.4), we have lim
x→r1

(x − r1)
2u′′(x) = 0. Accordingly, by Lemma 4.2-(a) with

ϕ(x) = x− r1 and h(x) = (x− r1)
2 (x ∈]r1, a]),

lim
x→r1

(x− r1)u
′(x) = 0.

Moreover, by (4.7) and by Lemma 4.3 in case (1) and Lemma 4.2 in case (2) with

ϕ(x) = q(x)
x

and h(x) = q(x) (x ∈ [b,+∞[), it follows that lim
x→+∞

q(x)u′(x)
x

= 0, which

means

lim
x→+∞

α(x)u′(x)

x
= 0.

Hence, there exists δ1 > r1 such that, for every x, y ∈]r1, δ1[,

|u(x) − u(y)| ≤ ε/3, |(x− r1)u
′(x)| ≤ ε/3, |(x− r1)

2u′′(x)| ≤ ε/3, |α(x)u′′(x)| ≤ ε,

and there exists δ2 > |δ1| such that, for every x ≥ δ2,

|u(x)| ≤ ε, |α(x)u(x)| ≤ εx2, |α(x)u′(x)| ≤ εx, |α(x)u′′(x)| ≤ ε.
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Consider now a function ϕ ∈ K2(R) such that

0 ≤ ϕ ≤ 1, ϕ (x) = 1 for |x| ≤ 1, ϕ (x) = 0 for |x| ≥ 2.

Fixed x1 ∈]r1, δ1[ and x2 ≥ δ2, set

v(x) :=





u(x1) + u′(x1)(x− x1) + u′′(x1)
2

(x− x1)
2 if r1 ≤ x ≤ x1,

u(x) if x1 < x < x2,

u(x)ϕ
(

x
x2

)
if x ≥ x2.

(4.8)

Clearly v ∈ D1. We proceed to prove that ‖u− v‖ eA
≤ ε.

Indeed, if r1 ≤ x ≤ x1, then

|u(x) − v(x)| = |u(x) − u(x1) − u′(x1)(x− x1) −
u′′(x1)

2
(x− x1)

2|

≤ |u(x) − u(x1)| + |u′(x1)(r1 − x1)| + |u′′(x1)|(r1 − x1)
2 ≤ ε

and

|Ãu(x) − Ãv(x)| = |α(x)u′′(x) − α(x)u′′(x1)| ≤ |α(x)u′′(x)| + C2|p(x)u
′′(x1)|

≤ |α(x)u′′(x)| + C2|p(x1)u
′′(x1)| ≤

(
1 +

C2

C1

)
ε.

If x1 < x < x2, |u(x) − v(x)| = |Ãu(x) − Ãv(x)| = 0.

If x2 ≤ x ≤ 2x2,

|u(x) − v(x)| =

∣∣∣∣
(

1 − ϕ

(
x

x2

))
u(x)

∣∣∣∣ ≤ |u(x)| ≤ ε

and

Ãu(x) − Ãv(x) = |α(x)u′′(x) − α(x)v′′(x)|

≤ |α(x)u′′(x)| +
2‖ϕ′‖∞
x2

|α(x)u′(x)| +
‖ϕ′′‖∞
x2

2

|α(x)u(x)|

≤ (1 + 4‖ϕ′‖∞ + 4‖ϕ′′‖∞) ε.

Finally, for x > 2x2,

|u(x) − v(x)| =

∣∣∣∣
(

1 − ϕ

(
x

x1

))
u(x)

∣∣∣∣ = |u(x)| ≤ ε

and

|Ãu(x) − Ãv(x)| = |α(x)u′′(x)| ≤ ε.

Consider now the general case lim
x→+∞

u(x) = l ∈ R. Then the function h := u− l1

belongs to D(Ã) and lim
x→+∞

h(x) = 0. Hence, there exists v ∈ D such that ‖h−v‖ eA ≤

ε, that is ‖u− l − v‖ eA
= ‖u− (l + v)‖ eA

≤ ε and v + l ∈ D.
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As regards the case where r1 = −∞ and r2 ∈ R, we can prove the statement in

the same way, by replacing the function v, defined by (4.8), with the function

g(x) :=






u(x2) + u′(x2)(x− x2) + u′′(x2)
2

(x− x2)
2 if x2 ≤ x ≤ r2,

u(x) if x1 < x < x2,

u(x)ϕ
(

x
x1

)
if x ≤ x1,

(4.9)

for suitable x1 and x2 in
◦

J .

So the proof is complete.

Theorem 4.9. Assume that α satisfies condition (4.7). Then, in each of the following

cases:

(1) q ∈ C2(I(rj, b)) and q′′(x) = O(1) as x −→ rj;

(2) i) 1
q
∈ L1(I(rj, b)) and lim

x→rj

q(x)
|x|

= +∞,

or

i’) lim
x→rj

q(x)
|x|

= 0;

and

ii) xq′(x) − q(x) 6= 0 for x ∈ I(rj, b) and q(x)
xq′(x)−q(x)

= O(1) as x −→ rj;

the space D2 is a core for (Ã,D(Ã)) and hence for (A,Dw(A)), provided that

w ∈ C0(J).

Proof. The proof is similar to that one of Theorem 4.8, by replacing the function v,

defined by (4.8), with

v(x) :=





u(x) if r1 ≤ x < x2,

u(x)ϕ
(

x
x2

)
if x ≥ x2

and the function g, defined by (4.9), with

g(x) :=





u(x) if x ≤ x1,

u(x)ϕ
(

x
x1

)
if x1 < x ≤ r2.

5. AN APPLICATION: THE LIMIT SEMIGROUP GENERATED BY

MODIFIED SZÁSZ-MIRAKJAN OPERATORS

In this section we discuss a simple application of the previous results concerning

a degenerate differential operator on [0,+∞[ and the approximation of the corre-

sponding semigroup in terms of iterates of an integral modification of Szász-Mirakjan

operators which are defined by

Sn(f)(x) :=
+∞∑

k=0

f

(
k

n

)
pn,k(x) (x ≥ 0, n ≥ 1)
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for every f ∈ C([0,+∞[) having a polynomial growth at infinity, where

pn,k(x) := e−nx (nx)k

k!
(x ≥ 0, n ≥ 1, k ≥ 0).

For every m ≥ 0 and x ≥ 0, set em(t) := tm and ψx(t) := t − x (t ≥ 0). From

[21, Lemma 3] it follows that, for every n ≥ 1 and x ≥ 0,

Sn(1)(x) = 1, Sn(e1)(x) = x, Sn(e2)(x) = x2 +
x

n
,

Sn(e3)(x) = x3 +
3x2

n
+

x

n2
, Sn(e4)(x) = x4 +

6x3

n
+

7x2

n2
+

x

n3
,

and hence

Sn(ψx)(x) = 0, Sn(ψ2
x)(x) =

x

n
,

Sn(ψ3
x)(x) =

x

n2
, Sn(ψ4

x)(x) =
x

n3
+

3x2

n2
.

Now consider the sequence of positive linear operators (Ln)n≥1, introduced in [28] and

defined by

Ln(f)(x) := e−nxf(0) +
+∞∑

k=1

n

(∫ +∞

0

f(t)pn,k−1(t)dt

)
pn,k(x)

for every x ≥ 0, n ≥ 1 and f ∈ C([0,+∞[) having a polynomial growth at infinity.

Note that, for every n ≥ 1 and p ≥ 0,
∫ +∞

0

e−nttpdt =
p!

np+1

and that, in particular, for every n, k ≥ 1,
∫ +∞

0

pn,k(t)dt =
1

n
.

Moreover, for n,m ≥ 1 and x ≥ 0,

Ln(em)(x) =

+∞∑

k=1

nk

(k − 1)!

(∫ +∞

0

e−nttk+m−1dt

)
pn,k(x)

=

+∞∑

k=1

k(k + 1) · ... · (k +m− 1)

nm
pn,k(x).

Thus

Ln(1)(x) = 1, Ln(e1)(x) = x, (5.1)

Ln(e2)(x) =
+∞∑

k=1

k(k + 1)

n2
pn,k(x) =

+∞∑

k=1

k2

n2
pn,k(x) +

1

n

+∞∑

k=1

k

n
pn,k(x)

= Sn(e2)(x) +
1

n
Sn(e1)(x) = x2 +

2x

n
, (5.2)
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Ln(e3)(x) =
+∞∑

k=1

k(k + 1)(k + 2)

n3
pn,k(x)

=

+∞∑

k=1

k3 + k2

n3
pn,k(x) +

2

n
Ln(e2)(x) = x3 +

6x2

n
+

6x

n2
,

Ln(e4)(x) =
+∞∑

k=1

k(k + 1)(k + 2)(k + 3)

n4
pn,k(x)

=

+∞∑

k=1

k4 + 3k3 + 2k2

n4
pn,k(x) +

3

n
Ln(e3)(x) = x4 +

12x3

n
+

36x2

n2
+

24x

n3
.

By the previous formulae it also follows that, for every n ≥ 1 and x ≥ 0,

Ln(ψx)(x) = 0, Ln(ψ2
x)(x) =

2x

n
, Ln(ψ4

x)(x) =
12x2

n2
+

24x

n3
. (5.3)

Consider now the Banach lattice

E0
2 :=

{
f ∈ C([0,+∞[) | lim

x→+∞

f(x)

1 + x2
= 0

}

endowed with natural pointwise order and the weighted norm

‖f‖2 := sup
x≥0

|f(x)|

1 + x2
(f ∈ E0

2).

Theorem 5.1. The following properties hold true:

(1) For every n ≥ 1, Ln(E0
2) ⊂ E0

2 , Ln is continuous and ‖Ln‖ ≤ 1 + 1
n
;

(2) For every f ∈ E0
2 , lim

n→∞
Ln(f) = f in (E0

2 , ‖ · ‖2) and the convergence is uniform

on compact subsets of [0,+∞[;

(3) For every f ∈ E0
2∩C

2([0,+∞[) such that f ′′ is uniformly continuous and bounded

lim
n→∞

n(Ln(f) − f) = Af in (E0
2 , ‖ · ‖2)

and the convergence is uniform on compact subsets of [0,+∞[, where

Af(x) := xf ′′(x) (x ≥ 0).

Proof. (1) First observe that, because of (5.2), for every x ≥ 0,

Ln(1 + e2)(x)

1 + x2
≤ 1 +

1

n
. (5.4)

Let n ≥ 1 and f ∈ E0
2 ; for ε > 0 there exists t0 ≥ 0 such that

|f(t)| ≤
ε

4
(1 + t2) (t ≥ t0).

Then, set M := sup
0≤t≤t0

|f(t)|, we have

|f(t)| ≤M +
ε

4
(1 + t2) (t ≥ 0).
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Accordingly, for every x ≥ 0,

|Ln(f)(x)| ≤ Ln(|f |)(x) ≤M +
ε

4
Ln(1 + e2)(x)

whence, choosing x0 ≥ 0 such that M
1+x2 ≤ ε

2
, for x ≥ x0 we get

|Ln(f)(x)|

1 + x2
≤ ε

which means Ln(f) ∈ E0
2 .

Finally, note that, if f ∈ E0
2 , then |f | ≤ ‖f‖2(1 + e2); accordingly , taking (5.4)

into account,

‖Ln(f)‖2 ≤ ‖f‖2‖Ln(1 + e2)‖2 ≤ ‖f‖2

(
1 +

1

n

)

and so ‖Ln‖ ≤ 1 + 1
n
.

(2) For every λ > 0, consider the function fλ(x) := e−λx (x ≥ 0). By simple

calculation we obtain, for every n ≥ 1 and x ≥ 0,

Ln(fλ)(x) = e−
n

n+λ
λx −→ fλ(x) as n→ ∞.

Since the sequence (Ln(fλ))n≥1 is decreasing, from Dini’s theorem it follows that

Ln(fλ) → fλ uniformly on [0,+∞[ and then with respect to ‖ · ‖2.

On the other hand, by Stone-Weierstrass theorem, the subspace generated by

{fλ | λ > 0} is dense in C0([0,+∞[) and then in (E0
2 , ‖ · ‖2). Thus, by the equiconti-

nuity of (Ln)n≥1, we obtain (2).

(3) It suffices to take formulae (5.1) and (5.3) into account and to apply [4,

Theorem 1] with α(x) = 2x, β(x) = γ(x) = 0, w(x) = (1 + x2)−1 (x ≥ 0), q = 4 and

E :=

{
f ∈ C([0,+∞[) | sup

x≥0

|f(x)|
1+x4

}
.

Now consider the differential operator A : D(A) → E0
2 , defined by

Au(x) :=

{
xu′′(x) x > 0,

0 x = 0,

for every u ∈ D(A) and x ≥ 0, where

D(A) :=

{
u ∈ E0

2 ∩ C
2(]0,+∞[) | lim

x→0+
xu′′(x) = lim

x→+∞

x

1 + x2
u′′(x) = 0

}
.

Theorem 5.2. The operator (A,D(A)) generates a positive C0-semigroup (T (t))t≥0

on E0
2 such that

‖T (t)‖ ≤ et for every t ≥ 0

and the subspace

D1 := {u ∈ C∗([0,+∞[) ∩ C2(]0,+∞[) | lim
x→0+

u′′(x) ∈ R and

u is constant on a neighborhood of + ∞}
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is a core for (A,D(A)).

Moreover, if t ≥ 0 and (k(n))n≥1 is a sequence of positive integers such that

k(x)/n→ t, then for every f ∈ E0
2

T (t)f = lim
n→∞

Lk(n)
n f in E0

2 (5.5)

and the convergence is uniform on compact subsets of [0,+∞[.

Proof. The first part of the statement follows from Theorem 3.1, with J = [0,+∞[,

α(x) = x and w(x) = (1 + x2)−1 (x ≥ 0) (here ω = 1 (see formula (3.3)).

By Theorem 4.8, with p(x) = q(x) = x (x ≥ 0), the subspace D1 is a core for

(A,D(A)).

Since D1 ⊂ UC2
b ([0,+∞[), by Theorem 5.1-(3) we obtain

lim
n→∞

n(Lnu) − u = Au in E0
2 (u ∈ D1).

Finally part (1) of Theorem 5.1 yields ‖Lk
n‖ ≤

(
1 + 1

n

)k
≤ e

k
n (n, k ≥ 1).

Therefore, by Theorem 2.1 we get the representation formula (5.5).
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Verlag, Basel, 2002.
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