
Communications in Applied Analysis 13 (2009), no. 4, 509–534

AN OVERVIEW ON SPECTRAL THEORY FOR NONLINEAR

OPERATORS

ALESSANDRO CALAMAI1, MASSIMO FURI2, AND ALFONSO VIGNOLI3

1Dipartimento di Scienze Matematiche, Università Politecnica delle Marche,
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1. INTRODUCTION

The purpose of this paper is to compare different notions of spectra for nonlinear

maps. In particular we will focus on the spectrum at a point recently introduced by

the authors (see [9]). Related works on nonlinear spectral theory are due to Appell [1]

and Appell, De Pascale and Vignoli [2]. As a basic reference we cite the monograph [3].

In view of the importance of spectral theory for linear operators, it is not sur-

prising that several efforts have been made to define and study spectra in the nonlin-

ear context. A reasonable definition of spectrum of a continuous nonlinear operator

should satisfy some basic requirements: first it should reduce to the familiar spectrum

in case of linear operators. Moreover, it should possibly share some of the classical

properties with the linear spectrum. Finally, it should have nontrivial applications.

Unfortunately, it turns out that, when building a nonlinear spectral theory, one is led

to several “unpleasant” phenomena. First of all, in contrast to the linear case, the
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spectrum of a nonlinear operator contains little information on the operator itself.

Moreover, the familiar properties such as boundedness, closedness, or nonemptiness

fail, in general, for all the spectra proposed so far in the literature. In this paper

we will discuss spectra for various classes of nonlinear operators and compare their

properties from the viewpoint of the above requirements.

First we will consider a spectrum for continuous operators due to Rhodius [24],

and a spectrum for C1 operators which goes back to Neuberger [23]. The Rhodius

spectrum may be noncompact or empty, while the Neuberger spectrum is always

nonempty (in the complex case), but it need be neither closed nor bounded. Then

we take into account a spectrum for Lipschitz continuous operators which was first

proposed by Kachurovskij in 1969 (see [19]). Let us mention here also a spectrum for

linearly bounded operators introduced recently by Dörfner in [10] (see also [2]). In

contrast to the Neuberger spectrum, the Kachurovskij spectrum is compact, but it

may be empty even in (complex) dimension 2. All these spectra reduce to the classical

spectrum in the linear case, and they all contain the eigenvalues of the operator

involved (i.e. those λ for which f(x) = λx for some x 6= 0). Interestingly, these

spectra always contain 0 in the case of a compact operator in an infinite dimensional

Banach space. This is of course completely analogous to the linear case.

Then we consider the spectrum introduced in [13] by Furi, Martelli, and Vignoli,

called FuMaVi (or asymptotic) spectrum for short, which is defined for any continuous

map from a Banach space into itself. Roughly speaking, one may say that this

spectrum takes into account the asymptotic properties of an operator. This spectrum

is always closed, sometimes even bounded, and coincides with the classical spectrum

in the linear case. A different and related notion of spectrum has been introduced by

Feng in 1997 (see [11]). The Feng spectrum is related to the global behavior of an

operator, has similar topological properties as the FuMaVi spectrum and contains all

the eigenvalues. However, the computation of the eigenvalues requires the knowledge

of the operator in the whole space. A very interesting approach to some kind of local

spectrum is due to Väth (see e.g. [27]). Since his construction is rather far from what

one usually calls a spectrum, it has been called phantom. There are several other

spectra for nonlinear operators in the literature which deserve being quoted here. For

instance the Infante–Webb spectrum [18] and the Appell–Giorgieri–Väth spectrum

[5].

Recently, a new definition of spectrum has been proposed by the authors in [9].

Given an open subset U of a Banach space E, a continuous map f : U → E, and a

point p ∈ U , they introduce the concept of spectrum of f at p, which is denoted by

σ(f, p). This spectrum is close in spirit to the FuMaVi spectrum. Nevertheless, while

the asymptotic spectrum is related to the asymptotic behavior of a map, σ(f, p)

depends only on the germ of f at p; that is, the equivalence class of maps which
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coincide with f in some neighborhood of p. We stress that the first attempt to

introduce a notion of spectrum at a point was undertaken by E.L. May in [22] by

means of a suitable local adaptation of Neuberger’s ideas. In 1977 the last two

authors gave another definition of spectrum at a point (see [16]). Given f and p as

above, they define a spectrum Σ(f, p) which, in the case of a bounded linear operator

L : E → E, gives only a part of the classical spectrum σ(L). Namely, Σ(L, p)

reduces to the approximate point spectrum of L. Therefore, the definition of Σ(f, p)

is somehow nonexhaustive and the new spectrum at a point σ(f, p), in some sense,

fills the gap. The crucial notions in the new definition of spectrum at a point are the

topological concept of zero-epi map (see [14]) as well as two numerical characteristics

recently introduced by the first author in [7] (see also [8]). These notions are briefly

recalled in Section 6.

Concerning the topological properties of our spectrum at a point, we show that

σ(f, p) is always closed and contains Σ(f, p). Moreover, in the case of a positively

homogeneous map f : E → E, the spectrum σ(f, 0) at 0 coincides with the asymptotic

spectrum of f , and for a bounded linear operator L, we get σ(L, p) = σ(L) for any

p ∈ E, where σ(L) is the classical spectrum of L. More precisely, if a map f is

C1, then σ(f, p) equals the spectrum of the Fréchet derivative σ(f ′(p)). Thus, in

the complex case, the spectrum at a point of a C1 map is always nonempty, as

the Neuberger spectrum. The spectrum at a point turns out to be useful to tackle

bifurcation problems in the non-differentiable case. This paper closes with a few

examples illustrating some peculiarities of this spectrum, and some applications to

bifurcation theory.

Notation. Throughout the paper, E and F will be two Banach spaces over K,

where K is R or C. Given a subset X of E, by C(X, F ) we denote the set of all

continuous maps from X into F . By I we denote the identity on E. Given a subset

A of a metric space X, A, Int A and ∂A stand for the closure, the interior and the

boundary of A, respectively. In the sequel we will adopt the conventions sup ∅ = −∞
and inf ∅ = +∞, so that if A ⊆ B ⊆ R, then inf A ≥ inf B and sup A ≤ sup B even

when A is empty.

Let f : X → Y be a continuous map between two metric spaces. We recall that

f is said to be compact if f(X) is relatively compact, and completely continuous if it

is compact on any bounded subset of X. If for any p ∈ X there exists a neighborhood

V of p such that the restriction f |V is compact, then f is called locally compact. By

a standard abuse of terminology, a locally compact linear operator between Banach

spaces is said to be compact. The map f is said to be proper if f−1(K) is compact for

any compact subset K of Y . Recall that a proper map sends closed sets into closed
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sets. Given p ∈ X, f is locally proper at p if there exists a closed neighborhood V of

p such that the restriction f |V is proper.

2. THE RHODIUS, NEUBERGER AND KACHUROVSKIJ SPECTRA

The Rhodius spectrum. In [24], A. Rhodius proposed a naive definition of spec-

trum that runs as follows. Given a continuous map f : E → E such that f(0) = 0,

the set

ρR(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 continuous}

is called the Rhodius resolvent set and its complement σR(f) = K\ρR(f) the Rhodius

spectrum of f . Thus, a point λ ∈ K belongs to ρR(f) if and only if λI − f is a

homeomorphism on E.

Notice that in the case of a bounded linear operator this gives the definition of

the classical spectrum. One could expect that at least some of the properties of the

linear spectrum carry over to the Rhodius spectrum. This is not true even for the

most elementary properties. We illustrate this fact with a series of simple examples

which we will further use in the sequel.

Example 2.1. Let E = R and f(x) = xn with n ∈ N, n ≥ 2. Then, σR(f) = R if n

is even and σR(f) = (0,∞) if n is odd. On the other hand, let E = C and f(z) = zn

with n ∈ N, n ≥ 2. Then, σR(f) = C for any n. Thus, the Rhodius spectrum is, in

general, neither closed nor bounded.

Example 2.2. Let E = R and f(x) = arctanx. Then, σR(f) = [0, 1).

Example 2.3. Let E = C2 and f(z, w) = (w̄, iz̄). Then, σR(f) = ∅ since, for any

λ ∈ C, the map fλ(z, w) = (λz− w̄, λw− iz̄) is a homeomorphism on C
2 with inverse

f−1
λ (ζ, ω) =

(

λ̄ζ + ω̄

i + |λ|2 ,− λ̄ω + iζ̄

i − |λ|2
)

.

This last example, which was given in [17] in a different context, shows that the

Rhodius spectrum may be empty.

The Neuberger spectrum. In [23], J. W. Neuberger proposed the following

definition of spectrum. Given a map f : E → E of class C1 such that f(0) = 0, the

set

ρN(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 of class C1}
is called the Neuberger resolvent set and its complement σN(f) = K\ρN(f) the Neu-

berger spectrum of f . Thus, a point λ ∈ K belongs to ρN(f) if and only if λI − f is a

diffeomorphism on E.
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Again, this definition agrees with the classical one in the linear case. If f is of

class C1, we have the trivial inclusion σR(f) ⊆ σN(f).

Whenever possible, let us compute the Neuberger spectrum in the above exam-

ples. In Example 2.1 we have, in the case E = R, σN(f) = R if n is even and

σN(f) = [0,∞) if n is odd. In the case E = C, we have again σN(f) = C for any n.

Example 2.1 shows that the Neuberger spectrum need not be bounded. In Example

2.2 we have σN(f) = [0, 1]. On the other hand, Example 2.3 is not applicable, since

the map given there is not differentiable at any point (z, w) ∈ C
2. In fact, it turns

out that the Neuberger spectrum shares the following important property with the

linear spectrum.

Theorem 2.4 (Neuberger [23]). The Neuberger spectrum of a C1 map is always

nonempty in the case K = C.

Notice that the Neuberger spectrum need not be closed. This already happens

in the one dimensional case, as it is shown by the following example.

Example 2.5. Consider the C1 real function f(x) = log(1 + |x|) signx. It is easy to

check that σN(f) = σR(f) = [0, 1).

Since the Neuberger spectrum is defined for C1 operators, one should expect that

it might be expressed through the linear spectra of the Fréchet derivatives. This is

in fact true as shown in [4]. We recall the result given there.

Theorem 2.6 (Appell and Dörfner [4]). Given f : E → E of class C1 such that

f(0) = 0, denote by π(f) the set of all λ ∈ K such that the operator λI − f is not

proper. Then

σN(f) = π(f) ∪
⋃

x∈E

σ(f ′(x)).

In particular, σN(f) 6= ∅ in case K = C.

Notice that if E is an infinite dimensional Banach space and f : E → E is

completely continuous, then f cannot be proper. Thus, given a completely continuous

map f : E → E of class C1, as a consequence of Theorem 2.6 one has 0 ∈ π(f) ⊆
σN(f). This is of course analogous to the case of a compact linear operator.

The Kachurovskij spectrum. We introduce now the following definition. We

write f ∈ Lip(E) if f is Lipschitz continuous on E, i.e.

[f ]Lip = sup
x 6=y

‖f(x) − f(y)‖
‖x − y‖ < ∞.

Following [19], given a map f : E → E in the class Lip(E) such that f(0) = 0, the

set

ρK(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 belongs to Lip(E)}
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is called the Kachurovskij resolvent set and its complement σK(f) = K\ρK(f) the

Kachurovskij spectrum of f . Thus, a point λ ∈ K belongs to ρK(f) if and only if

λI − f is a lipeomorphism on E.

If f is in the class Lip(E), we have the trivial inclusion σR(f) ⊆ σK(f). Let us

point out that the operator fλ in Example 2.3 is a lipeomorphism for each λ ∈ C.

This shows that σK(f) = ∅ in this example.

The Kachurovskij spectrum possesses some nice properties, as the following result

shows.

Theorem 2.7 (Maddox and Wickstead [21]). The Kachurovskij spectrum, σK(f), of

a map f ∈ Lip(E) is bounded and closed. Moreover the following inclusion holds:

σK(f) ⊆ {λ ∈ K : |λ| ≤ [f ]Lip}.

Notice that for a bounded linear operator L : E → E we have [L]Lip = ‖L‖. Con-

sequently, the above inclusion generalizes the known inequality between the spectral

radius and the norm of a bounded linear operator.

Let us briefly check the other examples from the viewpoint of the Kachurovskij

spectrum. Clearly, Example 2.1 does not apply. In Example 2.2 we have σK(f) = [0, 1]

and in Example 2.5 we have σK(f) = [0, 1).

As we have seen, the Rhodius and Kachurovskij spectra may be empty. Never-

theless, the following result holds.

Theorem 2.8. Assume that dim E = ∞ and let f : E → E be completely continuous.

Then, 0 ∈ σR(f). If, moreover, f ∈ Lip(E), then 0 ∈ σK(f).

The above theorem is analogous to a well known result for compact linear oper-

ators. Example 2.3 shows that the assumption dimE = ∞ is essential.

3. THE ASYMPTOTIC FURI–MARTELLI–VIGNOLI SPECTRUM

In this section we recall the definition of spectrum for nonlinear operators intro-

duced in 1978 by Furi, Martelli, and Vignoli. This spectrum is based on the notion

of stable solvability of operators, a nonlinear analogue to surjectivity, and has found

various applications to integral equations, boundary value problems, and bifurcation

theory.

The definition of this spectrum requires some technical preliminary notions. First,

let us recall the definition and properties of the Kuratowski measure of noncompact-

ness (see [20]). The Kuratowski measure of noncompactness α(A) of a subset A of

E is defined as the infimum of real numbers d > 0 such that A admits a finite cov-

ering by sets of diameter less than d. In particular, if A is unbounded, we have
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α(A) = inf ∅ = +∞. Notice that, if E is finite dimensional, then α(A) = 0 for any

bounded subset A of E. Observe that α(A) = 0 if and only if A is compact.

Given a subset X of E and f ∈ C(X, F ), we recall the definition of the following

two extended real numbers (see e.g. [13]) associated with the map f :

α(f) = sup

{

α(f(A))

α(A)
: A ⊆ X bounded, α(A) > 0

}

,

and

ω(f) = inf

{

α(f(A))

α(A)
: A ⊆ X bounded, α(A) > 0

}

.

Notice that α(f) = −∞ and ω(f) = +∞ whenever E is finite dimensional.

It is important to observe that α(f) ≤ 0 if and only if f is completely continuous.

Moreover, ω(f) > 0 only if f is proper on bounded closed sets. For a comprehensive

list of properties of α(f) and ω(f) we refer to [13].

Let f ∈ C(E, F ). We define the quasinorm of f as

|f | = lim sup
‖x‖→+∞

‖f(x)‖
‖x‖ ,

and the number

d(f) = lim inf
‖x‖→+∞

‖f(x)‖
‖x‖ .

We call f quasibounded if |f | < ∞. Assuming f(0) = 0, we have |f | ≤ [f ]Lip and

α(f) ≤ [f ]Lip.

Following [12], we say that f ∈ C(E, F ) is stably solvable if for any compact map

h : E → F such that |h| = 0, the equation f(x) = h(x) has a solution in E.

Observe that every stably solvable operator is surjective, but in general the con-

verse is not true. For linear operators, however, surjectivity is equivalent to stable

solvability (see e.g. [12]).

We are now ready to define the FuMaVi spectrum. We need first to introduce the

notion of FMV-regular map. A map f is said to be FMV-regular if it is stably solvable,

ω(f) > 0, and d(f) > 0. Observe that a bounded linear operator is FMV-regular if

and only if it is an isomorphism.

The following stability property of FMV-regular maps can be regarded as a

Rouché–type perturbation theorem.

Theorem 3.1 (Stability theorem for FMV-regular maps, [13]). Assume that f is

FMV-regular and let g = f + k, where k ∈ C(E, F ) is such that α(k) < ω(f) and

|k| < d(f). Then g is FMV-regular.

Let now f ∈ C(E, E). We define the asymptotic spectrum of the map f as the

set

σF MV (f) = {λ ∈ K : λI − f is not FMV-regular}.
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It is convenient to define the following subsets of σF MV (f):

σω,F MV (f) = {λ ∈ K : ω(λI − f) = 0}, ΣF MV (f) = {λ ∈ K : d(λI − f) = 0},

σπ,F MV (f) = σω,F MV (f) ∪ ΣF MV (f),

and

σδ,F MV (f) = {λ ∈ K : λI − f is not stably solvable}.
We shall call σπ,F MV (f) the (asymptotic) approximate point spectrum of f and σδ,F MV (f)

the (asymptotic) approximate defect spectrum of f .

Note that for a bounded linear operator this gives the definition of the classical

spectrum. More precisely, the following properties hold.

Theorem 3.2 ([13]). Let L : E → E be a bounded linear operator. Then

1. σF MV (L) coincides with the classical spectrum of L;

2. σδ,F MV (L) coincides with the classical approximate defect spectrum of L. In other

words, λ ∈ σδ,F MV (L) if and only if λI − L is not onto;

3. σπ,F MV (L) coincides with the classical approximate point spectrum of L. In other

words, λ ∈ σπ,F MV (L) if and only if inf‖x‖=1 ‖λx − Lx‖ = 0.

We are now ready to investigate the topological properties of the asymptotic

spectrum. It is known that σF MV (f) = ∅ for the map f given in Example 2.3 (see

[13]), and thus also the asymptotic spectrum may be empty.

The following result provides three nontrivial properties of the asymptotic spec-

trum.

Theorem 3.3 ([13]). The following properties hold:

1. σF MV (f) is closed;

2. σπ,F MV (f) is closed;

3. ∂σF MV (f) ⊆ σπ,F MV (f).

The next result provides a sufficient condition for the boundedness of the asymp-

totic spectrum.

Theorem 3.4 ([13]). Assume that f is quasibounded with α(f) < ∞. Then σF MV (f)

is bounded. More precisely the following inclusion holds:

σF MV (f) ⊆
{

λ ∈ K : |λ| ≤ max{α(f), |f |}
}

.

Analogously to all the previous spectra, the following result holds.

Theorem 3.5 ([13]). Assume that dim E = ∞ and let f : E → E be completely

continuous. Then, 0 ∈ σF MV (f).
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Let us briefly check the other examples from the viewpoint of the asymptotic

spectrum. Consider Example 2.1. In the case E = R, we have σF MV (f) = R if n is

even and σF MV (f) = ∅ if n is odd. Using the Brower degree one could prove that in

the case E = C one has σF MV (f) = ∅ for any n ≥ 2. Both in Example 2.2 and in

Example 2.5 we have σF MV (f) = {0}.

4. THE FENG SPECTRUM

In this section we discuss another notion of spectrum, due to Feng [11], which

is similar to the FuMaVi spectrum and is meaningful only for maps vanishing at the

origin, and preferably positively homogeneous.

Let f ∈ C(E, F ). We recall the definition of the following numerical characteris-

tics associated with f :

M(f) = sup
‖x‖6=0

‖f(x)‖
‖x‖ and m(f) = inf

‖x‖6=0

‖f(x)‖
‖x‖ .

Assuming f(0) = 0, we have m(f) ≤ d(f) ≤ |f | ≤ M(f).

Now, let U be a bounded open subset of E, and f ∈ C(U, F ). We need to recall

the following definitions given in [14].

Definition 4.1. Given y ∈ F , we say that f is y-admissible (on U) if f(x) 6= y for

any x ∈ ∂U .

Definition 4.2. We say that f is y-epi (on U) if it is y-admissible and for any

compact map h : U → F such that h(x) = y for all x ∈ ∂U the equation f(x) = h(x)

has a solution in U .

Notice that f is y-epi if and only if the map f−y, defined by (f−y)(x) = f(x)−y,

is 0-epi (zero-epi).

The main properties of zero-epi maps are analogous to some of the properties

which characterize the Leray–Schauder degree. For a comprehensive list of properties

of zero-epi maps we refer to [14]. In particular, we mention the following ones to be

used in the sequel.

Proposition 4.3. If f ∈ C(U, F ) is a local homeomorphism at p, then it is f(p)-epi

at p.

Proposition 4.4 (Localization). If f ∈ C(U, F ) is 0-epi on U , and U1 is an open

subset of U containing f−1(0), then f |U1
is 0-epi.

The next local surjectivity property of zero-epi maps has been proved in [14].

Theorem 4.5 (Local surjectivity). Let f ∈ C(U, F ) be 0-epi on U and proper on

U . Then, f maps U onto a neighborhood of the origin. More precisely, if V is the

connected component of F\f(∂U) containing the origin, then V ⊆ f(U).
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Given r > 0, by Br we denote the open ball in E centered in the origin with radius

r. Following [11], define by νr(f) the infimum of all k > 0 such that there exists a

map g ∈ C(Br, F ) such that g(x) = 0 for all x ∈ ∂Br, α(g) ≤ k, and f(x) 6= g(x) for

all x ∈ Br. Then, the number

ν(f) = inf
r>0

νr(f)

is called the measure of solvability of f at 0.

Let us now introduce the notion of F-regular map. A map f ∈ C(E, F ) is said

to be F-regular if ω(f) > 0, m(f) > 0, and ν(f) > 0. One can show that a bounded

linear operator is F-regular if and only if it is an isomorphism. Thus, the following

definition again extends the linear spectrum.

Let f ∈ C(E, E) be such that f(0) = 0. We define the Feng spectrum of the map

f as the set

σF (f) = {λ ∈ K : λI − f is not F-regular}.

As all the other spectra considered above, we have that the Feng spectrum, σF (f),

is empty for the map f given in Example 2.3.

We observe that the Feng spectrum contains the asymptotic spectrum. Thus, as

a consequence of Theorem 3.5, when dim E = ∞, for a completely continuous map

f : E → E we have 0 ∈ σF (f). Moreover, the Feng spectrum shares the following

property with the asymptotic spectrum.

Theorem 4.6 (Feng [11]). The spectrum σF (f) is closed.

A nice property of the Feng spectrum is to contain the nonlinear “eigenvalues”.

Theorem 4.7 (Feng [11]). Let λ ∈ K be such that f(x) = λx for some x 6= 0. Then,

λ ∈ σF (f).

The next result, which is analogous to Theorem 3.4, provides a sufficient condition

for the Feng spectrum to be bounded.

Theorem 4.8 (Feng [11]). Assume that f verifies M(f) < ∞ and α(f) < ∞. Then

σF (f) is bounded. More precisely the following inclusion holds:

σF (f) ⊆
{

λ ∈ K : |λ| ≤ max{α(f), M(f)}
}

.

Let us briefly check the other examples from the viewpoint of the Feng spectrum.

Consider Example 2.1. In the case E = R, we have σF (f) = R if n is even and

σF (f) = [0,∞) if n is odd. On the other hand, in the case E = C we have σF (f) = C

for any n. This example shows that the Feng spectrum may be unbounded. Both in

Example 2.2 and in Example 2.5 we have σF (f) = [0, 1].
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5. THE VÄTH PHANTOM

In this section we discuss two spectra which have been recently introduced by

Väth under the name “phantoms” (see [25], [26], [27], [28]). The definition is based

on a topological notion which is similar to the concept of zero-epi map.

Let U ⊆ E be open, bounded, connected and containing 0, and let f ∈ C(U, F ).

Following Väth [27], the map f will be called strictly epi (on U) if

inf{‖f(x)‖ : x ∈ ∂U} > 0

and there exists k > 0 such that for any map g ∈ C(U, F ) with α(g) ≤ k and g(x) = 0

for all x ∈ ∂U , the coincidence equation f(x) = g(x) admits a solution in U . The

map f will be called properly epi (on U) if ω(f) > 0, f(x) 6= 0 for all x ∈ ∂U , and

for any compact map g ∈ C(U, F ) with g(x) = 0 for all x ∈ ∂U , the coincidence

equation f(x) = g(x) admits a solution in U . That is, f properly epi on U means

that ω(f) > 0 and f is zero-epi on U . It is known, but not trivial to prove, that if f

is properly epi on U then it is also strictly epi on U (see e.g. [27]).

Let us now introduce the notion of v-regular and V-regular maps. A map f ∈
C(E, F ) is said to be v-regular (V-regular) if it is strictly epi (properly epi) on some

U . Given f ∈ C(E, E), we call the set

φ(f) = {λ ∈ K : λI − f is not v-regular}

the Väth phantom of f and the set

Φ(f) = {λ ∈ K : λI − f is not V-regular}

the large Väth phantom of f . We have the following inclusions:

φ(f) ⊆ Φ(f) ⊆ σF MV (f).

That is, the Väth phantoms are both contained in the FuMaVi spectrum.

Let us now discuss some properties of the two phantoms. The following result

shows that the phantoms extend the linear spectrum.

Theorem 5.1. Let L : E → E be a bounded linear operator. Then, both the phantom

φ(L) and the large phantom Φ(L) coincide with the classical spectrum of L.

Theorem 5.2. Both the phantom φ(f) and the large phantom Φ(f) are closed.

The next result provides a sufficient condition for the two phantoms to be bounded.

Theorem 5.3. Assume that α(f |U) < ∞ for some U . Then, both the phantom φ(f)

and the large phantom Φ(f) are bounded. More precisely the following inclusion holds:

Φ(f) ⊆
{

λ ∈ K : |λ| ≤ inf
U

max

{

α(f |U),
supx∈∂U ‖f(x)‖

infx∈∂U ‖x‖

}}

.
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A detailed comparison of spectra and phantoms may be found in the monograph

[3]. Furthermore, the short survey [27] provides an interesting comparison between

the phantom and the asymptotic spectrum.

6. THE SPECTRUM AT A POINT

In this section we recall a notion of spectrum for nonlinear operators recently

introduced by the authors. This spectrum at a point is based on the concept of

zero-epi map at a point as well as on some numerical characteristics.

In the sequel we will use the following notation. Let U be an open subset of E,

f ∈ C(U, F ) and p ∈ U . Denote by Up the open neighborhood {x ∈ E : p + x ∈ U}
of 0 ∈ E, and define fp ∈ C(Up, F ) by fp(x) = f(p + x) − f(p).

Some numerical characteristics. Let U be an open subset of E, f ∈ C(U, F ) and

p ∈ U . We recall the definitions of αp(f) and ωp(f) given in [7]. Roughly speaking,

these numbers are the pointwise analogues of α(f) and ω(f).

Let B(p, r) denote the open ball in E centered at p with radius r > 0. Suppose

that B(p, r) ⊆ U and consider the number

α(f |B(p,r)) = sup

{

α(f(A))

α(A)
: A ⊆ B(p, r), α(A) > 0

}

,

which is nondecreasing as a function of r. Hence, we can define

αp(f) = lim
r→0

α(f |B(p,r)).

Clearly, αp(f) ≤ α(f). Analogously, define

ωp(f) = lim
r→0

ω(f |B(p,r)).

Obviously, ωp(f) ≥ ω(f). Notice that αp(f) = α0(fp) and ωp(f) = ω0(fp). Let us

point out that, if E is finite dimensional, then αp(f) = −∞ and ωp(f) = +∞ for

any p ∈ U . Observe also that if f is locally compact, then αp(f) = 0. Moreover, if

ωp(f) > 0, then f is locally proper at p.

For a comprehensive list of properties of αp(f) and ωp(f) we refer to [7].

Remark 6.1. If f : E → F is positively homogeneous, then α0(f) = α(f) and

ω0(f) = ω(f).

Clearly, for a bounded linear operator L : E → F , the numbers αp(L) and

ωp(L) do not depend on the point p and coincide, respectively, with α(L) and ω(L).

Furthermore, for the C1 case the following result holds.

Proposition 6.2 ([7]). Let f : U → F be of class C1. Then, for any p ∈ U we have

αp(f) = α(f ′(p)) and ωp(f) = ω(f ′(p)).
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As before, let f ∈ C(U, F ), and fix p ∈ U . Following [16], define

|f |p = lim sup
x→0

‖f(p + x) − f(p)‖
‖x‖

and

dp(f) = lim inf
x→0

‖f(p + x) − f(p)‖
‖x‖ .

Notice that |f |p = |fp|0 and dp(f) = d0(fp). Following [16], the map f will be called

quasibounded at p if |f |p < +∞.

Remark 6.3. If f : E → F is positively homogeneous, then |f |0 coincides with the

quasinorm of f , and d0(f) coincides with the number d(f). More precisely, one has

|f |0 = |f | = sup
‖x‖=1

‖f(x)‖ and d0(f) = d(f) = inf
‖x‖=1

‖f(x)‖.

Evidently, for a bounded linear operator L : E → F , the number |L|p does

not depend on the point p and coincides with the norm ‖L‖. Analogously, dp(L) is

independent of p and coincides with d(L).

For the C1 case the following result holds.

Proposition 6.4 ([16]). Let f : U → F be of class C1. Then, for any p ∈ U we have

|f |p = ‖f ′(p)‖ and dp(f) = d(f ′(p)).

Zero-epi maps at a point. We recall now the following definitions (see [9]). Let

U be open in E, f ∈ C(U, F ) and p ∈ U .

Definition 6.5. Given y in F , we say that f is y-admissible at p if f(p) = y and

f(x) 6= y for any x in a pinched neighborhood of p.

Notice that the map f is y-admissible at p if and only if f(p) = y and fp is

0-admissible at 0. Furthermore, observe that if f verifies dp(f) > 0 then it is f(p)-

admissible at p.

Definition 6.6. We say that f is y-epi at p if it is y-admissible at p and y-epi on

any sufficiently small neighborhood of p.

Remark 6.7. In view of the localization property of zero-epi maps (see Proposi-

tion 4.4), in the previous definition it is not restrictive to require that there exists a

bounded open neighborhood U of p such that f(x) 6= y for all x ∈ U , x 6= p, and f is

y-epi on U .

Notice that f is y-epi at p if and only if f(p) = y and fp is 0-epi at 0.

The following local surjectivity property can be deduced from the corresponding

property of zero-epi maps stated in Theorem 4.5 above.
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Corollary 6.8. Let f ∈ C(U, F ) be y-epi at p and locally proper at p. Then, y is an

interior point of the image f(U).

We observe that a bounded linear operator L : E → F is y-admissible at p if and

only if Lp = y and L is injective. Moreover, if Lp = y, then L is y-epi at p if and

only if it is 0-epi at 0.

Let L : E → F be a linear isomorphism. As a consequence of the Schauder

Fixed Point Theorem, it is not difficult to prove that L is zero-epi on any bounded

neighborhood of the origin (see [14]). In particular, this implies that L is 0-epi at 0.

The spectrum at a point. We are now ready to define the spectrum of a map at

a point (see [9]). We need first to introduce the notion of regular map at a point.

Let U be an open subset of E, f ∈ C(U, F ), and p ∈ U .

Definition 6.9. The map f is said to be regular at p if the following conditions hold:

i) dp(f) > 0;

ii) ωp(f) > 0;

iii) fp is 0-epi at 0.

Notice that f is regular at p if and only if fp is regular at 0. Moreover, if f is

regular at p and c 6= 0, then cf is regular at p as well.

The following stability property for regular maps at a point, which can be re-

garded as a Rouché–type theorem, is the analogue of Theorem 3.1 above.

Theorem 6.10 (Stability theorem for regular maps, [9]). Assume that f is regular at

p and let g = f + k, where k ∈ C(U, F ) is such that αp(k) < ωp(f) and |k|p < dp(f).

Then g is regular at p.

Notice that a bounded linear operator L : E → F is regular at p if and only if it

is regular at 0. The following proposition characterizes the bounded linear operators

which are regular at 0.

Proposition 6.11. Let L : E → F be a bounded linear operator. Then L is regular

at 0 if and only if it is an isomorphism.

Let now f ∈ C(U, E) and p ∈ U . We define the spectrum of the map f at the

point p as the set

σ(f, p) = {λ ∈ K : λI − f is not regular at p}.

It is convenient to define the following subsets of σ(f, p):

σω(f, p) = {λ ∈ K : ωp(λI − f) = 0}, Σ(f, p) = {λ ∈ K : dp(λI − f) = 0},
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and σπ(f, p) = σω(f, p)∪Σ(f, p). We shall call σπ(f, p) the approximate point spectrum

of f at p. We point out that the spectrum Σ(f, p) has been introduced in [16] by the

last two authors.

Clearly, for a bounded linear operator L : E → E, σ(L, p) and σπ(L, p) do not

depend on p. Hence, we can simply write σ(L) and σπ(L) instead of σ(L, p) and

σπ(L, p).

The above notation and definitions are justified by the following result, which is

analogous to Theorem 3.2.

Theorem 6.12. Let L : E → E be a bounded linear operator. Then

1. σ(L) coincides with the classical spectrum of L;

2. σπ(L) coincides with the classical approximate point spectrum of L.

The next result shows that, for a positively homogeneous map f : E → E, the

spectrum of f at 0 coincides with the asymptotic spectrum of f . In particular, the

same is true for bounded linear operators. The proof is straightforward and, therefore,

will be omitted.

Theorem 6.13. Let f : E → E be positively homogeneous. Then

1. σ(f, 0) coincides with the asymptotic spectrum, σF MV (f), of f ;

2. σπ(f, 0) coincides with the asymptotic approximate point spectrum σπ,F MV (f).

More precisely, σω(f, 0) = σω,F MV (f) and Σ(f, 0) = ΣF MV (f). In addition, λ ∈
Σ(f, 0) if and only if inf‖x‖=1 ‖λx − f(x)‖ = 0.

Observe that the map f : C2 → C2 as in Example 2.3 is positively homogeneous.

We already pointed out that σF MV (f) = ∅. Taking into account Theorem 6.13 it

follows that σ(f, 0) = ∅. This shows that also the spectrum at a point may be empty.

Remark 6.14. If E is finite dimensional, then σω(f, p) = ∅ for any p and hence

σπ(f, p) = Σ(f, p).

Remark 6.15. It is interesting to observe that, for a real function f , the spectrum

σ(f, p) is completely determined by the Dini’s derivatives of f at p, that is, by the

following four extended real numbers:

D−f(p) = lim inf
h→0−

f(p + h) − f(p)

h
, D−f(p) = lim sup

h→0−

f(p + h) − f(p)

h
,

D+f(p) = lim inf
h→0+

f(p + h) − f(p)

h
, D+f(p) = lim sup

h→0+

f(p + h) − f(p)

h
.

It is not difficult to show that σ(f, p) is the closed subinterval of R whose endpoints

are, respectively, the smallest and the largest of the Dini’s derivatives. Thus, any

closed interval (the empty set, a singleton and R included) is the spectrum at a point
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of some continuous function. For example, if all the four Dini’s derivatives of f at p

are +∞ (or −∞), then σ(f, p) = ∅.
We point out that, even in the one dimensional real case, Σ(f, p) need not coincide

with σ(f, p). In fact, one can check that Σ(f, p) is the union of two closed intervals:

one with endpoints D−f(p) and D−f(p), and the other one with endpoints D+f(p)

and D+f(p). Hence, σ(f, p) is the smallest interval containing Σ(f, p), and this agrees

with Theorem 6.18 below.

As a consequence of these facts, if f is differentiable at p one gets σ(f, p) =

Σ(f, p) = {f ′(p)}. This agrees with Corollary 6.22 below.

Let us point out that, in view of Remark 6.15, the computation of the spectrum

at a point in Examples 2.1, 2.2 and 2.5 is trivial. In the present as well as in the

next section we will provide more interesting examples dealing with non-differentiable

maps.

The next result, which is a consequence of Theorem 6.10, provides a sufficient

condition for the spectrum of f at p to be bounded. Set

qp(f) = max{αp(f), |f |p}

and define the spectral radius of f at p as

rp(f) = sup{|λ| : λ ∈ σ(f, p)}.

Theorem 6.16 ([9]). We have rp(f) ≤ qp(f). In particular, if f is locally compact

and quasibounded at p, then σ(f, p) is bounded.

In the case of a bounded linear operator L : E → E, the number rp(L) is inde-

pendent of p. Therefore, this number will be denoted by r(L). From Proposition 6.16

above we recover the well known property r(L) ≤ ‖L‖.
The estimates provided in the following proposition will be used in the sequel.

Proposition 6.17. The following estimates hold:

1. λ ∈ Σ(f, p) implies dp(f) ≤ |λ| ≤ |f |p;
2. λ ∈ σω(f, p) implies ωp(f) ≤ |λ| ≤ αp(f).

The following result, which is analogous to Theorem 3.3 above, shows that the

spectrum at a point shares some important properties with the asymptotic spectrum.

Theorem 6.18 ([9]). The following properties hold.

1. σ(f, p) is closed;

2. σπ(f, p) is closed;

3. σ(f, p)\σπ(f, p) is open;
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4. ∂σ(f, p) ⊆ σπ(f, p).

Corollary 6.19. Let W be a connected component of K\σπ(f, p). Then, W is open

in K and maps of the form λI − fp, with λ ∈ W , are either all 0-epi at 0 or all not

0-epi at 0.

Corollary 6.20. The following assertions hold.

i) Assume that K = C, σ(f, p) is bounded, and λ belongs to the unbounded com-

ponent of C\σπ(f, p). Then λI − f is regular at p. In particular (as pointed

out by J.R.L. Webb in a private communication), if σπ(f, p) is countable, then

σ(f, p) = σπ(f, p).

ii) Assume that K = R, σ(f, p) is bounded from above (resp. below), and λ belongs

to the right (resp. left) unbounded component of R\σπ(f, p). Then λI − f is

regular at p.

In what follows the notation σ(f, p) ≡ σ(g, p) stands for σ(f, p) = σ(g, p),

σω(f, p) = σω(g, p), and Σ(f, p) = Σ(g, p). Recall that qp(f) = max{αp(f), |f |p}.

Theorem 6.21 ([9]). Given an open subset U of E, f, g ∈ C(U, E) and p ∈ U , one

has

1. σ(cf, p) ≡ cσ(f, p), for any c ∈ K;

2. σ(c + f, p) ≡ c + σ(f, p), for any c ∈ K;

3. qp(f − g) = 0 implies σ(f, p) ≡ σ(g, p).

For C1 maps we have the following result which is a direct consequence of property

(3) in Theorem 6.21.

Corollary 6.22. Let f : U → E be of class C1 and p ∈ U . Then, σ(f, p) ≡ σ(f ′(p)).

Observe that the equivalence σ(f, p) ≡ σ(f ′(p)) holds true even when the map

f ∈ C(U, E) is merely Fréchet differentiable at the point p ∈ U , provided that the

remainder φ ∈ C(U, E), defined as

φ(x) = f(x) − f ′(p)(x − p), x ∈ U,

verifies αp(φ) = 0. This is the case, for instance, if f = g + h, where g is of class C1

and h is locally compact and Fréchet differentiable at p (but not necessarily C1). As

an example, consider the map f : E → E defined by

f(x) =

{

x + ‖x‖2
(

sin 1
‖x‖

)

v if x 6= 0,

0 if x = 0,

where v ∈ E\{0} is given, and p = 0.
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In the case when the map f is of class C1, Corollary 6.22 above implies that

the multivalued map that associates to every point p the spectrum σ(f, p) ⊆ K is

upper semicontinuous. This depends on the well known fact that so is the map which

associates to any bounded linear operator L : E → E its spectrum σ(L). The next

one-dimensional example shows that the multivalued map p 7→ σ(f, p) ⊆ K need not

be upper semicontinuous if f is merely C0.

Example 6.23. Let f : R → R be defined by f(x) = x2 sin(1/x), if x 6= 0 and

f(0) = 0. Notice that f is C1 on R\{0} and merely differentiable at 0 with f ′(0) = 0.

Thus, as pointed out above, σ(f, 0) = {0}. Consequently, the multivalued map

p 7→ σ(f, p) = {f ′(p)} is not upper semicontinuous at 0 since f ′ is not continuous at 0.

The next example in the infinite dimensional context regards an interesting dif-

ferentiable map.

Example 6.24. Let E be a real Hilbert space (of dimension greater than 1), and

consider the nonlinear map f(x) = ‖x‖x. Observe that f is Fréchet differentiable at

any p ∈ E with

f ′(p)v = ‖p‖v +
(p, v)

‖p‖ p, v ∈ E

if p 6= 0, and f ′(0) = 0. Hence, by Corollary 6.22 we have σ(f, p) = σ(f ′(p)). Given

p 6= 0, in order to compute σ(f ′(p)), observe that f ′(p) is of the form L = cI + K,

with c ∈ R and K : E → E with finite dimensional image, say E0 (in this case

dim E0 = 1). Since σ(L) = {c}∪σ(L0), where L0 denotes the restriction of L to E0, we

get σ(f, p) = σ(f ′(p)) = {‖p‖}∪{2‖p‖} if p 6= 0 and, clearly, σ(f, 0) = σ(f ′(0)) = {0}.
We already pointed out that the spectrum at a point may be empty. On the other

hand, it satisfies the following nonemptiness property (which is a straightforward

consequence of Corollary 6.22 above), as the Neuberger spectrum does.

Corollary 6.25. If K = C and f : U → E is of class C1, then for any p ∈ U the

spectrum σ(f, p) is nonempty.

Also the following property is in common with all the other spectra considered

up to now.

Proposition 6.26. Assume dim E = +∞ and let f be locally compact. Then, 0 ∈
σ(f, p). More precisely, σω(f, p) = {0}. Thus, σπ(f, p) = {0} ∪ Σ(f, p).

The following simple examples illustrate three “pathological cases” for the spec-

trum at a point.

Example 6.27. Let f : R → R, f(x) = sign(x)
√

|x|. Then, Σ(f, 0) = σ(f, 0) = ∅.

Example 6.28. Let f : R → R, f(x) =
√

|x|. Then, Σ(f, 0) = ∅ and σ(f, 0) = R.
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Example 6.29. Let f : R → R be such that f(x) =
√

|x| sin(1/x) if x 6= 0 and

f(0) = 0. Clearly, σπ(f, 0) = Σ(f, 0) = R.

In the case of positively homogeneous maps, it is notably meaningful to introduce

the concept of eigenvalue. Let f : E → E be positively homogeneous. As in the linear

case, we say that λ ∈ K is an eigenvalue of f if the equation λx = f(x) admits a

nontrivial solution.

Proposition 6.30. Assume f : E → E positively homogeneous and λ 6∈ σω(f, 0).

Then, λ ∈ Σ(f, 0) if and only if λ is an eigenvalue of f .

Corollary 6.31. The following assertions hold.

i) Assume dim E = +∞ and let f : E → E be positively homogeneous and locally

compact. Then, Σ(f, 0)\{0} = {λ ∈ K\{0} : λ eigenvalue of f}.
ii) Assume E finite dimensional and f : E → E positively homogeneous. Then,

Σ(f, 0) = {λ ∈ K : λ eigenvalue of f}.

In Table 1 we summarize the main properties of the various spectra we have

considered so far.

Spectrum Nonempty Closed Bounded Compact

σR(f) No No No No

σN(f) Yes No No No

σK(f) Noa Yes Yes Yes

σF MV (f) Noa Yes Nob Nob

σF (f) Noa Yes Noc Noc

σ(f, p) Nod Yes Noe Noe

a Yes if dim E = ∞ and f is completely continuous.
b Yes if α(f) < ∞ and f is quasibounded.
c Yes if α(f) < ∞ and M(f) < ∞.
d Yes if dim E = ∞ and f is locally compact.
e Yes if αp(f) < ∞ and f is quasibounded at p.

Table 1

7. BIFURCATION AND ILLUSTRATING EXAMPLES

In this section we describe some applications of the spectrum at a point to bi-

furcation problems in the non-differentiable case. We close this paper with some

examples illustrating some peculiarities of the spectrum at a point.
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Let U be an open subset of E and f ∈ C(U, E). Assume that 0 ∈ U and f(0) = 0,

and consider the equation

λx = f(x), λ ∈ K. (7.1)

A solution (λ, x) of (7.1) is called nontrivial if x 6= 0. We recall that λ ∈ K is a

bifurcation point for f if any neighborhood of (λ, 0) in K × E contains a nontrivial

solution of (7.1). We will denote by B(f) the set of bifurcation points of f . Notice

that B(f) is closed since λ ∈ B(f) if and only if (λ, 0) belongs to the closure S of the

set S of the nontrivial solutions of (7.1).

It is well known that if f is Fréchet differentiable at 0 then the set B(f) of

bifurcation points of f is contained in the spectrum σ(f ′(0)) of the Fréchet derivative

f ′(0). The next proposition (see also [16]) extends this necessary condition.

Proposition 7.1 ([9]). The set B(f) is contained in Σ(f, 0), and hence in σπ(f, 0).

Remark 7.2. As in the linear case, for a positively homogeneous map f : E → E we

have that if λ ∈ K is an eigenvalue of f then λ ∈ B(f). If, moreover, ω(λI − f) > 0,

the converse is also true in view of Proposition 6.30 and Proposition 7.1 above.

The following result provides a sufficient condition for the existence of bifurcation

points. It is in the spirit of Theorem 5.1 in [16], where f is assumed to be locally

compact and quasibounded at 0. Notice that the Leray–Schauder degree cannot be

used here, since we do not assume f to be locally compact.

Theorem 7.3 ([9]). Let λ0, λ1 ∈ K. Assume λ0 ∈ σ(f, 0)\σπ(f, 0) and λ1 6∈ σ(f, 0).

Then, σω(f, 0) ∪ B(f) separates λ0 from λ1; that is, λ0 and λ1 belong to different

components of K\(σω(f, 0) ∪ B(f)).

Corollary 7.4. Let λ0 ∈ σ(f, 0)\σπ(f, 0), and assume that σ(f, 0) is bounded. Then,

the connected component of K\(σω(f, 0) ∪ B(f)) containing λ0 is bounded.

Proposition 7.5 below extends Theorem 2.1 in [16] by replacing the assumption

“f quasibounded at p” with the weaker condition “σ(f, p) bounded”. We wish to

stress the fact that, contrary to the proof of [16, Theorem 2.1], here no degree theory

is involved. We wish further to observe that a result of this type could not be stated

in [16] because of the lack of an exhaustive notion of spectrum at a point. The same

proposition exhibits an exclusively nonlinear phenomenon since, in the compact linear

case, zero always belongs to the approximate point spectrum. An example illustrating

this peculiarity will be given below.

Proposition 7.5 ([9]). Let U be an open subset of E containing the origin, and

suppose dim E = +∞. Let f ∈ C(U, E) be locally compact, and assume that σ(f, 0)

is bounded. Then, 0 6∈ Σ(f, 0) implies that the connected component of K\B(f)

containing 0 is bounded.
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Let us examine now some illustrating examples. We consider first the case E = C.

Since C is finite dimensional, given f : C → C and p ∈ C, we have σπ(f, p) = Σ(f, p).

If, in addition, f is positively homogeneous, then

Σ(f, 0) = {λ ∈ C : λz = f(z) for some z 6= 0} = B(f)

(see Remark 7.2).

Example 7.6. Let f : C → C be defined as f(x + iy) = |x| + iy. The map f

is positively homogeneous and, consequently, λ = a + ib belongs to Σ(f, 0) if and

only if the equation (a + ib)(x + iy) − (|x| + iy) = 0 admits a solution x + iy in

S1. An easy computation shows that Σ(f, 0) = S1. Observe that d0(f) = |f |0 = 1,

and this implies that the spectrum σ(f, 0) is bounded. Moreover, f is not zero-epi

at 0. To see this notice that, given w ∈ C with negative real part, the equation

f(z) = w has no solutions. Finally, since ∂σ(f, 0) ⊆ Σ(f, 0), we conclude that

σ(f, 0) = {a + ib : a2 + b2 ≤ 1} and Σ(f, 0) = S1.

Example 7.7. Let f : C → C be defined as f(x + iy) = sx + ty + i(ux + vy), where

s, t, u, v are given real constants. The map f is positively homogeneous, and linear if

regarded from R2 into itself. Consequently, λ = a + ib belongs to Σ(f, 0) if and only

if the equation (a + ib)(x + iy)− (sx + ty + i(ux + vy)) = 0 admits a solution x + iy

with x2 + y2 > 0; that is, if and only if the homogeneous linear system
{

(a − s)x − (b + t)y = 0

(b − u)x + (a − v)y = 0

admits a nontrivial solution (x, y). This fact is equivalent to the condition

det

(

a − s −(b + t)

b − u a − v

)

= 0,

from which we get a2 + b2 − (s + v)a− (u− t)b + sv − tu = 0. This is the equation of

the circle S0, centered at
(

s+v
2

, u−t
2

)

with radius

r =

√

(s + v)2

4
+

(u − t)2

4
− sv + tu.

Observe that σ(f, 0) = Σ(f, 0). Indeed, assume that λ = a + ib does not belong to

Σ(f, 0), that is

det

(

a − s −(b + t)

b − u a − v

)

6= 0.

This implies that λI − f is a linear isomorphism as a map from R
2 into itself. In

particular, λI−f is a homeomorphism as a map from C into C. It follows λ 6∈ σ(f, 0)

in view of Proposition 4.3. Hence, the whole spectrum σ(f, 0) coincides with the

circle S0.
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Notice that the spectrum reduces to a point (i.e. r = 0) if and only if s = v and

t = −u; that is, if and only if f is linear as a complex map.

Example 7.8. Let g : C → C be defined by g(x + iy) =
√

x2 + y2 + iyn, with n ≥ 2.

As a consequence of Theorem 6.21-(3), we have σ(g, 0) ≡ σ(f, 0), where f : C → C

is the positively homogeneous map defined as f(x + iy) =
√

x2 + y2. Now, it is not

difficult to prove that Σ(f, 0) = S1. Moreover, σ(f, 0) = {a + ib : a2 + b2 ≤ 1} since

0 is not in the interior of the image of f (so f is not zero-epi at 0). Consequently,

Σ(g, 0) = S1 and σ(g, 0) = {a + ib : a2 + b2 ≤ 1}. Hence, by Theorem 7.3, we get

B(g) = Σ(g, 0) = S1.

Example 7.9. Let f : C → C be defined as f(x + iy) =
√

x2 + y2 + iy. Since f is

positively homogeneous, one can show that a + ib ∈ Σ(f, 0) if and only if

(a − 1)2 + b2 = (a2 + b2 − a)2,

which is the equation of a closed curve Γ (a cardioid). The curve Γ divides the

complex plane in two connected components, Ω0 (containing 0) and Ω1 (unbounded).

Clearly, λ 6∈ σ(f, 0) if λ belongs to Ω1. Furthermore, λ ∈ σ(f, 0) for any λ ∈ Ω0 since

f is not zero-epi at 0. Hence, σ(f, 0) = Ω0 = Ω0 ∪ Γ and Σ(f, 0) = Γ (see Figure 1).

Ω0

Ω1

Γ

−1 10

Figure 1. The spectrum of f : C → C, x + iy 7→
√

x2 + y2 + iy.

Example 7.10. Let f : C → C be defined as f(x + iy) = |x|/2 + iy. Notice that

d0(f) = 1/2 and |f |0 = 1. Since f is positively homogeneous, one can show (see

e.g. [15]) that Σ(f, 0) is the union of two circles: S+ =
{

λ ∈ C :
∣

∣λ − 1
4

∣

∣ = 3
4

}

and

S− =
{

λ ∈ C :
∣

∣λ − 3
4

∣

∣ = 1
4

}

. Consequently, C\(S+ ∪ S−) consists of three connected

components, Ω0 (containing 0), Ω1 (surrounded by S−) and Ω2 (unbounded). One

can check that, when λ belongs to Ω1∪Ω2, the map λI −f is a local homeomorphism

around zero. Thus, λ 6∈ σ(f, 0) on the basis of Proposition 4.3. Moreover, since
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f is not zero-epi at 0, we get λ ∈ σ(f, 0) for all λ ∈ Ω0. Hence, σ(f, 0) = Ω0 =

Ω0 ∪ (S+ ∪ S−) and Σ(f, 0) = S+ ∪ S− (see Figure 2).

Ω2

Ω1

Ω0

S+

S−

0−1
2

11
2

Figure 2. The spectrum of f : C → C, x + iy 7→ |x|
2

+ iy.

We close with an example in the infinite dimensional context.

Example 7.11. Let f : ℓ2(C) → ℓ2(C) be defined by

f(z) = (‖z‖, z1, z2, z3, . . . ),

where z = (z1, z2, z3, . . . ). Notice that f is positively homogeneous, and is the sum

of the right-shift operator L : ℓ2(C) → ℓ2(C), defined as Lz = (0, z1, z2, z3, . . . ), and

the finite dimensional map k : ℓ2(C) → ℓ2(C), defined as k(z) = (‖z‖, 0, 0, 0, . . . ).
An easy computation shows that d(f) = |f | =

√
2. Moreover, α(f) = ω(f) = 1.

Indeed, since k is compact and f = L + k, we have α(f) = α(L) and ω(f) = ω(L).

Now, α(L) = ω(L) = 1, L being an isometry between the space ℓ2(C) and a subspace

of codimension one. Therefore, Proposition 6.17 implies σω(f, 0) ⊆ {λ ∈ C : |λ| = 1}
and Σ(f, 0) ⊆ {λ ∈ C : |λ| =

√
2}. Let us show that the converse inclusions hold.

First, let us prove that σω(f, 0) = S1. Since ω(λI − f) = ω(λI −L), it is enough

to show that ω(λI − L) = 0 when |λ| = 1. To this end, recall that a linear operator

T is left semi-Fredholm if and only if ω(T ) > 0. Thus, λI − L is left semi-Fredholm

for |λ| 6= 1. Recall also that the index of λI − L,

ind(λI − L) = dim Ker(λI − L) − dim coKer(λI − L) ∈ {−∞} ∪ Z,

depends continuously on λ. Therefore, it is constant on any connected set contained in

C\S1. This implies that ind(λI−L) = −1 when |λ| < 1 since ind(−L) = −1. On the

other hand, ind(λI−L) = 0 if |λ| > 1 since, as well known, σ(L) = {λ ∈ C : |λ| ≤ 1}.
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Thus, the subset σω(L) of S1 separates the two open sets {λ ∈ C : |λ| < 1} and

{λ ∈ C : |λ| > 1}. Consequently, σω(L) = S1. Hence, σω(f, 0) = S1.

To show that Σ(f, 0) = {λ ∈ C : |λ| =
√

2}, assume |λ| =
√

2. Since λ 6∈ σω(f, 0),

Proposition 6.30 implies that λ ∈ Σ(f, 0) if and only if λ is an eigenvalue of f . Simple

computations show that this condition is satisfied when |λ| =
√

2.

As a consequence of the above arguments, σπ(f, 0) is the union of two circles

centered at the origin. Now, observe that q0(f) = max{α0(f), |f |0} =
√

2 and hence

σ(f, 0) ⊆ {λ ∈ C : |λ| ≤
√

2}. Let us prove that σ(f, 0) = {λ ∈ C : |λ| ≤
√

2}. For

this purpose remember that, if W is a connected component of C\σπ(f, 0), then the

maps of the form λ− f , with λ ∈ W , are either all zero-epi at 0 or all not zero-epi at

0 (see Corollary 6.19).

Notice that, if |λ| < 1, then λI − f is not zero-epi at 0. Indeed, set e1 =

(1, 0, 0, . . . ) and observe that, given ε > 0, the equation f(z) = −εe1 has no solutions.

Consequently, f is not zero-epi at 0.

Let us show that λI − f is not 0-epi at 0 also for 1 < |λ| <
√

2. Indeed, fix λ ∈ C

with 1 < |λ| <
√

2. We claim that, given ε > 0, the equation

λz − f(z) = εe1, z ∈ E (7.2)

has no solutions. Recall that λI − L is an isomorphism and set vλ = (λI − L)−1(e1).

Since f is the sum of L and k, and the image of k lies in the subspace spanned

by e1, the solutions of (7.2) lie in the one dimensional subspace Eλ spanned by vλ.

Therefore, any solution of (7.2) is of the type ξvλ, ξ ∈ C. An easy computation shows

that ‖vλ‖2 = 1
|λ|2−1

. Thus,

λ(ξvλ) − f(ξvλ) = ξe1 − ‖ξvλ‖e1 =

(

ξ − |ξ| 1
√

|λ|2 − 1

)

e1.

Consider now the equation

ξ − |ξ| 1
√

|λ|2 − 1
= ε, ξ ∈ C (7.3)

which is equivalent to (7.2). It is not difficult to see that equation (7.3) has no

solutions when 1 < |λ| <
√

2. Consequently, equation (7.2) has no solution, as

claimed. Hence, λI − f is not zero-epi at 0 when 1 < |λ| <
√

2.

From the above discussion we get σ(f, 0) = {λ ∈ C : |λ| ≤
√

2}.
Consider now any map h : ℓ2(C) → ℓ2(C) which is compact and such that

h(z) = o(‖z‖) as ‖z‖ → 0, and let g = f+h. Then, as a consequence of Theorem 6.21-

(3), we have σ(g, 0) ≡ σ(f, 0). In particular, σ(g, 0) = {λ ∈ C : |λ| ≤
√

2} = Ω0.

Moreover, σω(g, 0) = S1 and Σ(g, 0) = {λ ∈ C : |λ| =
√

2} = Γ (see Figure 3). Hence,

from Theorem 7.3, it follows that any λ ∈ C with |λ| =
√

2 is a bifurcation point for
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g. That is,

B(g) = {λ ∈ C : |λ| =
√

2} = Γ.

In view of Theorem 7.3, this stability of the set of bifurcation points depends on the

fact that Σ(f, 0) locally separates σ(f, 0) from its complement.

Notice that in the above example we have detected a bifurcation phenomenon

that cannot be investigated via the classical Leray–Schauder degree theory. Moreover,

since the map f is a compact perturbation of a linear Fredholm operator of negative

index, also the more recent degree theory for compact perturbations of Fredholm

operators of index zero (see [6] and references therein) cannot be applied.

Ω0
Γ

√
210

Figure 3. The spectrum of f : ℓ2(C) → ℓ2(C), z 7→ (‖z‖, z1, z2, z3, . . . ).
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