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ABSTRACT. We prove a strong duality result between a convex optimization problem with both

cone and equality constraints and its Lagrange dual formulation, provided that a constraint qualifi-

cation condition related to the notion of quasi-relative interior holds true. In such a way we overcome

the difficulty that the interior of the set involved in the regularity condition is empty.
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1. INTRODUCTION

In the papers [7], [8] and [19] the authors present an infinite dimensional duality

theory which guarantees the existence of strong duality between a convex optimization

problem with cone constraints and its Lagrange dual formulation, provided that a

generalized constraint qualification assumption called Assumption S (see [7], [8]) or a

normal cone condition called Assumption N (see [19]) holds true. Both Assumption

S and Assumption N are related to the notion of quasi-relative interior and the use

of such notion allows to overcome the difficulty that the interior of the set involved

in the regularity condition is empty (see [16] and [19] for more details).

The aim of this paper is to study the existence of strong duality between a convex

optimization problem with both cone and equality constraints and its Lagrange dual.

In particular, given f : S → R, g : S → Y, h : S → Z, where S is a convex subset
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of a real linear topological space X, Y is a real normed space ordered by a convex

cone C, Z is a real normed space and h is an affine-linear mapping, we consider the

optimization problem:

f(x0) = min
x∈K

f(x), Problem 1

with

K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}

and the dual problem:

max
u∈C∗

v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉 + 〈v, h(x)〉], Problem 2

where

C∗ = {u ∈ Y ∗ : 〈u, y〉 ≥ 0, ∀y ∈ C} .

Then, using a nice suggestion of C. Zalinescu, in Section 3, we show the following

result which is an improvement of the analogous Theorem 3.1 in [7]. We refer to

Section 2 for the meaning of the concepts used here.

Theorem 1.1. Assume that f : S → R, g : S → Y are convex functions and that

h : S → Z is an affine-linear mapping. Assume that the following Assumption S is

fulfilled at the minimal solution x0 ∈ K to Problem 1, namely

TfM
(0, θY , θZ)∩] −∞, 0[×{θY } × {θZ} = ∅, Assumption S

where

M̃ = {(f(x) − f(x0) + α, g(x) + y, h(x)) : x ∈ S \ K, α ≥ 0, y ∈ C}

and TfM
(0, θY , θZ) is the tangent cone to M̃ at (0, θY , θZ). Then also Problem 2 is

solvable and if ū ∈ C∗, v̄ ∈ Z∗ are the extremal points to Problem 2, we have:

〈ū, g(x0)〉 = 0

and the extrema of the two problems are equal.

This result improves Theorem 3.1 in [7] because the additional assumptions qri

C 6= ∅, cl (C − C) = Y, cl h(S − S) = Z and there exists x̂ ∈ S with g(x̂) ∈ - qri C

and h(x̂) = θZ are removed.

Next, in Section 4, we provide a sufficient condition for the existence of the strong

duality based on the notion of normal cone. Precisely, we prove the following result.

Theorem 1.2. Let f : S → R, g : S → Y, h : S → Z be three functions such that the

following assumption holds:

∃ x̄ ∈ K, ∃ (ξ̂, ŷ∗, ẑ∗) ∈ NM(0, θY , θZ) such that

ξ̂(f(x̄) − f(x0)) + 〈ŷ∗, g(x̄)〉 + 〈ẑ∗, h(x̄)〉 < 0 Assumption N
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where

M = {(f(x) − f(x0) + α, g(x) + y, h(x)), x ∈ S, α ≥ 0, y ∈ C},

NM(0, θY , θZ) is the normal cone to M at the point (0, θY , θZ) and x0 ∈ K is the

minimal solution to Problem 1. Then Problem 2 is solvable and the extremal values

of both problems are equal.

Assumption N is strictly connected with the qri M notion. In fact, if Assumption

N holds, then, if M is convex, namely for instance if f and g are convex functions

and h is an affine-linear function, NM(0, θY , θZ) cannot be a linear subspace and so

(see Proposition 2.2) also the tangent cone TM (0, θY , θZ) is not a linear subspace,

hence (0, θY , θZ) /∈ qri M. Vice versa, if (0, θY , θZ) /∈ qri M, NM (0, θY , θZ) cannot

be a linear subspace and there exists (ξ̂, ŷ∗, ẑ∗) 6= (0, θY ∗ , θZ∗) such that (ξ̂, ŷ∗, ẑ∗) ∈

NM(0, θY , θZ).

The paper is organized as follows. In Section 2 we recall some useful definitions

and theorems. In Section 3 we prove Theorem 1.1 and in Section 4 Theorem 1.2.

Finally, Section 5 is devoted to applications of the strong duality results.

2. PRELIMINARY CONCEPTS AND RESULTS

Let X denote, if not otherwise specified, a real normed space and X∗ the topo-

logical dual of all continuous linear functionals on X, and let C be a subset of X.

Given a point x ∈ X, the set

TC(x) =
{
h ∈ X : h = lim

n→∞

λn(xn − x), λn ∈ R and λn > 0 ∀n ∈ N,

xn ∈ C, ∀n ∈ N and lim
n

xn = x
}

is called the tangent cone to C at x. Of course, if TC(x) 6= ∅, then x ∈ cl C. If x ∈ cl

C and C is convex, then we have:

TC(x) = cl cone (C − {x}) ,

where

cone (C) = {λx : x ∈ C, λ ∈ R, λ ≥ 0} .

Following Borwein and Lewis (see [2]), we give the following definition of quasi-relative

interior for a convex set.

Definition 2.1. Let C be a convex subset of X. The quasi-relative interior of C,

denoted by qri C, is the set of those x ∈ C for which TC(x) is a linear subspace of X.

If we define the normal cone to C at x by

NC(x) = {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ 0, ∀y ∈ C} ,

the following result holds true.
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Proposition 2.2. Let C be a convex subset of X and x ∈ C. Then x ∈ qri C if and

only if NC(x) is a linear subspace of X∗.

By the way, we report the following separation theorem based on the notion of

qri C.

Theorem 2.3 (Separation Theorem). Let C be a convex subset of X and x0 ∈ C\

qri C. Then there exists ξ 6= θX∗ such that

〈ξ, x〉 ≤ 〈ξ, x0〉 ∀x ∈ C.

Vice versa, let us suppose that there exists ξ 6= θX∗ such that

〈ξ, x〉 ≤ 〈ξ, x0〉 ∀x ∈ C

and that

cl (TC(x0) − TC(x0)) = X.

Then x0 /∈ qri C.

3. PROOF OF THEOREM 1.1

For the reader’s convenience, we report the first part of the proof of Theorem 3.1

in [7], which remains unchanged.

Let us recall that

M = {(f(x) − f(x0) + α, g(x) + y, h(x)) : x ∈ S, α ≥ 0, y ∈ C}

= (f, g, h)(S) + R+ × C × θZ .

The set M is convex in virtue of convexity assumptions on the functions f and g and

of the affine–linearity of h.

Since Problem 1 is solvable, there exists x0 ∈ K such that

f(x0) ≤ f(x) ∀x ∈ K,

namely

f(x0) ≤ f(x) ∀x ∈ S :

−g(x) ∈ C, h(x) = θZ , and − g(x0) ∈ C, h(x0) = θZ .

We wish to prove that TM(0, θY , θZ) is not a linear subspace of R × Y × Z. In fact,

let y ∈ TM(0, θY , θZ), namely

y = lim
n→∞

λn [(f(xn) − f(x0) + αn, g(xn) + yn, h(xn)) − (0, θY , θZ)]

with λn > 0, lim
n→∞

(f(xn) − f(x0) + αn) = 0, lim
n→∞

(g(xn) + yn) = θY , lim
n→∞

h(xn) = θZ ,

αn ≥ 0, yn ∈ C, xn ∈ S.

Four different situations can occur:
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1. If xn ∈ K, ∀n ∈ N, then g(xn) ∈ −C and h(xn) = θZ ; hence, f(xn) ≥ f(x0) and

f(xn) + αn ≥ f(x0) (since αn ≥ 0); moreover, λn > 0 and so λn[(f(xn) + αn) −

f(x0)] ≥ 0 which implies lim
n→∞

[λn (f(xn) + αn − f(x0))] ≥ 0. As a consequence,

the first component of y is greater than or equal to zero.

2. If xn ∈ S \ K, ∀n ∈ N, then y ∈ TfM
(0, θY , θZ) where

TfM
(0, θY , θZ)

=
{
y = lim

n→∞

λn [(f(xn) − f(x0) + αn, g(xn) + yn, h(xn)) − (0, θY , θZ)]

= lim
n→∞

λn (f(xn) + αn − f(x0), g(xn) + yn, h(xn)) :

xn ∈ S \ K, lim
n→∞

(f(xn) + αn − f(x0)) = 0,

lim
n→∞

(g(xn) + yn) = θY , lim
n→∞

h(xn) = θZ

}
,

and from Assumption S it results to be TfM
(0, θY , θZ)∩

{
R

−, θY , θZ

}
= ∅. Hence,

y cannot be a point of the type (l, θY , θZ) with l < 0.

3. If xn ∈ S \K for a finite number of indexes n, then the sequence {xn} definitely

belongs to K and the conclusion of point 1. holds.

4. If xn ∈ S \ K for an infinite number of indexes n, then we can consider a

subsequence xzn
∈ S \ K and we come back to point 2.

Therefore, we obtain that if (l, θY , θZ) ∈ TM (0, θY , θZ) then l must be nonnega-

tive. In particular,

(−1, θY , θZ) /∈ TM(0, θY , θZ) = cl cone (M − (0, θY , θZ)).

Since this set is a closed convex cone (because M is convex), in virtue of a well known

separation theorem, there exists (µ, y∗, z∗) ∈ R × Y ∗ × Z∗ such that

−µ < 0 ≤ µ(f(x) + α − f(x0)) + 〈y∗, g(x) + y〉 + 〈z∗, h(x)〉

∀x ∈ S, ∀α ≥ 0, ∀y ∈ C. (3.1)

Setting
y∗

µ
= ū,

z∗

µ
= v̄ and assuming α = 0, x = x0, we get

〈ū, g(x0) + y〉 ≥ 0 ∀y ∈ C,

and hence, assuming y = z − g(x0) ∈ C ∀z ∈ C, since C is a convex cone, we have:

〈ū, z〉 ≥ 0, ∀z ∈ C,

namely ū ∈ C∗. Moreover, from (3.1), assuming α = 0 and y = 0, we get

f(x0) ≤ f(x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉 ∀x ∈ S. (3.2)

Choosing in (3.2) x = x0, we obtain 〈ū, g(x0)〉 ≥ 0 and, since −g(x0) ∈ C, 〈ū, g(x0)〉 ≤

0 and so 〈ū, g(x0)〉 = 0.
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Then we get:

f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉 ≤ inf
x∈S

[f(x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉] (3.3)

and, taking into account that 〈u, g(x0)〉 ≤ 0, ∀u ∈ C∗ and 〈v, h(x0)〉 = 0, ∀v ∈ Z∗,

we have:

inf
x∈S

[f(x) + 〈u, g(x)〉 + 〈v, h(x)〉] ≤ f(x0) + 〈u, g(x0)〉 + 〈v, h(x0)〉 ≤ f(x0)

∀u ∈ C∗, ∀v ∈ Z∗. (3.4)

Then, taking into account (3.4) and using also (3.3), we get

sup
u∈C∗

v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉 + 〈v, h(x)〉] ≤ f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉

≤ inf
x∈S

[f(x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉]

and, finally, we have

f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉 ≤ inf
x∈S

[f(x) + 〈ū, g(x)〉] + 〈v̄, h(x)〉

≤ sup
u∈C∗

v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉 + 〈v, h(x)〉] ≤ f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉,

namely

f(x0) = f(x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉

= max
u∈C∗

v∈Z∗

inf
x∈S

[f(x) + 〈u, g(x)〉+ 〈v, h(x)〉] = inf
x∈S

[f(x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉]. �

4. PROOF OF THEOREM 1.2

The normal cone NM(0, θY , θZ) to M at (0, θY , θZ) ∈ M is given by the points

(ξ, y∗, z∗) ∈ R × Y ∗ × Z∗ such that:

ξ(f(x) − f(x0) + α) + 〈y∗, g(x) + y〉 + 〈z∗, h(x)〉 ≤ 0

∀x ∈ S, ∀α ≥ 0, ∀y ∈ C, (4.1)

which is equivalent to ξ ≤ 0, y∗ ∈ C− and ξ(f(x)−f(x0))+〈y∗, g(x)〉+〈z∗, h(x)〉 ≤ 0,

∀x ∈ S.

In virtue of Assumption N, i.e. there exist x̄ ∈ K and (ξ̂, ŷ∗, ẑ∗) ∈ NM (0, θY , θZ) such

that (note that 〈z∗, h(x̄)〉 = 0):

ξ̂(f(x̄) − f(x0)) + 〈ŷ∗, g(x̄)〉 + 〈z∗, h(x̄)〉 < 0, (4.2)

we get that (ξ̂, ŷ∗, ẑ∗) is different than (0, θY , θZ). Let us prove that ξ̂ 6= 0. In fact, if

ξ̂ = 0, from (4.2) we get:

〈ŷ∗, g(x̄)〉 < 0,
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whereas, being −g(x̄) ∈ C, we have 〈ŷ∗, g(x̄)〉 ≥ 0. Then ξ̂ < 0 and from (4.1)

rewritten with ξ̂, setting
y∗

ξ̂
= ū ∈ C∗,

z∗

ξ̂
= v̄ ∈ Z∗, and α = 0, we get:

f(x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉 ≥ f(x0) ∀x ∈ S, (4.3)

namely the estimate (3.2) in Section 3. Then, going on as in Theorem 1.1, we get the

proof of Theorem 1.2. �

Using Theorem 1.1 or Theorem 1.2, we are able to prove the usual relationship

between a saddle point of the so-called Lagrange functional

L(x, u, v) = f(x) + 〈u, g(x)〉 + 〈v, h(x)〉 ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗ (4.4)

and the solution to Problem 1.

Theorem 4.1. Let the assumptions of Theorems 1.1 or 1.2 be satisfied. Then x0 ∈ K

is a minimal solution to Problem 1 if and only if there exist ū ∈ C∗ and v̄ ∈ Z∗ such

that (x0, ū, v̄) is a saddle point of the Lagrange function (4.4) and

〈ū, g(x0)〉 = 0.

5. APPLICATIONS

Assumption N or similar ones of the type (0, θY , θZ) /∈ qri M have only a theo-

retical value, whereas Assumption S is very effective in the applications. In fact, it

consists in the calculation of some limits and, even if it is expressed by means of the

minimal point x0 ∈ K of Problem 1, this fact is not influential, because it is based on

the behavior of the difference f(x) − f(x0). In order to be clear, let us illustrate the

effectiveness of Assumption S through some examples.

First, let us consider the archetype problem which models all the equilibrium

problems (see [5], [6], [9], [11] [12], [13], [14], [15], [17], [18], [20]), that is the variational

inequality ∫ T

0

〈C(x0(t)), x(t) − x0(t)〉 dt ≥ 0 ∀x ∈ K, (5.1)

where

K =
{
x ∈ L2([0, T ], Rm) : x(t) ≥ 0, Φx(t) = ρ(t) a.e. in [0, T ]

}
,

with ρ(t) ∈ L2([0, T ], Rl), ρ(t) > 0 a.e. in [0, T ], Φ = {Φij} i=1,...,l
j=1,...,m

, Φij ∈ {0, 1}, and in

each column there is only one entry different from zero, and C : K → L2([0, T ], Rm)

is the cost trajectory. For this variational inequality the following theorem is proved.

Theorem 5.1. x0 ∈ K verifies variational inequality (5.1) if and only if there exist

C̃ ∈ L2([0, T ], Rl) and µ ∈ L2([0, T ], Rm) such that

C(x0) − ΦT C̃ = µ, 〈µ, x0〉 = 0, µ ≥ 0
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(Wardrop’s principle).

Proof. For the reader’s convenience, we recall the proof of Theorem 5.1. Following

Theorem 3.1 in [10] in which we assume µ = +∞ and λ = 0, we have that x0 ∈ K

verifies variational inequality (5.1) if and only if for all i = 1, . . . , l, all q, s such that

Φiq = Φis = 1 and a.e. in [0, T ]

Cq(x0)(t) > Cs(x0)(t) =⇒ x0

q(t) = 0. (5.2)

Setting C̃i(t) = min{Cj(x0)(t) : Φij = 1} ∈ L2(0, T ), i = 1, . . . , l, we can rewrite

(5.2) in an equivalent form a.e. in [0, T ] as:
(
Cq(x0)(t) − C̃i(t)

)
x0

q(t) = 0 ∀q such that Φiq = 1, i = 1, . . . , l. (5.3)

In fact, if (5.2) holds true and Cq(x0)(t) − C̃i(t) > 0, then x0
q(t) = 0, since C̃i(t)

is equal to some Cs(x0)(t). Vice versa, if x0
q(t) > 0, then Cq(x0)(t) − C̃i(t) must be

zero, because if Cq(x0)(t) − C̃i(t) > 0, then x0
q(t) should be zero. Analogously, if

we assume that (5.3) holds true and consider q, s such that Φiq = 1, Φis = 1 and

Cq(x0)(t) > Cs(x0)(t), since it is Cs(x0)(t) ≥ C̃i(t), it follows x0
q(t) = 0. Denoting by

C̃(t) the vector
[
C̃1(t), . . . , C̃l(t)

]T

, and taking into account that in each column of

Φ there is only one entry different from zero, we can rewrite condition (5.3) in the

form

C(x0) − ΦT C̃ = µ, 〈µ, x0〉 = 0,

with µ ≥ 0, µ ∈ L2([0, T ], Rm).

Now, assuming that x0 ∈ K is a solution to (5.1), we can rewrite problem (5.1)

in the form:

min
K

f(x) = f(x0) = 0

with

f(x) =

∫ T

0

〈C(x0(t)), x(t) − x0(t)〉 dt

and we can prove that Assumption S is fulfilled. In fact, we have to prove that

if (l, θY , θZ) ∈ TfM
(f(x0), θY , θZ), where Y = L2([0, T ], Rm) and Z = L2([0, T ], Rl),

namely if

l = lim
n

λn(f(xn) + αn − f(x0)), θY = lim
n

λn(−xn + yn),

θz = lim
n

λn(Φxn(t) − ρ(t)), (5.4)

with λn > 0, lim
n

(f(xn)+αn − f(x0)) = 0, limn(−xn + yn) = θY , lim
n

(Φxn(t)− ρ(t)) =

θZ , l must be nonnegative. In virtue of Theorem 5.1 we have

f(xn) − f(x0) =

∫ T

0

〈C(x0), xn(t) − x0(t)〉 dt =

∫ T

0

〈ΦT C̃ + µ, xn(t) − x0(t)〉 dt
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and, taking into account that Φx0(t) = ρ(t) and µx0 = 0, we get:

λn(f(xn) + αn − f(x0))

= λn

∫ T

0

〈ΦT C̃, xn(t) − x0(t)〉 dt + λn

∫ T

0

〈µ, xn(t) − x0(t)〉 dt + λn αn

=

∫ T

0

〈C̃(t), λn(Φxn(t) − ρ(t))〉 dt +

∫ T

0

〈µ(t), λn(xn(t) − yn(t))〉 dt

+

∫ T

0

〈µ(t), λnyn(t)〉 dt + λnαn.

By means of conditions (5.4), we obtain:

lim
n

∫ T

0

〈C̃(t), λn(Φxn(t) − ρ(t))〉 dt = 0, lim
n

∫ T

0

〈µ(t), λn(xn(t) − yn(t))〉 dt = 0,

and, being µ ≥ 0, λn > 0, yn(t) ≥ 0, αn ≥ 0, we get:

lim
n

λn(f(xn) + αn − f(x0)) ≥ 0,

namely our assertion.

Next, let us consider the variational inequality which expresses the dynamic

Cournot-Nash equilibrium, namely the dynamic oligopolistic market equilibrium prob-

lem (see [1]):

Find x∗ ∈ K :≪ −∇v(t, x∗(t)), x − x∗ ≫≥ 0 ∀x ∈ K (5.5)

where

K = {x ∈ L2([0, T ], Rmn) : 0 ≤ λ(t) ≤ x(t) ≤ µ(t) a.e. in [0, T ]}

and vi(t, x(t)), i = 1, . . . , m is the profit of the firm Pi at time t ∈ [0, T ]. In the paper

[1] the following Lemma is proved.

Lemma 5.2. Let x∗ ∈ K be a solution to the variational inequality (5.5). Then,

setting:

Ei
−

= {t ∈ [0, T ] : x∗

i (t) = λi(t) a.e. in [0, T ]},

Ei
0 = {t ∈ [0, T ] : λi(t) < x∗

i (t) < µi(t) a.e. in [0, T ]},

Ei
+ = {t ∈ [0, T ] : x∗

i (t) = µi(t) a.e. in [0, T ]},

we have:

−
∂v(t, x∗(t))

∂xi

≥ 0 a.e. in Ei
−
,

∂v(t, x∗(t))

∂xi

= 0 a.e. in Ei
0,

−
∂v(t, x∗(t))

∂xi

≤ 0 a.e. in Ei
+.
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Taking into account this result and following the same technique used in the

previous example, we can easily show that also in this case Assumption S is verified.

Moreover, the procedure used for the oligopolistic market equilibrium problem can be

easily adapted to show that Assumption S is also verified in the case of environmental

pollution dynamic control problem (see [20]).

Finally we recall that Assumption S guarantees the existence of the Lagrange

multiplier associated to the elastic-plastic torsion problem (see see [3], [4], [8], [21]).
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