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1. INTRODUCTION AND DEFINITIONS

Let X be a Banach space over the real field R; by En and Mn, respectively, we

denote n-dimensional Euclidean and Minkowskian spaces.

We shall denote by B(x, r) (x ∈ X; r ≥ 0) the closed ball centered at x, with

radius r; by BX and SX (or simply by B and S if no confusion can arise), respectively,

the unit ball B(θ, 1), and its boundary, the unit sphere of X.

We denote by δ(A) the diameter of a bounded set A.

A covering of a set A ⊂ X is a family of sets {Ai}i∈I (I a family) such that

A ⊂ ∪i∈IAi; a covering will be called a ball covering if the elements of {Ai} are balls.

Given a set C, a ball covering from C is a covering by balls centered at points of

C. A covering (or a ball covering, or a ball covering from C) will be said finite if I

is finite.

Results on coverings of the unit ball or the unit sphere are scattered in the

literature. Some facts can be considered trivial: for example, B cannot be covered

by a countable family of closed sets with nonempty interior (due to Baire theorem).

We discuss here several results mainly concerning coverings of the unit sphere or

the unit ball by means of balls, eventually with radii not too large and/or by asking

that the centers of balls belong to the unit sphere.
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2. SOME SIMPLE RESULTS AND GENERAL FACTS

We consider now coverings of S.

We can ask the following:

- In which cases must a covering of S contain the origin?

- Under which assumptions a covering of S is also a covering of B?

We recall an old result (see Molnár [19]).

Proposition 1. If three balls B1, B2, B3 of radii ≤ 1 cover the unit sphere in the

Euclidean plane, then they also cover the unit ball.

Clearly, in the above proposition 1 is a critical value.

In the paper by Asplund and Grünbaum [1], after quoting the above result, a

prove of the same for any strictly convex and smooth Minkowski plane was given (see

Theorem 8 there); also, it was said that the proof could be extended to any Minkowski

plane.

Moreover, the following conjectures were done: maybe the same result is true for all

Minkowskian (thus for Euclidean) spaces of dimension n, any n ∈ N , when coverings

by (n + 1) balls are considered.

Another simple fact was discussed in [6]:

Proposition 1bis. The Euclidean spaces cannot be covered with circular disks hav-

ing mutually disjoint interiors.

We recall the following important result.

Proposition 2. If Sn−1, the unit sphere of En, is covered by n closed sets A1, ..., An,

then there is an index i ∈ {1, ..., n} such that Ai contains an antipodal pair x,−x of

Sn−1; thus δ(Ai) ≥ 2 for some index i.

This result is usually known as the Lyusternik - Snirel’man lemma (see Lyusternik

- Snirel’man [16], p.182): it was proved in 1930 and then rediscovered by Borsuk in

1933.

Proposition 2bis. The above result is also true if we consider Mn instead of En

(see Furi and Vignoli [11]).

As a consequence, we have the following.

Corollary 1. Let dim(X) = ∞. If SX is covered by finitely many closed sets

{Ai}i∈{1,...,n}, then δ(Aj) ≥ 2 for some index j.

In particular: if {Bi = B(xi, ri); i = 1, ..., n}, is a finite covering of SX by balls

centered at points of SX , then θ ∈ ∪i∈{1,...,n}Bi.

Remark. It is clear that the above corollary (X any Banach space) is a consequence

of Prop. 2bis. It can also be deduced by the version for X Hilbert (see Prop. 2), by

means of Dvoretzki’s Theorem.
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In the last part of Corollary 1, the restriction on the centers of the balls is not

necessary: in fact, the following result, proved by different authors, is indicated in

Bagchi et al [2].

Proposition 3. Let dim(X) = ∞; then any finite covering of SX by balls contains

θ.

More generally, along the lines of the proof given for the above proposition, the

following more general result can be proved.

Proposition 3bis. Let C be a closed convex body; if the boundary of C is covered

by n closed convex sets, n ≤ dim(X), then the whole set C is covered.

We can also prove, in a different way, the following fact.

Proposition 3ter. Let X be an infinite-dimensional space. If finitely many balls

cover S, then they also cover B.

Proof . Let

SX ⊂
n

⋃

i=1

B(xi, ri).

Now consider the bidual X∗∗ (where balls are w∗ compact); we have:

w∗ − clSX ⊂
⋃n

i=1 w∗ − clB(xi, ri). However w∗ − clSX = BX∗∗ , and so by taking

the intersection with X we obtain the thesis. ♦

Another simple fact is the following.

Proposition 4. A covering of SX by balls with centers in SX , of radius at least 1, is

also a covering of BX .

Proof . Clearly in this case all balls of the covering contain the origin. Let

x ∈ BX ; set x′ = x/||x||. Since x′ ∈ SX , one of the balls of the covering must contain

x′ (together with θ), so by convexity it contains also x. ♦

For some other general results in this spirit, see Carl and Edmunds [5] and the

references there.

3. COVERING S MISSING THE ORIGIN

Some related results received some attention recently; namely, the following prob-

lem has been considered (see Cheng [7]).

Given a space X, find a ball covering {Ai}i∈I of SX such that θ /∈ ∪i∈IAi.

Call such a covering a ball (-) covering.

Note that a ball(-)covering of SX does not cover BX . The results in previous

section give restrictions to the possibility to have such coverings, mainly if we wish

to have centers on SX .
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We can ask what is the minimal number of balls necessary to obtain such a

covering, and what is the minimal r such that a ball(-)covering by balls of radius not

larger than r is possible.

The situation in this context has been clarified by some recent papers.

The following results have been proved; two balls like B(x, r) and B(−x, r) are said

to be symmetric.

- If X = Mn, then SX admits a ball(-)covering consisting of no more than n pairs

of symmetric balls, but n−1 pairs are not enough; also, at least n+1 balls are always

necessary, while n + 1 are sufficient whenever X is smooth, but not in general (see

Cheng [7], Theorems 2.2, 2.3, and Example 2.5).

Concerning the smallest radius r (r ∈ [1, 2]) of balls necessary to have a finite

ball(-)covering in this case, see Shi and Zhang [22], Fu and Cheng, [10], Zhang [24];

see also in Böröczky [4], mainly for large dimensions.

- If SX has a countable ball(-)covering (or simply, a countable ball covering) by

balls of radius ≤ r for some r < 1, then X is separable (see Cheng [7], Theorem 3.1);

in fact, if X is separable, there exists such covering for every positive r.

- If SX has a countable ball(-)covering with balls of radii ≤ r, then for every

ǫ > 0, BX can be covered by a countable family of balls of radii ≤ r + ǫ (see Cheng

[7], Fact 3.3). A slightly more general result will be proved at the end of this section.

Also:

- ℓ∞ (which is not separable) has a countable ball(-)covering by balls of radii equal

to 1 (see Cheng [7], Example 3.4). But there is a renorming of the space lacking a

countable ball(-)covering (see Cheng et al [8], Theorem 2.1).

- If SX has a countable ball(-)covering, then X∗ is w∗-separable (see Cheng [7],

Proposition 4.1). The converse is not true in general (see Cheng et al [8], Corol-

lary 2.4). Maybe it is true under some assumptions on the norm: see Cheng [7],

Theorem 4.3, Corollary 4.4, Theorem 4.5.

Other results of this type with relation to quotient mappings have been considered

in Cheng et al [8].

Concerning the results in Cheng [7] and in Cheng et al [8], see the reviews of those

papers appearing in Zbl. Math.: #1139-46016, and to appear.

More precise results concerning coverings and w∗-separability of X have been

given in Fonf and Zanco [9].

We end this section by proving a result which generalize one of the above results.

Note that in next statement, we cannot substitute countable by finite (think at finite-

dimensional spaces).

Proposition 5. Assume that S can be covered by a countable set of balls or radius

≤ ρ < 1 (ρ > 0); then the same is true for B.
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Proof . Let

S ⊂
⋃

i∈N

B(xi, ri), ri ≤ ρ ∀i ,

so

S ⊂
⋃

i∈N

B(xi, ρ).

Set

St = {x ∈ X; ||x|| = t}; Cα,β = {x ∈ X; α ≤ ||x|| ≤ β}; (t, α, β ∈ R+).

We have (for every t ≥ 0):

St ⊂
⋃

i∈N

B(txi, tρ);

also

Ct−ǫ, t+ǫ ⊂
⋃

i∈N

B(txi, tρ + ǫ) :

so, if t < 1 (ǫ = ρ − tρ):

Ct(1+ρ)−ρ,t(1−ρ)+ρ ⊂
⋃

i∈N

B(txi, ρ).

Now consider the following sequence: t0 = 0; t1 = 2ρ

1+ρ
, and for n ≥ 1: tn+1 =

2ρ+tn(1−ρ)
1+ρ

. Clearly tn+1 > tn for every n > 1 (tn < 1 for all n; limn→∞tn = 1).

Also, tn(1 − ρ) + ρ = tn+1(1 + ρ) − ρ; thus B is contained in
⋃

i∈N

(

⋃

n∈N

B(tnxi, tnρ)
)

= B(θ, ρ) ∪
(

⋃

n∈N

Ctn(1+ρ)−ρ, tn(1−ρ)+ρ

)

= B(θ, 1).

This concludes the proof. ♦

4. TWO RELATED CONSTANTS

The following constant was defined in Whitley [23].

T (X) = inf{ǫ > 0; SX has a finite ball covering from SX by balls of radii ≤ ǫ }.

Not too many papers deal with this constant: see Papini [20], Maluta and Papini

[17] (where some generalizations of this constant were considered) and Maluta and

Papini [18]. But the following facts are known:

T (X) = 0 ⇔ dim(X) < ∞;

For infinite-dimensional spaces the range of T (X) is [1, 2].

Also, it is not difficult to see that, when dim(X) = ∞, we obtain an equivalent

definition if we define T (X) by considering coverings of BX (see Corollary 1 and

Proposition 4).
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We can also consider the following constant (see for example Papini [20]).

g′(X) = inf{ǫ > 0; SX has covering from SX by two symmetric balls of radius

≤ ǫ }.

Clearly, T (X) ≤ g′(X) always.

According to Proposition 2bis, g′(X) ≥ 1 always: so T (X) 6= g′(X) when

dim(X) < ∞.

But also in infinite dimensional spaces we can have T (X) 6= g′(X), as the follow-

ing example shows. Let c0 denote the space of real sequences converging to 0, and

ℓ∞ the space of bounded real sequences, both endowed with the max norm.

Example 1. Consider X = R ⊕1 ℓ∞, or X = R ⊕1 c0, i.e. the space of bounded

(respectively vanishing) sequences equipped with the norm

||(x1, x2, x3, ...)|| = |x1| + ||(x2, x3, ...)||∞.

We want to show that

a) T (X) = 1;

b) g′(X) = 4/3.

To prove a), consider n ∈ N ; we want to show that there exists a (1 + 1/n)-net

for SX from SX .

Given n, consider the 2n + 1 numbers ±k/n, k = 0, 1, ..., n.

Set x±k = (±k
n

, n−k
n

, 0, 0, ....) and y±k = (±k
n

, k−n
n

, 0, 0, ....). We say that the 4n+2

points in SX : {x±k; y±k, k = 0, 1, ..., n} form a (1 + 2/n)-net for SX .

Given x = (x1, x2, ..., xn, ...) ∈ SX , choose k such that, for some choice of the sign,

|±k
n

− x1| ≤
1
2n

. Then we have, for the same choice of the sign:

||x − x±k|| ≤
1
2n

+ 1 if x2 ≥ 0; ||x − y±k|| ≤
1
2n

+ 1 if x2 ≤ 0;

this proves a).

To prove b), we prove first that for y = (1
3
, 2

3
, 0, 0, ...) (y ∈ SX) we have min{||x−

y||, ||x + y||} ≤ 4
3

for every x ∈ SX .

Let x = (x1, x2, x3, ...). Then ||x ± y|| = |x1 ±
1
3
| + max{|x2 ±

2
3
|, maxn≥3|xn|}.

Suppose that min{||x − y||, ||x + y||} > 4
3
. Since |x1 ± 1

3
| + maxn≥3|xn| ≤

|x1 ±
1
3
|+1−|x1| ≤

4
3
, this implies |x1 ±

1
3
|+ |x2 ±

2
3
| > 4

3
. But this is impossible since

it is simple to see that {(1
3
, 2

3
), (−1

3
, −2

3
)} is a 4

3
-net for the plane with the sum norm.

Now we prove that for every y ∈ SX , supx∈SX
min{||x − y||, ||x + y||} ≥ 4

3
.

Fixed y ∈ SX , if |y1| ≤ 1/3 then ||x ± y|| ≥ |x1 − y1| +
∑

n≥2 |yn| ≥ 4
3

for

x = (1, 0, 0, ...).

Now let |y1| ≥ 1/3: then if y2 and y3 have the same sign, we take x = (0, 1,−1, 0, 0, ...);

otherwise, take x = (0, 1, 1, 0, 0, ...); in any case we thus obtain ||x ± y|| ≥ 4
3
. This

concludes the proof of b).
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5. SOME OTHER RELATED PROBLEMS

We indicate some other problems which seem to be somehow connected with the

above ones.

- Completely saturated coverings were discussed in Hinrichs and Richter [13].

- Borsuk and Hadwiger problems; they deal with covering problems for bounded

sets in En. For example, Borsuk’s problem asks whether every set of diameter 1 in

En can be covered by n+1 sets of diameter < 1. For n = 2, 3 the solution is positive,

while there are negative solutions for big dimensions (see Hinrichs and Richter [12]).

The most famous unsolved case of Borsuk’s problem is n = 4. Many other problems

of combinatorial character concerning coverings and tilings can be found for example

in Schmitt [21].

- Coverings of BX for X a Hilbert space by some kind of unbounded sets (planks,

cylinders, or ball-cut-like sets) received and are still receiving much attention: see for

example Kadets [14].

Another problem, more related to ours, was formulated and studied in Kadets

[15], and reconsidered also in Bezdek [3]. Given a convex body A, let r′(A) = sup{r; A

contains a ball of radius r}.

Let a convex closed body A in a Banach space X be covered by a sequence of

convex closed bodies An, n ∈ N . Must we have r′(A) ≤
∑

n∈N r′(An)?

Equivalently, we can ask if 1 ≤
∑

n∈N r′(An) for every such covering of BX .

The answer is yes if X is Hilbertian, but seems to be open in general.

The property r′(A) ≤
∑

n r′(An) of coverings by convex bodies reminds a basic

property of Lebesgue measure. Remark that another property of Lebesgue measure

-continuity- fails in general for r′. In fact, the following example (that can be adapted

to some function spaces) shows that a sequence of convex closed sets A1 ⊂ A2 ⊂ A3

... with r′(An) = ǫ < 1 for every n, can cover the unit ball of c0.

Example 2. Let X = c0. Then BX can be covered, for ǫ > 0 fixed, by the union

of the sequence of sets

An = {xi ∈ BX ; |xi| ≤ ǫ for all i > n}.

Note that r′(An) = ǫ for every n ∈ N .
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