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1. Introduction

Many physical problems are modelled by nonlinear partial differential equations.

There is no unified method by which classes of nonlinear partial differential equations

can be solved. A well known nonlinear evolution equation is the Korteweg-de Vries

(KdV) equation, first derived by Korteweg and de Vries as a model for shallow-water

waves [1] in 1895. In 1967 a method for solving the Korteweg-de Vries Equation

(KdV) was developed by Gardner, Green, Kruskal and Miura [2, 3] for initial values

which decay sufficiently rapidly, through a series of linear equations. This method is

called the Inverse Scattering Method (ISM). In 1968 Lax [4] generalized the ISM by

introducing a Lax Pair formulation of the KdV equation. Following Lax’s formulation,

Zakharov and Shabat [5] solved the nonlinear Schrödinger equation. Soon thereafter

the sine-Gordon equation and the modified KdV equation were solved by Ablowitz,

Kaup, Newell, and Segur [6, 7] and Wadati [8]. The KdV equation is an example of

an integrable equation.

In addition to the above methods, several methods have been developed for gener-

ating large classes of solutions to such equations. Among such methods, the most well

known are the use of Bäcklund transformations, the dressing method of Zakharov-

Shabat [9, 10] and the bilinear approach of Hirota [11].

Lax Equation.

Lax [4] put the inverse scattering method for solving the KdV equation into a

more general framework which subsequently paved the way to generalizations of the
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technique as a method for solving other differential equations.

Lt + [L,M ] = 0, (1.1)

where [L,M ] = LM −ML is called Lax’s equation and it is equivalent to nonlinear

evolution equations for suitably chosen L and M . For example, if we take

L = −
∂2

∂x2
+ u, (1.2)

M = −4
∂3

∂x3
+ 6u

∂

∂x
+ 3ux, (1.3)

then L and M satisfy Lax’s equation (1.1) provided u satisfies the KdV equation

ut − 6uux + uxxx = 0. (1.4)

2. Differential Invariants

In this section we start by giving the definitions of the differential invariants. We

define the gauge transformation g−1Lg = Lg where g is an arbitrary non-vanishing

function acting on a given differential operator L and preserving the operator part

of L. These gauge transformations produce invariants. In this paper we will call

them the gauge invariants. These invariants are simply functions of the coefficients

of the given operator L. We will show that the invariants of a given L form a

complete set. In other words we will show that there are a complete set i.e. a set,

the knowledge of which, is enough to determine the operator L completely up to

gauge transformations. Additionally in this section, the definition of the Laplace

Transformation (LT) for linear hyperbolic equations will be given in order to obtain

the LTs of gauge invariants [12].

Gauge Transformations.

Consider linear operators L acting on z : Lz = 0. Linear maps zg = g−1z induce

gauge transformations L → Lg = g−1Lg. The coefficients of Lg are then related to

those of L via g. A function I of the coefficients of L is an invariant (gauge invariant)

if its expression is the same for both L and Lg i.e.

I(lg
1
, l

g
2
, ..) = I(l1, l2, ..)

where lgi , respectively li, are the coefficients in Lg, respectively L.
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Gauge transformation for linear hyperbolic system.

Let us consider the second order, linear hyperbolic system in canonical form

Lz = z,xy + az,x + bz,y + cz = 0 (2.1)

where L = ∂x∂y + a∂x + b∂y + c and a, b and c are real functions of x and y. The

above equation can be written in the form

Lz = (∂x∂y + a∂x + b∂y + c)z = 0. (2.2)

The gauge transformation is z → zg = g−1z, equivalently Lg = g−1Lg, where g is

a function of x and y. Therefore if we substitute z = gzg in the equation (2.1), we

obtain

zg
,xy + agzg

,x + bgzg
,y + cgzg = 0 (2.3)

where

ag = a+ g−1g,y,

bg = b+ g−1g,x,

cg = c+ ag−1g,x + bg−1g,y + g−1g,xy.

By eliminating g between the above expressions we have

ag
,x + agbg − cg = a,x + ab− c,

bg,y + agbg − cg = b,y + ab− c.

So we may choose

h = a,x + ab− c (2.4)

k = b,y + ab− c (2.5)

where h and k are gauge invariants [13].

Laplace Transformation for linear hyperbolic equation.

Let us consider the equations

z,xy + az,x + bz,y + cz = 0 (2.6)

zσ1

,xy + aσ1zσ1

,x + bσ1zσ1

,y + cσ1zσ1 = 0 (2.7)

We define Laplace Transformation (LT) as a mapping between two copies of linear

hyperbolic equations:

z → zσ1 = zy + az (2.8)
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with

aσ1 = a− h−1h,y,

bσ1 = b,

cσ1 = c+ b,y − a,x − bh−1h,y.

where h = ax + ab− c is the gauge invariant defined in (2.4) . Hence we obtain

aσ1

,x + aσ1bσ1 − cσ1 = 2h− k −
(

h−1h,y

)

,x
,

bσ1

,y + aσ1bσ1 − cσ1 = h.

So the LT transforms the gauge invariants h and k as follows

hσ1 = 2h− k − (lnh),xy , (2.9)

kσ1 = h. (2.10)

If a solution z(x, y) of the equation (2.6) is given with the potentials a(x, y), b(x, y)

and c(x, y) then we can construct a new solution to the equation (2.7) with new

potentials aσ1 , bσ1 and cσ1 by using the LT: zσ1 = zy + az.

Similarly, another Laplace map, σ2, is defined by setting

zσ2 = zx + bz.

We obtain the following Laplace Transformations of gauge invariants h and k:

hσ2 = k,

kσ2 = 2k − h− (ln k),xy .

One may check and see that σ1σ2 = σ2σ1 = id [13].

3. Invariant Form For Scalar Evolution Equations

The aim of this section is to obtain scalar evolution equations in invariant forms.

We will consider two scalar differential operators L and M . We call them scalar

because their coefficients are functions rather than matrices. We will show that

the Lax equation [L,M ] = 0 and ‘L-M-f triad’ representation [L,M ] + fL = 0

give the KP and the NV equations respectively where L and M are both scalar

differential operators and f is an operator function to be found. We will also discuss

the completeness for the Lax pair L and M . We will show that the invariants of L

and M are an almost complete set.
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The Kadomtsev-Petviashvili (KP) Equation.

Let L and M be two operator functions such that

L = ∂t + ∂2

x + u∂x + v (3.1)

M = ∂y + ∂3

x + a∂2

x + b∂x + c (3.2)

where u, v, a, b and c are functions of x, y and t.

Consider the commutativity representation [L,M ] = 0, i.e. L and M are a Lax

pair. Our aim is to obtain some gauge invariant equations. In order to achieve

this goal we firstly find the gauge invariants of L and M by applying the gauge

transformation on L and M . And then by using the Lax equation, [L,M ] = 0, we

have some differential equations in the invariant forms. After that we derive the

Kadomtsev-Petviashvili (KP) equation as an example.

Invariants for L = ∂t + ∂2

x + u∂x + v.

We apply the gauge transformation on L = ∂t +∂
2

x +u∂x+v which is g−1Lg = Lg,

where g is a function of x, y and t. Thus g−1Lg = Lg,

g−1(∂t + ∂2

x + u∂x + v)g = ∂t + ∂2

x + ug∂x + vg,

gives us the coefficients of Lg:

ug = u+ 2g−1gx

vg = v + g−1gt + ug−1gx + g−1gxx

If we eliminate g in the above expressions, we obtain

ug
t + ug

xx + ugug
x − 2vg

x = ut + uxx + uux − 2vx

We choose

J = ut + uxx + uux − 2vx. (3.3)

This is an invariant for the differential operator L where L is defined in (3.1).

Completeness for L.

We now turn our attention to completeness: We will show that the invariant J is

almost sufficient i.e. it is almost a complete set. In other words we will prove

L′ = g−1Lg ⇐⇒ J ′ = J,

where L′ = ∂t + ∂2

x + u′∂x + v′ up to an undetermined function of t and y. We have

already shown ‘ =⇒’ part. We need to prove ‘ ⇐=’ part now. Assume J ′ = J i.e.

u′t + u′xx + u′u′x − 2v′x = ut + uxx + uux − 2vx.
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If we rearrange the above equation, we have

(v′ − v)x =
1

2
(u′ − u)t +

1

4
[(u′ − u)(u′ + u)]x +

1

2
(u′ − u)xx.

Let us choose g such that u′ − u = 2(ln g)x. Then we obtain

u′ = u+ 2g−1gx

v′ = v + g−1gt + ug−1gx + g−1gxx + c(y, t)

where c is a function of time and y. So

L′ = ∂t + ∂2

x + u′∂x + v′ = g−1(∂t + ∂2

x + u∂x + v)g + c(y, t)

i.e.

L′ = g−1Lg + c(y, t).

The proof is complete. J is a complete set up to additive undetermined functions of

y and t.

Invariants for M = ∂y + ∂3

x + a∂2

x + b∂x + c.

This time we use the gauge transformation on M = ∂y +∂3

x +a∂2

x + b∂x + c which

is g−1Mg = Mg, where g is a function of x, y and t.

g−1(∂y + ∂3

x + a∂2

x + b∂x + c)g = ∂y + ∂3

x + ag∂2

x + bg∂x + cg

This gives us the coefficients of the operator Mg:

ag = a + 3g−1gx

bg = b+ 2ag−1gx + 3g−1gxx

cg = c+ g−1gy + bg−1gx + ag−1gxx + g−1gxxx

From the above expressions we can eliminate the function g(x, y, t) and then have

ag
x +

1

3
ag2 − bg = ax +

1

3
a2 − b

ag
y + (ag

xx −
2

9
ag3 + agbg)x − 3cgx = ay + (axx −

2

9
a3 + ab)x − 3cx

Let us choose

I = ax +
1

3
a2 − b (3.4)

K = ay + (axx −
2

9
a3 + ab)x − 3cx (3.5)

where I and K are invariants for the differential operator M .
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Completeness for M .

We now look at completeness for M : We will prove that the invariants I and K

are almost sufficient i.e they are almost a complete set. In other words we will show

M ′ = g−1Mg ⇐⇒ I ′ = I, K ′ = K,

where M ′ = ∂y + ∂3

x + a′∂2

x + b′∂x + c′ up to additive functions of y and t. We have

already shown‘ =⇒’ part. We need to show ‘ ⇐=’ part now. Assume I ′ = I, K ′ = K

i.e.

a′x +
1

3
a′

2
− b′ = ax +

1

3
a2 − b, (3.6)

a′y + (a′xx −
2

9
a′

3
+ a′b′)x − 3c′x = ay + (axx −

2

9
a3 + ab)x − 3cx. (3.7)

If we rearrange the equation (3.6), we have

b′ = b+ (a′ − a)x +
1

3
(a′ − a)(a′ + a).

Let us choose g such that a′ − a = 3g−1gx i.e.

a′ = a+ 3g−1gx.

By substituting this in the above equation we obtain

b′ = b+ 2ag−1gx + 3g−1gxx,

and by rearranging the equation (3.7) we have

c′x = cx +
1

3
(a′ − a)y +

1

3

[

(a′ − a)xx −
2

9
(a′

3
− a3) + a′b′ − ab

]

x

.

If we substitute a′, b′ in the above equation and then integrate with respect to x we

obtain

c′ = c + g−1gy + bg−1gx + ag−1gxx + g−1gxxx + f(y, t)

where f is an arbitrary function of y and t. So

M ′ = ∂y + ∂3

x + a′∂2

x + b′∂x + c′ = g−1(∂y + ∂3

x + a∂2

x + b∂x + c)g + f

i.e.

M ′ = g−1Mg + f(y, t).

The proof is complete. I and K are an almost complete set.
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The Commutativity Equations.

[L,M ] = 0

gives us the equations

2ax − 3ux = 0 (3.8)

at + axx + 2bx + uax − 3uxx − 3vx − 2aux = 0 (3.9)

bt + bxx + 2cx + ubx − uy − uxxx − 3vxx − auxx − 2avx − bux = 0 (3.10)

ct + cxx + ucx − vy − vxxx − avxx − bvx = 0 (3.11)

From the above equations, we obtain the following invariant relations:

J =
4

3
Ix, (3.12)

It = Ixx −
2

3
K, (3.13)

Kt = 2

(

Iy + Ixxx − IIx −
1

2
Kx

)

x

. (3.14)

The importance of these equations is that they are universal for systems of the form

[L,M ] = 0 where L and M (3.1-3.2) are of orders 2 and 3 in ∂x. Their form is

pleasingly simple. By introducing potentialsK = 2ϕx, I = ψx the two time evolutions

become

ψt = ψxx −
4

3
ϕ, (3.15)

ϕt = ψxxxx + ψxy − ψxψxx − ϕxx. (3.16)

Let us rewrite the above invariant equations (3.12 − 3.14) in the following forms

Ix =
3

4
J (3.17)

K =
3

2
(Ixx − It) (3.18)

Kt +Kxx = 2 (Iy + Ixxx − I.Ix)x
(3.19)

By substituting K = 3

2
(Ixx − It) in the equation (3.19), we obtain

(4Iy − 4I.Ix + Ixxx)x
+ 3Itt = 0 (3.20)

which is the KP equation up to scaling of I by a constant and relabeling of y and t.

It is interesting that the KP arises in this way where the potential itself is a gauge

invariant of the linear problem, i.e. the KP is a gauge invariant form of the evolution

equation.
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The Novikov-Veselov(NV) Equation.

Let L and M be two operator functions such that

L = ∂x∂y + a∂x + b∂y + c, (3.21a)

M = ∂t + ∂3

x + u∂2

x + v∂x + w. (3.21b)

We will consider the ‘L-M-f triad’ representation [14] :

[L,M ] + fL = 0

where f is an operator function to be found.

Invariants for L and M .

We will use a gauge transformation on L and M in order to get invariants for L

and M :

g−1Lg = Lg,

g−1Mg = Mg.

The gauge transformation on L = ∂x∂y + a∂x + b∂y + c gives us

I = ax − by (3.22)

J = ax + ab− c (3.23)

where I and J are invariants for the differential operator L.

Similarly applying the gauge transformation on M = ∂t +∂3

x +u∂2

x +v∂x +w, we have

P = ux +
1

3
u2 − v, (3.24)

R = ut + (uxx −
2

9
u3 + uv)x − 3wx. (3.25)

where P and R are invariants for the differential operator M .

L-M-f triad representation.

[L,M ] + fL = 0 (3.26)

where L = ∂x∂y + a∂x + b∂y + c, M = ∂t + ∂3

x + u∂2

x + v∂x + w and

f = (3bx − ux)∂x − vx + 2ubx + 3bxx − 3bbx + bux, gives the following equations:

Py = 3Jx,
∫

Itdy −
1

3
R+

[

∫

Ixxdy + 3
∫

Idy
∫

Ixdy − P
∫

Idy +
(∫

Idy
)3

]

x
= 0,

Ry = 9
[

J
∫

Idy
]

xx
,

Jt + Jxxx − (JP )x − 3
[

Jx

∫

Idy
]

x
+ 3

[

J
(∫

Idy
)2

]

x
= 0.
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We can rewrite the above equations in simpler forms if we substitute I = I ′y:

Py = 3Jx, (3.27)

Ry = 9 (I ′J)xx , (3.28)

I ′t −
1

3
R+

(

I ′xx + 3I ′I ′x − I ′P + I ′
3

)

x
= 0, (3.29)

Jt +
(

Jxx − JP − 3I ′Jx + 3I ′
2
J
)

x
= 0. (3.30)

By letting I ′ = 0, we obtain

Jt + Jxxx − (JP )x = 0 (3.31)

which is the special case of the Novikov-Veselov(NV) equation, where Py = 3Jx.

4. Conclusion

In this paper we have discussed the completeness for the given Lax pair L and

M . We have shown that the invariants of L and M are an almost complete set

i.e. a set, the knowledge of which, is enough to determine the operators L and M

completely up to gauge transformations. We also have shown that one might obtain

scaler evolution equations in invariant forms such as KP and NV equations. To derive

the NV equation from the Lax pair see [14], where Konopelchenko gives a method

which transforms the equation [T1, T2] = BT1 into the equation [TM
1
, T̃M

2
] = 0, where

Ti and TM
i denote scalar and matrix operators respectively (i = 1, 2).

Athorne and Yilmaz [15] have extended the idea of the differential invariants to

the matrix case. They have suggested an algebraic solution procedure for the (2+1)-

dimensional AKNS system (It is beyond the scope of this paper). One should know

that the Laplace Transformation plays an important role in this procedure together

with gauge invariants.
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