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1. INTRODUCTION

Section 2 discusses extension type spaces and maps. In Sections 3 we present
new periodic point results in extension type spaces. These results improve those in
the literature; see [1-3, 5, 8-11, 14-15] and the references therein. Our results were
motivated in part from ideas in [1, 2, 9, 12, 15].

For the remainder of this section we present some definitions and known results
which will be needed throughout this paper. Suppose X and Y are topological spaces.
Given a class X of maps, X(X,Y) denotes the set of maps F' : X — 2Y (nonempty
subsets of Y') belonging to X, and X, the set of finite compositions of maps in X. We
let

F(X)={Z: Fix F£0forall F e X(Z,Z)}
where Fix I’ denotes the set of fixed points of F'.
The class B of maps is defined by the following properties:
(i) B contains the class € of single valued continuous functions;

(ii) each F' € B, is upper semicontinuous and closed valued; and
(i) B" € F(B,) for all n € {1,2,...}; here B* ={x € R" : ||z|| < 1}.

The class B is essentially due to Ben-El-Mechaiekh and Deguire [6]. 9B includes the
class of maps 4l of Park (4 is the class of maps defined by (i), (iii) and (iv). each
F € $. is upper semicontinuous and compact valued). Thus if each F' € B, is

compact valued the class 8 and 4 coincide.
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We also consider the class 45(X,Y) (respectively B%(X,Y)) of maps F': X — 2V
such that for each F' and each nonempty compact subset K of X there exists a map
G e U.(K,Y) (respectively G € B.(K,Y)) such that G(x) C F(z) for all z € K.

Theorem 1.1. T (the Tychonoff cube) is in F(LUL).

For a subset K of a topological space X, we denote by Covx(K) the set of all
coverings of K by open sets of X (usually we write Cov(K) = Covx(K)). Given a
map F : X — 2% and a € Cov(X), a point # € X is said to be an a—fixed point of
F if there exists a member U € « such that x € U and F(z) NU # (). Given two
maps single valued f,g: X — Y and a € Cov(Y), f and ¢ are said to be a—close if
for any x € X there exists U, € « containing both f(z) and g(x). We say f and g
are a-homotopic if there is a homotopy hy : X — Y (0 <t < 1) joining f and g such
that for each x € X the values hy(x) belong to a common U, € « for all ¢ € [0, 1].

The following results can be found in [4, Lemma 1.2 and 4.7].

Theorem 1.2. Let X be a reqular topological space and F : X — 2% an upper semi-
continuous map with closed values. Suppose there exists a cofinal family of coverings
0 C Covx(F(X)) such that F' has an a—fized point for every o € . Then F has a
fixed point.

From Theorem 1.2 in proving the existence of fixed points in uniform spaces for
upper semicontinuous compact maps with closed values it suffices [5 pp. 298] to prove
the existence of approximate fixed points (since open covers of a compact set A admit
refinements of the form {U[x] : © € A} where U is a member of the uniformity [13
pp. 199] so such refinements form a cofinal family of open covers). Note also uniform
spaces are regular (in fact completely regular) [7 pp. 431] (see also [7 pp. 434]). Note
in Theorem 1.2 if F' is compact valued then the assumption that X is regular can
be removed. For convenience in this paper we will apply Theorem 1.2 only when the
space is uniform.

Let X, Y and I' be Hausdorff topological spaces. A continuous single valued map
p: ' — X is called a Vietoris map (written p : I' = X)) if the following two conditions

are satisfied:

(i) for each = € X, the set p~'(x) is acyclic

(ii) pis a proper map i.e. for every compact A C X we have that p~!(A) is compact.

Let D(X,Y) be the set of all pairs X & T' % Y where p is a Vietoris map and ¢ is
continuous. We will denote every such diagram by (p,q). Given two diagrams (p, q)
and (p/,q'), where X A N Y, we write (p,q) ~ (p/,¢') if there are maps f : I' — I
and g : IV — I' such that ¢ o f = ¢, p' o f =p, qog =¢ and pog = p/. The
equivalence class of a diagram (p, ¢) € D(X,Y’) with respect to ~ is denoted by

p={XETrLY}: XY
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or ¢ = [(p,q)] and is called a morphism from X to Y. We let M(X,Y’) be the set of
all such morphisms. For any ¢ € M(X,Y) a set ¢(x) = gp~'(x) where ¢ = [(p, q)] is
called an image of  under a morphism ¢. A multivalued map ¢ : X — 2 is said
to be determined by a morphism {X & I' L Y} provided ¢(z) = qp~'(z) for each
x € X; the morphism which determines ¢ is also denoted by ¢. Note a multivalued
map determined by a morphism is upper semicontinuous and compact valued. Finally

note every morphism determines a multivalued map but not conversely.

Consider vector spaces over a field K. Let E be a vector space and f : E — FE an
endomorphism. Now let N(f) = {x € E : f™(z) = 0 for some n} where f™ is the
nt" iterate of f, and let E = E\N(f). Since f(N(f)) € N(f) we have the induced
endomorphism f : E — E. We call f admissible if dimE < oo; for such f we define

the generalized trace T'r(f) of f by putting Tr(f) = tr(f) where tr stands for the

ordinary trace.

Let f = {f,} : E — E be an endomorphism of degree zero of a graded vector
space E = {E,}. We call f a Leray endomorphism if (i). all f, are admissible and

(ii). almost all £, are trivial. For such f we define the generalized Lefschetz number

A(f) by
A(f) =D (=1)Tr(f,).

q
The Euler characteristic x(f) is defined to be

X(f) =Y _(=1)dim(E,).
q
Let Q{z} denote the integral domain consisting of all formal power series >, a,x"
with coefficients a, € @ (here @ is a fixed field). The Lefschetz power series L(f) of
the Leray endomorphism f = {f,} is an element of Q{z} defined by

L(f) = x(f) + > A(f")a"

From [10, pp 325] (see also [12, pp 434]) we know L(f) admits a representation
L(f) = u.v™! where u and v are relatively prime polynomials with degu < degv
(u # 0). We define

P(f) = degwv.

Let H be the Cech homology functor with compact carriers and coefficients in
the field of rational numbers K from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H(X) = {H,(X)} is a graded vector space, H,(X) being the ¢—
dimensional Cech homology group with compact carriers of X. For a continuous map
f:X — X, H(f) is the induced linear map f, = { fi,} where f,, : H,(X) — H,(X).
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With Cech homology functor extended to a category of morphisms (see [9, 10])
we have the following well known result (note the homology functor H extends over

this category i.e. for a morphism
p={XET LY} X >Y

we define the induced map

by putting ¢, = g, o p;1).

Theorem 1.3. If ¢ : X — Y and ¢ : Y — Z are two morphisms (here X, Y and Z
are Hausdorff topological spaces) then

(Y0 @)w =1hy 0 ¢y

Two morphisms ¢,1 € M(X,Y) are homotopic (written ¢ ~ 1) provided there
is a morphism y € M (X x0,1],Y) such that x(z,0) = ¢(x), x(z,1) = ¥(x) for every
x € X (le. ¢ =xoipand i) = xoiy, where ig,i; : X — X x [0, 1] are defined by
io(z) = (x,0), i1(x) = (x,1)). Recall the following result [9, pp. 231]: If ¢ ~ 1 then
Ou = s

Let ¢ : X — Y be a multivalued map (note for each x € X we assume ¢(z) is
a nonempty subset of Y). A pair (p, q) of single valued continuous maps of the form

X £ T LY is called a selected pair of ¢ (written (p,q) C ¢) if the following two
conditions hold:

(). p is a Vietoris map

and

(ii). ¢(p~'(z)) C ¢(x) for any = € X.

Definition 1.4. A upper semicontinuous map ¢ : X — Y is said to be strongly
admissible [9] (and we write ¢ € Ads(X,Y)) provided there exists a selected pair

(p, q) of ¢ with ¢(x) = q(p~'(x)) for z € X.

Definition 1.5. A map ¢ € Ads(X,X) is said to be a Lefschetz map if for each
selected pair (p,q) C ¢ with ¢(z) = q(p~'(z)) for z € X the linear map ¢.p;! :
H(X) — H(X) (the existence of p;! follows from the Vietoris Theorem) is a Leray

endomorphism.

If  : X — X is a Lefschetz map as described above then we define the Lefschetz
number (see [9]) A(¢) (or Ax(¢)) by

A(¢) = Ma.p; ).

Also we define

X(0) = x(@.p. "), L(¢) = L(qp; ) and P(¢) = P(q.p; ")
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Definition 1.6. A Hausdorff topological space X is said to be a Lefschetz space
provided every compact ¢ € Ads(X, X) is a Lefschetz map and A(¢) # 0 implies ¢
has a fixed point.

Theorem 1.7 ([9, 12]). Let ¢ € Ads(X, X) be a Lefschetz map. Then

(a) x(¢) = 0 implies P(¢) = 0;
(b) P(¢) =0 if and only if A(¢™) = 0 for some natural number n;
(c) if P(¢) = k # 0 then for any m € {0,1,2,...} at least one of A(¢™1), ...,

A(¢™FF) is different from zero.

2. PRELIMINARY FIXED POINT THEORY

We note that some of the fixed point theory presented in this section can be
found in [15, 16, 17]. In addition in this section we improve some of the results in [15,
16]. We also establish some new properties (see Remark 2.5 and Remark 2.8) which
will be needed in Section 3.

By a space we mean a Hausdorff topological space. Let X and Y be spaces. A
space Y is an neighborhood extension space for () (written Y € NES(Q)) if VX € @,
VK C X closed in X, and for any continuous function f; : K — Y, there exists a

continuous extension f: U — Y of f; over a neighbourhood U of K in X.

In [17] we established the following result.

Theorem 2.1. Let X € NES(compact) and F € Ads(X,X) a compact map. Then
A(F) is well defined and if A(F') # 0 then F has a fized point.

A space Y is a strongly approximate neighborhood extension space for @) (written
Y € SANES(Q)) ifVa € Cov(Y),VX € Q,VK C X closed in X, and any continuous
function fy : K — Y, there exists a neighborhood U, of K in X and a continuous

function f, : U, — Y such that f,|x and fy are « close and a-homotopic.

Theorem 2.2 ([17]). Let X € SANES(compact) be a uniform space and F €
Ads(X, X) a compact map. Then A(F) is well defined and if A(F) # 0 then F
has a fized point.

In fact we obtained a more general result in [17] which contains both Theorem 2.1
and Theorem 2.2.
Let X be a Hausdorff topological space. A map F € Ads(X, X) is said to be
a compact absorbing contraction (written F' € CACs(X, X)) if there exists Y C X
such that
(i) F(Y) CY;
(ii) F|y € Ads(Y,Y) (automatically satisfied) is a compact map with Y a Lefschetz

space;
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(iii) for every compact K C X there is an integer n = n(K) such that F"(K) C Y.

Remark 2.3. Examples of Lefschetz spaces Y are of course NES(compact) and
SAN ES(compact) uniform spaces.

Remark 2.4. If Y = U is an open subset of X then (iii) could be changed to

(iii)’ for every x € X there exists an integer n = n(z) such that F*"®)(z) CY =U.

Remark 2.5. Let F' € CACs(X, X) and let Y be as above. Notice F?(Y) C F(Y) C
Y, F?ly € Ads(Y,Y) (see [9, pp. 201]) and F?|y is a compact map. Let K be a
compact subset of X and let n = n(K) be as described above. Then if n is even we
have (F2)2 (K) C Y whereas in n is odd we have (F2)"s = F""(K) = F(F*(K)) C
F(Y)CY. Thus F? € CACs(X, X). Similarly F™ € CACs(X, X) for every integer

m.

Theorem 2.6 ([17]). Let X be a Hausdorff topological space and F € CACs(X, X).
Then A(F') is well defined and if A(F') # 0 then F' has a fized point.

In [15, 16] we considered a more general situation. Let X be a compact space.
A map F € Ads(X, X) is said to be a NES(compact) map if for any compact pair
(Z,A) and any homeomorphism ¢ : X — A there exists a neighborhood U of A in Z
and a ® € Ads(U, X) with ®|4 = Fg~'.

Theorem 2.7 ([16]). Let X be a compact space and let F' € Ads(X,X) be a NES
(compact) map. Then A(F) is well defined and if A(F') # 0 then F has a fized point.

In fact in [15] we generalized this result. A map F' € Ads(X, X) is said to be a
compact absorbing contraction (written F' € MCACs(X, X)) if there exists Y C X
such that

(i) F(Y) CY;
(ii) Y is a compact space and F|y € Ads(Y,Y) (automatically satisfied) is a NES
(compact) map;
(iii) for every compact K C X there is a n = n(K) such that F"(K) C Y.

Remark 2.8. Let F' € MCACSs(X, X) and let Y be as above. Consider any compact
pair (Z, A) and any homeomorphism ¢ : Y — A. Now there exists a neighborhood
Uof Ain Z and a ® € Ads(U,Y) with ®|4 = Fg~'. Let ¥ = F®. Notice ¥ €
Ads(U,Y) and |4 = F®|4 = FFg~! = F?g~!'. Thus (see also Remark 2.5) ' €
MCACs(X, X). Similarly '™ € MCACs(X, X) for each integer m.

Theorem 2.9 ([15]). Let X be a Hausdorff topological space and FF € MCACs(X, X).
Then A(F') is well defined and if A(F') # 0 then F has a fized point.
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Our next two results improve those in [15].

A map F € 4f(X,Y) is called a AN ES(compact) map if for any compact pair
(Z, A) and any homeomorphism ¢ : X — A the following holds: for each a € Cov(Y')
there exists a neighborhood U, of A in Z and a &, € U5(U,,Y) such that for each
x € A with x € jy_ gP.(x) (here jy, : A — U, is the natural imbedding) there exists
U, € a such that g~ !(x) € U, and Fg~'(z) N U, # 0.

Let X be a compact space and F' € U5(X, X) a ANES(compact) map. Let
a € Covx(X). X is compact so [12] X is homeomorphic to a closed subset of the
Tychonoff cube T', so as a result X can be embedded as a closed subset K* of T
let s : X — K* be a homeomorphism. Now since s=! : K* — X and since F is
a ANFES(compact) map there exists a neighborhood U, of K* in T" and a ®, €
U (U,, X) such that for each x € K* with x € jy, s, Po(z) (here jy, : K* — U, is the
natural imbedding) there exists U, € « such that s™1(z) € U, and Fs~(z)NU, # 0.
Let G, = ju,sP,. Notice G, € U5(U,,U,). We now assume

(2.1) G € U5 (U,, U,) has a fixed point for each oo € Covx(X).

Thus there exists * € U, with x € G,x. Then there exists y € ®,(z) with x =
ju.s(y). Note s(y) € K*. Now there exists a U € a with s7'(z) € U and Fs~!(z) N
U # 0. Since x = jy,s(y) we have y € U and F(y) N U # (. As a result F has
an a—fixed point. Now apply Theorem 1.2 and we have the following result which

improves a result in [15].

Theorem 2.10. Let X be a uniform compact space and let F € UH(X,X) be a
ANES(compact) map. In addition assume F' is a upper semicontinuous map with
compact values. Also assume (2.1) holds with K, s, U,, ®, and jy, as described

above. Then F' has a fized point.

We now discuss Theorem 2.10 for the class Ads(X,X). Let X be a uniform
compact space. A map F' € Ads(X, X) is said to be a weakly AN ES(compact) map
if for any compact pair (Z, A) and any homeomorphism g : X — A the following two
conditions hold for each a € Covy (X):

(1) there exists a neighborhood U, of A in Z and a ®, € Ads(U,, X) such that for
each v € A with z € jy, g®.(7) there exists U, € a such that g7'(z) € U, and
Fg~Y(x)NU, # 0,

(2) if (p,q) is any selected pair for F with gp~'(z) = F(z) for x € X then there
exists a selected pair (p, q") of ®,jy, g with ¢”(p!) " (z) = Puju,g(z) for z € X

and with (¢/).(p2):' = q.p;'; here jy, : A — U, is the natural embedding.

Remark 2.11. Let X be a compact space and F € Ads(X, X) be such that for

any compact pair (Z, A) and any homeomorphism ¢g : X — A we have for each
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a € Covx(X) that there exists a neighborhood U, of A in Z and a continuous
function h, : U, — X of g~! such that h,|4 and ¢! are a-homotopic. Then (2)
above holds with ®, = Fh,. To see this let (p,q) be any selected pair for F' with
qp~'(x) = F(x) for x € X. Then [9, Theorem 40.6, pp. 201] guarantees that there
exists a selected pair (p!”, ¢”) of Fhyju,g with ¢ (p”)~(x) = Fhyju,g(z) for x € X
and with

/11

(@)t = @bl (ha)u(jua )+ G

As a result (¢7),(p!):t = q.p;* since hajy, g is a-homotopic to ¢ (note hy|a and g=*

are a-homotopic).

Remark 2.12. Let X be a compact space and F' € Ads(X, X) be such that for
any compact pair (Z, A) and any homeomorphism ¢g : X — A we have for each
a € Coux(X) that there exists a neighborhood U, of A in Z and a continuous
function hy, : U, — X of g7 such that h,|4 and g~1 are a-close. In addition assume
for each x € A with x € jy, g®P.(z) and h,(x) € U,, F(ho(z)) N U, # O for some
U, € « there exists a U € a with g7'(2) € U and F(g~(x))NU # 0. Then (1) above
holds with ®, = F'h,. To see this suppose = € A with = € jy_ gP.(x). Let y = hy(x)
s0 ¥y € hoju,gF (y) ie. y = hoju,g(q) for some ¢ € F(y). Now since h,jy,g and
i are a—close there exists U € a with h,ju,g(q) € U and i(q) € U ie. ¢ € U and
y = hoju,g(q) € U. Thus y € U and F(y) N U # () since ¢ € F(y). As a result

ho(x) € U and F(ho(z)) NU # 0.

By assumption there exists U, € a with ¢~ *(z) € U, and F(g~'(x)) N U, # 0.

Exactly the same proof as in [15, Theorem 2.2] (except here we use Theorem 2.10

above) gives the following result.

Theorem 2.13. Let X be a uniform compact space and let F € Ads(X,X) be a
weakly AN ES(compact) map. Then A(F') is well defined and if A(F') # 0 then F has
a fixed point.

A map F € Ads(X, X) is said to be a approximate compact absorbing contraction
(written F' € ACACs(X, X)) if there exists Y C X such that

(i) F(Y)CY;
(ii) Y is a compact uniform space and F|y € Ads(Y,Y) (automatically satisfied) is

a weakly ANES(compact) map;
(iii) for every compact K C X there is a n = n(K) such that F"(K) C Y.

Theorem 2.14 ([15]). Let X be a Hausdorff topological space and assume F €
ACACSs(X,X). Then A(F) is well defined and if A(F) # 0 then F' has a fized

point.
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Remark 2.15. As above we can generalize the definition of stronger AN E'S(compact)
map in [15] and obtain a stronger Theorem 2.3 in [15] for the class Ad. Let X be
a compact space and we say F' € Ad(X,X) is a strongly AN ES(compact) map if
for any compact pair (Z, A) and any homeomorphism g : X — A the following two
conditions hold for each a € Covx(X):

(3) there exists a neighborhood U, of A in Z and a ®, € Ad(U,, X) such that for
each v € A with z € jy, gP,(x) there exists U, € a such that s™*(z) € U, and
Fg~Yx)NU, # 0,

(4) if (p, q) is any selected pair for F' then there exists a selected pair (p/,, ¢),) of @,
with (¢.)«(PL)7 Gu. )« 9x = @py s here jy, : A — U, is the natural embedding.

It is worth mentioning here also that we can also improve Theorem 2.2 in [16].
A map F € 45(X,Y) is called a AES(compact) map if for any compact pair (Z, A)
and any homeomorphism g : X — A for each a € Cov(Y) there exists ¢, € U5 (Z,Y)
such that for each © € A with « € jg®,(z) (here j : A — Z is the natural imbedding)
there exists U, € « such that s7'(z) € U, and Fg~'(z) N U, # 0.

Theorem 2.16. Let X be a uniform compact space and suppose F € U X, X) is
a AES(compact) map. In addition assume F is upper semicontinuous map with

compact values. Then F' has a fized point.

Proof. Let a € Covx(X). From Theorem 1.2 it suffices to show F' has an a—fixed
point. We know [12] that X can be embedded as a closed subset K* of T'; let
s : X — K* be a homeomorphism. Let 7 : K* < T be an inclusion. Now since
s~ K* — X and since F' is a AES(compact) map there exists @, € U%(T, X) such
that for each z € K* with z € js®,(x) there exists U, € a such that s~!(x) € U, and
Fs™z)NU, # 0. Let G, = js®, and note G, € U4%(T,T) so Theorem 1.1 guarantees
that there exists x € T with x € G,2. Then there exists y € ®,(z) with x = js(y).
Note s(y) € K*. Now there exists a U € a with s7'(z) € U and Fs™!(x) N U # 0.
Since x = js(y) we have y € U and F(y) NU # (. As a result F' has an a-fixed
point. ]

3. PERIODIC POINTS

Let X be a Hausdorff topological space. A point z € X is said to be a periodic
point for a map F : X — 2% with period n if z € F"(z).

Theorem 3.1. Let X be a Hausdorff topological space and F € CACs(X, X). Sup-
pose X(F) # 0 or P(F) #0. Fixm € {0,1,...}. Then F has a periodic point with
period n where m+1 <n <m+ P(F).

Proof. We know for Theorem 2.6 that F' is a Lefschetz map. Now P(F) # 0 (see
Theorem 1.7 (a)). We now know for Theorem 1.7 (c) that there exists a n, m + 1 <
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n <m+ P(F) with A(F") # 0. From Remark 2.5 we have F"" € CACs(X, X). As a
result Theorem 2.6 guarantees that I has a fixed point. O

Theorem 3.2. Let X be a Hausdorff topological space and F € MCACs(X,X).
Suppose x(F) # 0 or P(F) # 0. Fixm € {0,1,...}. Then F has a periodic point
with period n where m +1 <n <m+ P(F).

Proof. We know for Theorem 2.9 that F'is a Lefschetz map and also we know that
A(F™) # 0 for some n where m +1 < n < m+ P(F). From Remark 2.8 we have
F" € MCACs(X,X). As a result Theorem 2.9 guarantees that F™ has a fixed
point. ]

Theorem 3.3. Let X be a Hausdorff topological space and F € ACACs(X,X).
Suppose x(F) # 0 or P(F) # 0. Fizm € {0,1,...} and suppose F"* € ACACs(X, X)
for any n with m +1 <n <m+ P(F). Then F has a periodic point with period n
where m +1 <n <m+ P(F).

Proof. We know for Theorem 2.14 that F' is a Lefschetz map and also we know that
A(F™) # 0 for some n where m +1 < n < m + P(F). By assumption we have
Fr € ACACs(X,X). As a result Theorem 2.14 guarantees that F™ has a fixed
point. ]
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