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1. INTRODUCTION

In this paper, we introduce fractional differential equations with causal operators.

The importance of the theory of differential equations involving causal operators re-

sides in its powerful quality of unifying various dynamic systems, such as ordinary

differential equations, differential equations with delay and integro-differential equa-

tions, to name only a few. Fractional differential equations have the inherent ad-

vantage of providing a better framework for modeling many physical phenomena in

biological and social sciences. In this paper, we combine these two fields by consider-

ing fractional differential equations in the set up of Caputo fractional derivative and

proving some existence results.

2. PRELIMINARIES

We begin with some definitions. Let t0 ≥ 0 and T > t0 be arbitrary and let

E = C[[t0, T ), Rn] be a function space. The map Q : E → E is said to be a causal or
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a nonanticipative map if x, y ∈ E have the property that if x(s) = y(s), t0 ≤ s ≤ t,

then (Qx)(s) = (Qy)(s), t0 ≤ s ≤ t, t < T [1].

Next, we give the definition of and relation between the Riemann-Liouville and

Caputo fractional differential equations. The Riemann-Liouville fractional differential

equation is given by

Dqx = (Qx)(t), x(t0) = x0 = x(t)(t − t0)
1−q|t=t0 , t0 ≤ t < T, (2.1)

where 0 < q < 1 and Γ(q) is the standard gamma function. The corresponding

Volterra fractional integral equation is given by

x(t) = x0(t) +
1

Γ(q)

∫ t

t0

(t − s)q−1(Qx)(s) ds,

where x0(t) = x0(t−t0)q−1

Γ(q)
[8].

The Caputo derivative has the main advantage that the initial condition of the

corresponding initial-value problem has the same form as that of ordinary differential

equations, and also the derivative of a constant is zero. Hence, it is convenient to use

the Caputo fractional derivative.

The fractional differential equation of Caputo type is given by

cDqx = (Qx)(s)

x(t0) = x0

}

(2.2)

where 0 < q < 1. If x ∈ Cq([t0, t0 + a], Rn) satisfies (2.2), it also satisfies the Volterra

fractional integral

x(t) = x0 +
1

Γ(q)

∫ t

t0

(t − s)q−1(Qx)(s) ds, (2.3)

and vice versa.

The relation between the two types of fractional derivatives is given by

cDqx(t) = Dq(x(t) − x(t0)).

Next, we state some results from [3, 5, 6] that are needed to prove our main the-

orems. These results are stated for fractional differential equations of Riemann-

Liouville type, but they can be readily extended to those of Caputo type. Let

p = 1− q and Cp([t0, T ], R) = {u : u ∈ C((t0, T ], R) and (t− t0)
pu(t) ∈ C([t0, T ], R)}.

Consider the initial-value problem (IVP)

Dqx = f(t, x), x(t0) = x0 = x(t) (t − t0)
1−q|t−t0 (2.4)

where f ∈ C(R0, R
n), R0 = {(t, x) : t0 ≤ t ≤ t0 +a and |x−x0(t)| ≤ b}, and x0(t) =

x0(t−t0)q−1

Γ(q)
.
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Lemma 2.1. Let m ∈ Cp([t0, T ], R) be locally Hölder continuous with exponent λ > q,

and for any t1 ∈ (t0, T ],

m(t1) = 0 and m(t) ≤ 0 for t0 ≤ t ≤ t1.

Then,

Dqm(t1) ≥ 0. (2.5)

Lemma 2.2. Let {xǫ(t)} be a family of continuous functions on [t0, T ], for ǫ > 0,

such that

Dqxǫ(t) = f(t, xǫ(t))

x0
ǫ = xǫ(t)(t − t0)

1−q|t=t0 ,

and |f(t, xǫ(t))| ≤ M for t0 ≤ t ≤ T . Then the family {xǫ(t)} is equicontinuous on

[t0, T ].

Theorem 2.3. Assume that m ∈ Cp([t0, T ], R+) is locally Hölder continuous, g ∈

C([t0, T ] × R+, R) and

Dqm(t) ≤ g(t, m(t)), t0 ≤ t ≤ T.

Let r(t) be the maximal solution of the IVP

Dqu(t) = g(t, u(t)), u(t)(t− t0)
1−q|t=t0 = u0 ≥ 0, (2.6)

existing on [t0, T ], such that m0 ≤ u0, where m0 = m(t)(t − t0)
1−q|t=t0 . Then, we

have

m(t) ≤ r(t), t0 ≤ t ≤ T.

Lemma 2.4. Assume that f ∈ C[Ω, R], where Ω is an open set in R
2, (t0, x

0) ∈ Ω,

with x0 = x(t)(t−t0)
1−q|t=t0. Suppose that [t0, t0+a) is the largest interval of existence

of the maximal solution r(t) of the fractional differential equation (2.4). Assume that

[t0, t1] is a compact interval of [t0, t0 + a). Then, there is an ǫ0 > 0 such that, for

0 < ǫ < ǫ0, the maximal solution r(t, ǫ) of

Dqx = f(t, x) + ǫ with initial value x0 + ǫ, (2.7)

where x0 = x(t)(t − t0)
1−q|t=t0 , exists on [t0, t1], and lim

ǫ→0
r(t, ǫ) = r(t), uniformly on

[t0, t1].

3. EXISTENCE RESULTS

We begin with the theory of fractional differential inequalities.
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Theorem 3.1. Let α, β ∈ Cq(J, R] be Hölder continuous with exponent λ > q, such

that

cDqα(t) ≤ (Qα)(t), (3.1)

cDqβ(t) ≥ (Qβ)(t), (3.2)

with one of the inequalities (3.1) or (3.2) being strict and α(t0) < β(t0). Then α(t) <

β(t), t ∈ J .

Proof. Suppose the conclusion does not hold. Then there exists a t1 > t0 such that

α(t1) = β(t1) and α(t) < β(t), t0 ≤ t < t1. Now set m(t) = α(t) − β(t). Then

m(t1) = 0 and m(t) < 0, t0 ≤ t < t1.

Now, observe that cDqm(t) = Dq[m(t) − m(t0)], where Dqm(t) is the Riemann-

Liouville fractional derivative and also that m(t0) < 0 implies −Dqm(t0) > 0. Thus,

by Lemma 2.1, we have cDqm(t1) ≥ Dqm(t1) ≥ 0. This yields

(Qα)(t1) ≥
cDqα(t1) ≥

cDqβ(t1) > (Qβ)(t1),

a contradiction. Here, we have used (3.2) with a strict inequality. The contradiction

validates the conclusion and the proof is complete.

Having proved the basic result for strict differential inequalities, we are now in a

position to prove it for nonstrict inequalities.

Theorem 3.2. Assume that the hypothesis of Theorem 3.1 holds with nonstrict in-

equalities. Further, assume that

(Qx)(t) − (Qy)(t) ≤ L max
t0≤s≤t

|x(s) − y(s)| for x ≥ y.

Then, α(t) ≤ β(t) on J , provided α(t0) ≤ β(t0).

Proof. Set βǫ(t) = β(t) + ǫEq(2L(t− t0)
q). Then, βǫ(t0) = β(t0) + ǫ > α(t0). Further,

cDqβǫ(t) = cDqβ(t) + 2LǫEq(2L(t − t0)
q)

≥ (Qβ)(t) + 2LǫEq(2L(t − t0)
q)

≥ (Qβǫ)(t) + LǫEq(2L(t − t0)
q),

which gives
cDqβǫ(t) > (Qβǫ)(t). (3.3)

Now, applying Theorem 3.1 to (3.1) and (3.3), we obtain that α(t) < βǫ(t). Taking

the limit as ǫ → 0, we arrive at α(t) ≤ β(t), and the conclusion holds.

Next, we shall prove a general uniqueness theorem using successive approxima-

tions.

Theorem 3.3. Assume that
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1. Q ∈ C[B, E] is a causal map where B = B(x0, b) = {x ∈ E : max
J

|x(t) − x0| ≤

b}, J = [t0, T ] and |(Qx)| ≤ M0 on B;

2. g ∈ C(J × [0, 2b], R+), g(t, u) ≤ M1 on J × [0, 2b], g(t, 0) ≡ 0, g(t, u) is nonde-

creasing in u for each t ∈ J , and u(t) ≡ 0 is the only solution of

cDqu = g(t, u), u(t0) = 0 on J ; (3.4)

and

3. |(Qx)(t)− (Qy)(t)| ≤ g(t, |x− y|0(t)) on B, where |x− y|0(t) = max
t0≤s≤t

|x(t)−

y(t)|.

Then, the successive approximations defined by

xn+1(t) = x0 +
1

Γ(q)

t
∫

t0

(t − s)q−1(Qxn)(s)ds, n = 0, 1, 2, . . . (3.5)

exist and are continuous on I0 = [t0, t0+α], with α = min(T−t0, (
bΓ(1+q)

M
)

1

q ) and M =

max{M0, M1}, and converge uniformly to the unique solution x(t) of (2.2).

Proof. By our choice of α, we have, for t ∈ I0,

|x1(t) − x0| ≤
1

Γ(q)

t
∫

t0

(t − s)q−1|f(s, x0)|ds.

≤
M(t − t0)

q

Γ(q + 1)
≤

Mαq

Γ(1 + q)
≤ b.

Hence, using induction, one can show that the successive approximations are

continuous and satisfy

|xn(t) − x0| ≤ b, n = 0, 1, 2, . . . . (3.6)

Next, we shall define the successive approximations for the IVP (3.4) as follows:

u0(t) =
M(t − t0)

q

Γ(1 + q)
,

un+1(t) =
1

Γ(q)

t
∫

t0

(t − s)q−1g(s, un(s))ds on I0. (3.7)

Since g(t, u) is assumed to be nondecreasing in u for each t, using induction we

can show that the successive approximations (3.7) are well defined and satisfy

0 ≤ un+1(t) ≤ un(t) on I0.

Moreover, |Dqun+1(t)| = g(t, un−1(t)) ≤ M , and equicontinuity follows from Lemma 2.2.

Thus, using Ascoli-Arzela theorem and the monotonicity of the sequence {un(t)}, we

obtain lim
n→∞

un(t) = u(t), uniformly on I0. Clearly, u(t) satisfies (3.4). Hence, by

assumption (b), u(t) ≡ 0 on [t0, t0 + α] = I0.
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We first note that |x1(t) − x0| ≤ M
(t−t0)q

Γ(1+q)
≡ u0(t), which gives |x1 − x0)|0(t) ≤

u0(t). Then, assuming |xk − xk−1|0(t) ≤ uk−1(t) for some k, we have

|xk+1(t) − xk(t)| ≤
1

Γ(q)

t
∫

t0

(t − s)q−1|(Qxk)(s) − (Qxk−1(s)|ds.

Using condition (c) and the monotone character of g(t, u) in u, we get

|xk+1(t) − xk(t)| ≤
1

Γ(q)

t
∫

t0

(t − s)q−1g(s, |xk − xk−1|0)ds

≡ uk(t).

Hence, |xk+1 − xk|0(t) ≤ uk(t). Thus, by induction, the inequality |xn+1 − xn|0(t) ≤

un(t) on I0 holds for all n. Also,

|cDqxn+1(t) −
cDqxn(t)| = |(Qxn)(t) − (Qxn−1)(t)|

≤ g(t, |xn − xn−1|0(t)) ≤ g(t, un(t)).

Let n ≤ m. Then,

cD+q|xn(t) − xm(t)| ≤ | cDqxn(t) − cDqxm(t)|

≤ g(t, un−1(t)) + g(t, um−1(t)) + g(t, |xn − xm|0(t)).

Since un+1(t) ≤ un(t) for all n, it follows that

cD+q|xn(t) − xm(t)| ≤ g(t, |xn − xm|0(t)) + 2(g(t, un−1(t))),

where cD+q is the Caputo Dini derivative corresponding to D+. An application

of Theorem 2.3 (adjusted to the case of Caputo derivative) gives |xn − xm|0(t) ≤

γn(t), on I0, where γn(t) is the maximal solution of the IVP

cDqv = g(t, v) + 2g(t, un−1(t)), v(t0) = 0 for each n.

Since, as n → ∞, g(t, un−1(t)) → 0 uniformly on I0, using Lemma 2.4, we can conclude

that γn(t) → 0, uniformly on I0. This implies that {xn(t)} converges uniformly to

x(t). Now, using the Volterra fractional integral equation (2.3), we can conclude that

x(t) is a solution of the IVP (2.2).

To show that the solution x(t) is unique, suppose y(t) is another solution of the

IVP (2.2) on I0. Define m(t) = |x(t) − y(t)|. Then, m(t0) = 0 and, by condition (c),

cD+qm(t) ≤ |cDqx(t) − cDqm(t)| ≤ |(Qx)(t) − (Qy)(t)| ≤ g(t, |m|0(t)).

Again, by Theorem 2.3, m(t) ≤ r(t, t0, 0) on I0, where r(t) is the maximal solution

of (3.4). But by assumption (c), r(t) ≡ 0. Hence, uniqueness follows and the proof is

done.

Next, assuming local existence, we prove a global existence result.



FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING CAUSAL OPERATORS 87

Theorem 3.4. Let Q ∈ C[E, E] be a causal map such that

|(Qx)(t)| ≤ g(t, |x|0(t)), (3.8)

where g ∈ C[R2
+, R+], g(t, u) is nondecreasing in u for each t ∈ R+, and the maximal

solution r(t) = r(t, t0, u0) of the IVP

cDqu = g(t, u), u(t0) = u0 ≥ 0 (3.9)

exists on [t0,∞). Suppose Q is such that the local existence of solutions of (3.4) is

guaranteed for any (t0, x0) ∈ R+ × B. Then, the largest interval of existence of any

solution x(t, t0, x0) of (2.2) is [t0,∞), whenever |x0| ≤ u0.

Proof. Suppose that x(t) = x(t, t0, x0) is any solution of (2.2) existing on [t0, β),

t0 < β < ∞, with |x0| ≤ u0, and that the value of β cannot be increased. Define

m(t) = |x(t)|. Then, it follows that

cD+qm (t) ≤ |cDqx (t)| = |(Qx) (t)| ≤ g (t, |x|0 (t)) = g (t, |m|0 (t)) ,

and, using Theorem 2.3,we can conclude that m(t) ≤ r(t), t0 ≤ t ≤ β.

Also we have

cDgx(t) = |(Qx)(t)|

≤ g(t, |x|0(t))

≤ g(t, |m|0(t)

≤ g(t, r(t))

≤ M, t0 ≤ t ≤ β,

since g(t, u) ≥ 0 and r(t, t0, u0) is non decreasing. Now, for any t1, t2 such that

t0 < t1 < t2 < β, we have

|x(t1) − x(t2)| = |
1

Γ(q)

t1
∫

t0

(t1 − s)q−1(Qx)(s)ds −
1

Γ(q)

t2
∫

t0

(t2 − s)q−1(Qx)(s)ds|

≤
1

Γ(q)

t1
∫

t0

|(t1 − s)q−1 − (t2 − s)q−1||(Qx)(s)|ds

+
1

Γ(q)

t2
∫

t1

(t2 − s)q−1|(Qx)(s)|ds

≤
M

Γ(q)
[

t1
∫

t0

(t1 − s)q−1ds −

t1
∫

t0

(t2 − s)q−1ds +

t2
∫

t1

(t2 − s)q−1ds]

=
2M(t2 − t1)

q

Γ(1 + q)
.
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Letting t1, t2 → β− and using Cauchy criterion, we have that lim
t→β−

x(t, t0, x0) exists.

Set

x(β, t0, x0) = lim
t→β−

x(t, t0, x0),

and consider the IVP

cDqx = (Qx)(t), x(β) = x(β, t0, x0).

The solution x(t, t0, x0) can be continued beyond β because of our assumption of local

existence. Hence, the claim is true and the proof is complete.
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