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ABSTRACT. This paper presents the conditions for the oscillation ef $blutions of the neutral delay
impulsive differential equation

[z(t) + px(t — 7)) + qz(t — o) =0, t # tg
Alz(ty) + px(ty — 7)) + qoz(ty —0) =0, Vt =t
for constant coefficients and delays. The relevance of thdting theorems is manifested in many extensions,

particularly in the investigation involving neutral imite differential equations with variable coefficients
and delays.
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1. INTRODUCTION

It is observed that a great deal of interest is still beingussd on the oscillations
of ordinary and neutral delay differential equations intsmf the existence of extensive
literature in these fields ([3], [6], [5], [9], [8], [7]). Ma@ recently, the investigation of
the oscillatory properties of yet another interesting areianpulsive differential equations
known as the neutral delay impulsive differential equatidras again captured the attention
of many applied mathematicians as well as other scientistgwd the world ([10], [2]).

A neutral delay impulsive differential equation of the ntider is a differential system
comprising an nth-order differential equation and its itspee conditions in which the
highest-order derivative of the unknown function appearthe differential equation both
with and without delays. Thus, the linear neutral delay ilape differential equation

[z(t) + px(t — )] + qz(t — o) =0, t #ty

(1.1)
Alz(ty) + px(ty — 7)) + qox(ty — o) =0, Vit = ty,
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wheret, t, € RVk € N, p, q, o € Randr,o € R, is an example of a first-order neutral
delay impulsive differential equation.

Usually, the solutionc(t) for ¢ € [to,T) of the impulsive differential equation or
its first derivativex’(t) is a piece-wise continuous function with points of discouify
tr € [to,T),tr # t. Therefore, in order to simplify the statements of our asses later,
we introduce the set of functionr3C' and PC" which are defined as follows.

Letr € N,D := [T,00) C R and letS := {t; }rep, WhereE represents a subscript
set which can be the set of natural numh®rer the set of integer&,, be fixed. Throughout
our discussion, we will assume that the sequefigé,z are moments of impulse effect
and satisfy the properties:

C1l.1 {tx}rer is defined withE := N, then0 < t; <ty < --- and

lim tk = +00
k—-+o00

C1.2 |If {tx}rer is defined withE := Z, thenty < 0 < t1, tp <ty forall k € Z,
k # 0, and

lim ¢, = f+o0.
k—+oo

We denote by?C'(D, R) the set of all functions : D — R, which are continuous for
allt € D,t ¢ S. They are continuous from the left and have discontinuitsheffirst kind
at the points for which € S.

By PC"(D, R), we denote the set of functiops: D — R having derivativei%p €
PC(D, R), 0 <j <r([1], [4]).

To specify the points of discontinuity of functions belomgito PC or PC", we shall
sometimes use the symbdi&” (D, R; S) andPC" (D, R; S),r € N.

In the sequel, all functional inequalities that we write assumed to hold finally, that
is, for all sufficiently large.

Let v = max{r,0} and lett; > ¢,. By a solution of equation (1.1), we mean a
functionz(t) € PC[[t; — v, 00), R| such thate(t) 4+ px(t — 7) is piece-wise continuously
differentiable fort > t; and such that equation (1.1) is satisfied fortaH ¢;.

Lett; > ¢, be a given initial point and lep € PC|[[t; — v, 1], R] be a given initial
function. Thenifz(t — 7) € PC[[t; — v, t1], R], z(t — o) € PC[[t; — v, 1], R] and

tllrg(t—T) = tllrg(t—a) =o00,Vt > 1y, 7,0 € Ry,
equation (1.1) has a unique solution[on co) satisfying the initial condition ([1])
z(t) = (t) forti —y <t <t . (1.2)
A solutionz of the initial value problem (1.1) and (1.2) ¢n, co) is said to be

(i) finally positive, if there exist§” > 0 such thatz(t) is defined fort > T andz(t) > 0
forallt > T,
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(i) finally negative, if there exist$’ > 0 such that:(¢) is defined for > 7" andz(t) < 0
forallt > T
(iii) regular, if it is defined in some half lin€l,, co) for someT,, € R and

sup{|z(t)|}: ¢t > T} >0, VI >T,([4]).

Unlike the classical definition of oscillations, when we #agt every solution of equa-
tion (1.1) oscillates, we mean that for every initial point > ¢, and for every initial
functiony € PCI[t; — v, t1], R], the solution of the initial value problem (1.1) and (1.2)
on [t;,o0) is neither finally positive nor finally negative. If it is faghat every solution
of the initial value problem (1.1) and (1.2) oscillates,rthibere exists &, > t, such that
the solution of the initial value problem (1.1) and (1.2) #her finally positive or finally
negative.

2. STATEMENT OF THE PROBLEM

We return to the linear neutral delay impulsive differehtiguation of the first order
and now write it as follows:

[z(t) + px(t — 7)) + qz(t — o) =0, t¢ s
Alz(ty) + pa(ty — 7)) + qz(ty —0) =0, Vi, €5,

2.1)

wheret, t, € RYk € N . Our aim in this paper is to fill some of the gaps identified ia th
work by Bainov and Simeonov ([1]). We introduce the follogriconditions:

C2.1 There exist nonnegative integers andm, such that
thtm, =tk + Tyligm, =t +0, k€ N.
The following lemmas will be useful in putting the main rasubgether.
Lemma 2.1. Let conditionC2.1be satisfied and let
T, o€ Ry, qq >0. (2.2)

Suppose further, that equati¢®.1) has a finally positive solution(¢). Then,

(a) the functions
z(t) = (t) + pz(t — 7) (2.3)
and
w(t) = z(t) + pz(t — 7) (2.4)
are solutions of equatio(2.1)andz € PC*, w € PC?
(b) if ¢+ g0 > 0, thenz(t) is a non-increasing function and either

tlﬂnoo 2(t) = —o0 (2.5)
or
lim z(t) = 0; (2.6)

t—+4o00
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(c) if g+ qo < 0, thenz(t) is a non-decreasing function and either

Jlim (1) = +oo 2.7)
or
Jlim (1) = 0. (2.8)

Proof. (a) The proof follows from equations (2.3) and (2.4).
(b) Letg +qo > 0,9 > 0, go > 0, then
2(t) = —qx(t — o), t¢ s
Az(ty) = —qoz(ty — o), Vi, €S,

(2.9)

which implies z is a nhon-increasing function. It converdesréfore, either te-oo or to a
numberL, where—oco < L < +o0, ast — oo. If z converges te-oo, then the proof of (b)
is complete.

Let us consider the case wheft) — L ast — oo. We integrate equation (2.9) from
t to +o0 and obtain
+o0o

L—2z(t)=— / qr(s — o)ds — Zqox(tk —0).
1 t<ty
Since the integral is finite, it means

(e}

/:c(t)dt < 400 (sinceq > 0 andgy > 0)

To
and
> a(ty) < oo (sincegy > 0).
To<ty
Then . . .
—00 < /z(t)dt = /x(t)dt +p/x(t —7)dt < 400
T T T
and

—00 < Z 2(ty) = Z x(ty) +p Z x(ty — 7) < 400

T1 <ty T1 <ty T1<ty,
for a suitabler’, > T,,.

On the other hand, i#(t) — L > 0 (L < 0), then

o0

—0 < /z(t)dt = +00 (jz(s)ds SN

T> 2
This contradicts our above assertions. Henge — 0.
(c) The proof is analogous to that of Lemma 2.1(b). This cetgd the proof. O
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Remark 2.2. If ¢ > 0, then the function(t) is strictly decreasing and it is strictly increas-
ingif ¢ <O0.

Lemma 2.3. Let conditionC2.1be satisfied and let
T,o € Ry, q>0, ¢qo>0. (2.10)

Suppose further, that equati¢8.1) has a finally positive solution(¢) and the functions
z(t) andw(t) are defined by equatior{.3) and(2.4) respectively.

(a) The following assertions are equivalent.
(i) lim 2() = —o0;
(||) p< —1
(iii) hmoo x(t) = +o0;
(iv) w(t) > 0,w'(t) > 0,w"(t) > 0,

lim w(t) =400, Aw(ty) >0, Auw'(t;) > 0. (2.11)

t—+o0
(b) The following assertions are equivalent.
()] hm z(t) = 0;
i) »> —1,
(i) lim a(t) = 0;
(v) ( ) > 0, w'(t) <0, w"(t) >0,

lim w(t) =0, Aw(ty) <0, Aw'(ty) > 0. (2.12)

t—-—4o0

Proof. (a)(i) = (ii) Let (i) hold, that is, condition (2.5) is fulfilled. By defimin,

2(t) = a(t) + pa(t — 7).
Both z(¢) andx(¢t — 7) are positive functions, meaning that the above expressiarbe
negative only ifp < 0. Consequently;(t) — —oc only if z(¢) is unbounded.

We show that there exisi € R such that
2(TyF) < sup z(t) VT, € R.
t<Top
Let us assume conversely that sughdoes not exist. Then
z(TyF) < 0 and z(T,F) > sup z(t).
t<Tp

Consequentlyge > 0 such that's, Ty < s < Ty + ¢, z(s) > sup z(t). Hence
t<To
sup {s s x(s) < sup x(t)} =TeR

t<Top

must exist, otherwise(s) is bounded contrary to our earlier assertion.
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But then for T,
supz(t) = z(T)
t<T
holds. With thisT; := T, we obtain the inequality
0> 2(Ty") = 2(Tg) + pa(To — 77) = 2(T") (1 + p).
This is only possible iy < —1, sincez(T,") > 0.
(i) = (iii) Let p < —1. Also, let us assume thatis finally positive. Then:z is
decreasing and — 0 by Lemma 2.1. If

0<2(t)=a(t) +pa(t—7)

then
x(t) > (=p) z(t — 7). (2.13)

On the other hand, by(¢t) — 0 and

{Aom@@, td S

Az(ty) = —qox(ty, — o), Vitx €S,

“+oo
0—z(t) = —q / x(s —o)ds — qo Zm(tk —0) > —00.
1 t<ty
Hence,
/ x(s)ds < oo, Zx(tk —0) < o0. (2.14)
t—o t<t
Inequality (2.13) gives a contradiction since
z(ty +i0) > (=p)'z(ty —o), 1<i<oo (2.15)

would have led to infinity in (2.14).
Indeed,x () + ic) = x(t; + imy) by C2.1,1 < i < co. Hence, by inequality (2.15),

x(ty +io) = x(ty +img) > (—p)'z(ty — o).
In the statement (ii}= (iii), p < —1 < —p > 1. Thus,
z(ty +i0) = x(ty +img) > (—p)'z(ty, — o) >0

andz is finally positive by the condition of Lemma 2.1. Therefdies set{z(t, — o) | t; >

t} is an infinite subsequence with each value greater than éiyeosonstantc(t, — o).
Thus, the sum adds up teoc. Hencez cannot be finally positive. Thus, by Lemma 2.1,
z — —oo if t — 0o. Consequently, there exists such that(s) < 0if s > Ty,

Since
2(t) = x(t) + px(t — 1)
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andz(t) — —oo,
0>z2(t) >pa(t—1)
which implies
0<% <x(t—7)— F00.
(iii) = (i) Assume that:(t) — oo for t — oo. We show that ifz(¢) — 0, it implies

thatz(t) 4 oco. Really,

{z’(t) — _qa(t—0), ¢S

Az(ty) = —qox(ty — o), Vitx € S.

Hence,
+00

0—2(t) = —q/x(s—a)ds—qozgs(tk—a) < 00.

1 t<tg

Thus,

o0

/x(s—a)ds<ooand Zx(tk—a) < 00

1 t<tg

which contradicts the statement thgt) — oo. Hence,z(t) — 0 meansz(t) 4 oo.
Therefore,z(t) — oo leads toz(t) — —oo by Lemma 2.1. This completes the proof.

(i) = (iv) ¢ > 0, go > 0 and equation (2.5) leads to

{w’(t) — —gat—0),  t¢S§ 2.16)
Aw(ty) = —qoz(ty — o), Vit € S.

The integration of (2.16) gives (iv).
(iv) = (i) If w(t) — 400 fort — oo, then by equation (2.16), it implies thats) < 0
for somes > T;. Hence by the proof of Lemma 2.1a(i)t) — —oo.

(b) Applying contraposition to the statements of Lemma 2.2{&) pbtain
=(j) = ~(7) = ~077) = ~(jv) = ~0).
Thus,
=(7) = —(jj) means:(t) — 0 = p > —1;

—(j) = —(jjj) means:(t) — 0 = x(t) A oo;
—(j) = —(jv) means:(t) — 0 = w(t) 4 oco.

() = () We know thatz(t) — 0 = p > —1. Let us assume that= —1. If z, being
a decreasing function, has negative values, tepfinally tends to—oco by Lemma 2.1.
Hencez(t) — 0 implies thatz is finally positive. Thus,

0<z(t)=a(t) —x(t—m7), Vt>T.
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Hence,
x(t—71) <x(t), Vt>T.
Iterating the above inequality, we obtain
z(t+i1) > z(t —7) > 0. (2.17)
On the other hand,
2Z(t) = —qx(t — o), t¢ s
Az(ty) = —qox(ty, — o), Vtx €S,

wheret;, belongs to the set of points of impulse effect. Hence

—+00

0—2(t) = —q / x(s —o)ds — qo Zx(tk —0).

f t<ty

From this > z(tx, — o) < oo which contradicts condition (2.17). Hence the assumption
t<tp
that,z(¢) — 0 whenp = —1 leads to a contradiction. Therefore, oply> —1 is admissible.

(i) = (i) Now we are familiar with the fact whep > —1, z(¢) /4 oo. Let us check
what happens whem < 0. Since, whenever(t) /4 oo impliesz(t) / —oo, it follows by
Lemma 2.1, that(t) — 0. Therefore,

2(t) =z(t) + pr(t — 1) > x(t) >0, Vt>Ty.

Hence,z(t) — 0.
Let -1 < p < 0. Then, the fact that is a strictly decreasing function artde<
[Ty, To + 7] implies

z(t) = (=p)x(t — 1)+ 2(t) < (—=p)a(t — 7) + 2(Ty — 7).
We rewrite the above inequality in the form
z(t) < (—=p)x(t — 1) + 2(To — 7)
and replace the functian(t — 7) with its supremum

z(t—7) < sup  x(s).

s€[To—, To)
Then,
z(t) < (=p) sup x(s)+ 2(Ty — 1),
s€[To—, To)
and hence
sup  x(s) < (=p) sup z(s)+ z(To — 7). (2.18)
s€[To, To+7] s€[To—, To)
Let
O :=To+kr, M= sup z(s) V—-1<k<oc.

s€[0—T, 0]
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Then we get
My1 < (=p) My + (0, — 7). (2.19)

We recall that-1 < p < 0 < 0 < —p < 1. Multiplying both sides of (2.19) by-p,
we obtain

(=p) My < (—=p)* My, + (=p)2(0x — 7).
By the assumption thatis a strictly decreasing function,
2(Op1 —7) < z(0p —7), 1<k<o0. (2.20)
Hence,
Mo < (=p)Mpy1 + 2(0ps1 — 7) < (=p)* My, + (=p)2(0p — 7) + 2(6p — 7)
or
Miyo < (=p)? My + 2(6k — 7)(1 + (—p)).
We repeat the process again and obtain the inequality
My < (=p)Miyo + 2010 — 7) < (=p)* My, + (6 — 7)(1 + (=p) + (—p)?)
2
< (—p)’ My + 2(0r — 7) Z(—P)

s=0

Employing the principles of induction, we finally obtainy 6> &

1
1+p

L
Mg ( )é kMk—l—Z Ok—r Z Z kMk+Z(9k —7’) (221)
=k

We return to inequality (2.19) and immediately observe that

1
sup M, < (=) M, + 2(0, — .
SUp t < (—p) A )1+p

On the other hand,

f sup M, D My + 2(6), —
b M= UM O T

We take the limit of both sides of (2.22) irand obtain
1
1+p

. VE < /(< oo (2.22)

limsup My, < z(0p — )

Hence, a¥ — oo,

1
limsup M, < z(6y — 7)1 i 0, (2.23)
p

therefore
My — 0= z(t) — 0.

(i) = (jv) From the fact thatv(¢) 4~ oo whent — oo, it follows, from (j;7), that

2(t) =z(t) + px(t—7) = 0
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and hence is finally positive. Therefore applying Lemma 2.14@ndw, it follows that
w(t) /» oo implies thatw(t) — 0 sincew(t) = z(t) + pz(t — o) andz is finally positive.

(jv) = (j) Sincew(t) 4 0 ast — oo, it implies thatz(¢) 4 —oo hence, by Lemma
2.1,2(t) — 0 ast — oo. This completes the proof of Lemma 2.2. O

From Lemmas 2.1 and 2.2, we deduce the following additiossgdions.
Lemma 2.4. Let us assume that conditi@®.1is fulfilled and that
T,0 € R, qqy>0.

Suppose also, that equati¢?.1) has a finally positive solution(t) and the functions(¢)
andw(t) are defined by equatiorf®.3)and(2.4) respectively. Then,

(a) conditions(2.11)are satisfied provided(t) is an unbounded function;
(b) conditions(2.12)are satisfied provided(t) is a bounded function.

Proof. This follows from Lemma 2.2:

(@) (i77) < (iv); and
(b) (jj5) & (). -

In what follows, we try to deduce the oscillatory conditidmging advantage of the
above lemmas.

3. MAIN RESULTS

Consider the impulsive delay differential equation

y'(t) + z Gyt —m(t) =0,  t¢S

. (3.1)
Ay(ty) + > qwy(te — 7i(tx)) = 0, Vi € St.
i=1
and the impulsive delay inequalities
(2/(t) + S p(B)a(t —(t) <0, tgS
= (3.2)
Ax(ty) + > pixx(ty — 7(ty)) <0, Vip €S
\ =1
and
() + S ()2t — (1) >0, tdS
=1, (3.3)
Az(tk) + E rikz(tk — Ti(tk)) > 0, Vtk € Ss.

\ =1

We introduce the condition:
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C3.1

DPis Giy T4 € PC(R-H R+), T € C(R+, R+), 1= ]_,2, o, n

Piks Qik, Tik > Oyk S N, 1= 1,2,...,71.

Lett, > 0. The initial interval associated with the above equatiod imequalities is
the segmenit_,, ¢,], where

t, = min {inf{t—ri(t)}}. (3.4)

1<i<n | t>to

Theorem 3.1. Let conditionC3.1be fulfilled and

{m(t) > q(t) > n(t); VEE€ Ry, i=1,2,...,n 5

Dik = Qik = Tik; keN,i=1,2,...,n.

Assume thay(t), =(t) and z(t) are solutions of equatio(B8.1) and inequalitieg3.2) and
(3.3)respectively and belong to the spaé’([t_;, +o0), R) and such that

2(t) >0, t > to, (3.6)
2(t3) > y(t]) > 2(t]), (3.7)
o) _ ult) _ =)
2t = ylte) = =) = st (3.8)
(se€[1]). Then,
o) > y(t) > 2lt), V> to. (3.9)

Now consider the impulsive differential inequality (3.2gether with the impulsive
differential equation

2(1) + i:zn:lpi(t)x(t () =0, t&s

Az (ty) + Zpikx(tk —7i(ty)) =0, Vi, € 8S.

=1

(3.10)

Using Theorem 3.1, we obtain the following.

Corollary 3.2. Let conditionC3.1be fulfilled. Then the following statements are equiva-
lent:

(a) The inequality(3.2) has a finally positive solution.
(b) The equatior{3.10)has a finally positive solution.

Comparison results are also needed for differential eqoatand inequalities with
advanced arguments. The following result is an analogueoabl@ry 3.1.

Corollary 3.3. ([1]) Suppose that
pi € PC(R+,R+>, T; € C(R+,R+>, Pik > 0, ke N. (311)

The following statements are equivalent:
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(i) The inequality
o'(t) = )zt +7(t) 20, tES
=1

AZ’(tk) — szkl’(tk -+ Tz(tk)) > O, Vit € S,

=1
has a finally positive solution.
(i) The equation
() = > pit)x(t +1(t)) =0, te¢ s
=1

n

A.T(tk) — pikl’(tk —+ Tl(tk)) = 0, Vit € S,

=1

has a finally positive solution.

Armed with the above tools, we can now go ahead to establesbxpected oscillatory
conditions.

Theorem 3.4. Let conditionsC2.1 and (2.2) be fulfilled. Then assuming thatis non-

oscillatory,
(@ p < —lifandonlyif lim |z(t)] = +o0;

t—+4o00

(b) p > —1if and only iftE-l—moo |z(t)] = 0.
This implies that it can be finally positive or finally negaivHence, its proof follows
immediately from Lemma 2.2. Precisely,
(@) (1) < (i),
and
(b) (7)< (41)-
Theorem 3.5. Consider the neutral delay impulsive differential equatio

{[m) —a(t =) + qalt — o) = 0, t¢s

Alz(ty) — z(ty — 7)] + qox(ty —0) =0, Vi e S

(3.12)

that is, equatior{(2.1)whenp = —1. Let conditionC2.1be fulfilled and suppose that
T, UGR-H CIQOzO, C]‘|‘QO>0

Then each regular solution of equati¢®12)is oscillatory.

Proof. If equation (3.12) has a finally positive solutieft), then in view of Lemma 2.1,
we have for the solution(t) = z(t) — (¢t — ) either

tlgrnoo 2(t) = —o0 Ortlg-noo 2(t) = —o0.

Then by Lemma 2.2, either> —1 orp < —1, that is, the equality = —1 is impossible.
This completes the proof of the theorem. O
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The following theorem gives sufficient conditions for theilations of the solutions
of equation (2.1) in the cage# —1.

Theorem 3.6. Let conditionC2.1be fulfilled and suppose
T, UER+7 p%_17 q>07 q0>07 (1+p)(U—T)>O

Assume further, that each regular solution of the followaggiation
W)+ ——w(t— (0 —7) =0, t&S§
bra (3.13)
Aw(ty) + mw(tk —(c—71))=0, VtxeS

is oscillatory. Then each regular solution of equati@il)is also oscillatory.

Proof. Let us assume that equation (2.1) has a finally positiveisolu{t). Then the func-
tion w(t) defined by equation (2.4) is finally positive and moreovetisas the following

equation
w(t)+puw'(t—7)+qu(t—o)=0, t¢ S (3.14)
Aw(ty) + pAw(ty, — 7) + qw(ty — o) =0, Vi, € 8S.

Sincew’(t) is an increasing function andt) is decreasing, we have

w'(t) > w'(t — 1), t¢ s
Aw(tk) > Aw(tk — 7’), Vi, € S.

Then it follows from equation (3.14) that

(I+pw'(t—7)+qu'(t—o) <0, t¢ S
(1+p)Aw(ty — 7) + gAw(ty — o) <0, Vi, €S,

where we deduce that

w'(t) + 1Lw(t— (c—71)) <0, t¢S

+ A (3.15)
Aw(ty) + mw(tk —(0—71)) <0, Ve s

if 1+p>0,and

/ 4q
w(t)—lm]w(t—i—(r—a))zo, t¢ s

Aw(ty) — {ﬁ} w(ty + (1 —0)) >0, Vi €S

(3.16)

if14+p<0.

Therefore, the differential inequalities (3.15) and (3.46 well as Corollaries 3.1 and
3.2 imply that equation (3.13) has a finally positive solatiwhich leads to a contradiction.
This proves Theorem 3.4. 0J
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Remark 3.7. Let condition C2.1 be fulfilled. Then, in view of the condit®of Theorems
3.3 and 3.4, each regular solution of the equation

[z(t) + px(t —7)] + qz(t — o) =0, t¢ S
Alz(ty) + pr(ty — 7)] + qz(ty —0) =0, Vi€ S

(3.17)

is oscillatory provided; # 0.
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