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ABSTRACT. This paper presents the conditions for the oscillation of the solutions of the neutral delay

impulsive differential equation






[x(t) + px(t − τ)]′ + qx(t − σ) = 0, t 6= tk

∆[x(tk) + p x(tk − τ)] + q0x(tk − σ) = 0, ∀t = tk

for constant coefficients and delays. The relevance of the resulting theorems is manifested in many extensions,

particularly in the investigation involving neutral impulsive differential equations with variable coefficients

and delays.
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1. INTRODUCTION

It is observed that a great deal of interest is still being focused on the oscillations

of ordinary and neutral delay differential equations in spite of the existence of extensive

literature in these fields ([3], [6], [5], [9], [8], [7]). More recently, the investigation of

the oscillatory properties of yet another interesting areaof impulsive differential equations

known as the neutral delay impulsive differential equations, has again captured the attention

of many applied mathematicians as well as other scientists around the world ([10], [2]).

A neutral delay impulsive differential equation of the nth order is a differential system

comprising an nth-order differential equation and its impulsive conditions in which the

highest-order derivative of the unknown function appears in the differential equation both

with and without delays. Thus, the linear neutral delay impulsive differential equation







[x(t) + px(t − τ)]′ + qx(t − σ) = 0, t 6= tk

∆[x(tk) + p x(tk − τ)] + q0x(tk − σ) = 0, ∀t = tk,
(1.1)
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wheret, tk ∈ R ∀k ∈ N , p, q, q0 ∈ R andτ, σ ∈ R+ is an example of a first-order neutral

delay impulsive differential equation.

Usually, the solutionx(t) for t ∈ [t0, T ) of the impulsive differential equation or

its first derivativex′(t) is a piece-wise continuous function with points of discontinuity

tk ∈ [t0, T ), tk 6= t. Therefore, in order to simplify the statements of our assertions later,

we introduce the set of functionsPC andPCr which are defined as follows.

Let r ∈ N, D := [T,∞) ⊂ R and letS := {tk}k∈E, whereE represents a subscript

set which can be the set of natural numbersN or the set of integersZ, be fixed. Throughout

our discussion, we will assume that the sequence{tk}k∈E are moments of impulse effect

and satisfy the properties:

C1.1 {tk}k∈E is defined withE := N, then0 < t1 < t2 < · · · and

lim
k→+∞

tk = +∞

C1.2 If {tk}k∈E is defined withE := Z, thent0 ≤ 0 < t1, tk < tk+1 for all k ∈ Z,

k 6= 0, and

lim
k→±∞

tk = ±∞.

We denote byPC(D, R) the set of all functionsϕ : D → R, which are continuous for

all t ∈ D, t /∈ S. They are continuous from the left and have discontinuity ofthe first kind

at the points for whicht ∈ S.

By PCr(D, R), we denote the set of functionsϕ : D → R having derivative
djϕ

dtj
∈

PC(D, R), 0 ≤ j ≤ r ([1], [4]).

To specify the points of discontinuity of functions belonging toPC or PCr, we shall

sometimes use the symbolsPC(D, R; S) andPCr(D, R; S), r ∈ N .

In the sequel, all functional inequalities that we write areassumed to hold finally, that

is, for all sufficiently larget.

Let γ = max{τ, σ} and lett1 ≥ t0. By a solution of equation (1.1), we mean a

functionx(t) ∈ PC[[t1 − γ,∞), R] such thatx(t) + px(t − τ) is piece-wise continuously

differentiable fort ≥ t1 and such that equation (1.1) is satisfied for allt ≥ t1.

Let t1 ≥ t0 be a given initial point and letϕ ∈ PC[[t1 − γ, t1], R] be a given initial

function. Then ifx(t − τ) ∈ PC1[[t1 − γ, t1], R], x(t − σ) ∈ PC[[t1 − γ, t1], R] and

lim
t→∞

(t − τ) = lim
t→∞

(t − σ) = ∞, ∀t ≥ t1, τ, σ ∈ R+,

equation (1.1) has a unique solution on[t1,∞) satisfying the initial condition ([1])

x(t) = ϕ(t) for t1 − γ ≤ t ≤ t1 . (1.2)

A solutionx of the initial value problem (1.1) and (1.2) on[t1,∞) is said to be

(i) finally positive, if there existsT ≥ 0 such thatx(t) is defined fort ≥ T andx(t) > 0

for all t ≥ T ;
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(ii) finally negative, if there existsT ≥ 0 such thatx(t) is defined fort ≥ T andx(t) < 0

for all t ≥ T ;

(iii) regular, if it is defined in some half line[Tx,∞) for someTx ∈ R and

sup{|x(t)|} : t ≥ T} > 0, ∀T > Tx ([4]).

Unlike the classical definition of oscillations, when we saythat every solution of equa-

tion (1.1) oscillates, we mean that for every initial pointt1 ≥ t0 and for every initial

functionϕ ∈ PC[[t1 − γ, t1], R], the solution of the initial value problem (1.1) and (1.2)

on [t1,∞) is neither finally positive nor finally negative. If it is false that every solution

of the initial value problem (1.1) and (1.2) oscillates, then there exists at1 ≥ t0 such that

the solution of the initial value problem (1.1) and (1.2) is either finally positive or finally

negative.

2. STATEMENT OF THE PROBLEM

We return to the linear neutral delay impulsive differential equation of the first order

and now write it as follows:






[x(t) + px(t − τ)]′ + qx(t − σ) = 0, t /∈ S

∆[x(tk) + p x(tk − τ)] + q0x(tk − σ) = 0, ∀tk ∈ S,
(2.1)

wheret, tk ∈ R ∀k ∈ N . Our aim in this paper is to fill some of the gaps identified in the

work by Bainov and Simeonov ([1]). We introduce the following conditions:

C2.1 There exist nonnegative integersm1 andm2 such that

tk+m1
= tk + τ, tk+m2

= tk + σ, k ∈ N.

The following lemmas will be useful in putting the main results together.

Lemma 2.1. Let conditionC2.1be satisfied and let

τ, σ ∈ R+, qq0 ≥ 0. (2.2)

Suppose further, that equation(2.1)has a finally positive solutionx(t). Then,

(a) the functions

z(t) = x(t) + px(t − τ) (2.3)

and

w(t) = z(t) + pz(t − τ) (2.4)

are solutions of equation(2.1)andz ∈ PC1, w ∈ PC2;

(b) if q + q0 > 0, thenz(t) is a non-increasing function and either

lim
t→+∞

z(t) = −∞ (2.5)

or

lim
t→+∞

z(t) = 0; (2.6)
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(c) if q + q0 < 0, thenz(t) is a non-decreasing function and either

lim
t→+∞

z(t) = +∞ (2.7)

or

lim
t→+∞

z(t) = 0. (2.8)

Proof. (a) The proof follows from equations (2.3) and (2.4).

(b) Let q + q0 > 0, q ≥ 0, q0 ≥ 0, then






z′(t) = −qx(t − σ), t /∈ S

∆z(tk) = −q0x(tk − σ), ∀tk ∈ S,
(2.9)

which implies z is a non-increasing function. It converges therefore, either to−∞ or to a

numberL, where−∞ < L < +∞, ast → ∞. If z converges to−∞, then the proof of (b)

is complete.

Let us consider the case whenz(t) → L ast → ∞. We integrate equation (2.9) from

t to +∞ and obtain

L − z(t) = −

+∞
∫

t

qx(s − σ)ds −
∑

t≤tk

q0x(tk − σ).

Since the integral is finite, it means
∞

∫

T0

x(t)dt < +∞ (sinceq > 0 andq0 > 0)

and
∑

T0≤tk

x(tk) < +∞ (sinceq0 > 0).

Then

−∞ <

∞
∫

T1

z(t)dt =

∞
∫

T1

x(t)dt + p

∞
∫

T1

x(t − τ)dt < +∞

and

−∞ <
∑

T1≤tk

z(tk) =
∑

T1≤tk

x(tk) + p
∑

T1≤tk

x(tk − τ) < +∞

for a suitableT1 ≥ T0.

On the other hand, ifz(t) → L > 0 (L < 0), then

−∞ <

∞
∫

T2

z(t)dt = +∞





∞
∫

T2

z(s)ds = −∞



 .

This contradicts our above assertions. Hencez(t) → 0.

(c) The proof is analogous to that of Lemma 2.1(b). This completes the proof.
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Remark 2.2. If q > 0, then the functionz(t) is strictly decreasing and it is strictly increas-

ing if q < 0.

Lemma 2.3. Let conditionC2.1be satisfied and let

τ, σ ∈ R+, q > 0, q0 > 0. (2.10)

Suppose further, that equation(2.1) has a finally positive solutionx(t) and the functions

z(t) andw(t) are defined by equations(2.3)and(2.4)respectively.

(a)The following assertions are equivalent.

(i) lim
t→+∞

z(t) = −∞;

(ii) p < −1;

(iii) lim
t→+∞

x(t) = +∞;

(iv) w(t) > 0, w′(t) > 0, w′′(t) > 0,

lim
t→+∞

w(t) = +∞, ∆w(tk) > 0, ∆w′(tk) > 0. (2.11)

(b) The following assertions are equivalent.

(j) lim
t→+∞

z(t) = 0;

(jj) p > −1;

(jjj) lim
t→+∞

x(t) = 0;

(jv) w(t) > 0, w′(t) < 0, w′′(t) > 0,

lim
t→+∞

w(t) = 0, ∆w(tk) < 0, ∆w′(tk) > 0. (2.12)

Proof. (a)(i) ⇒ (ii) Let (i) hold, that is, condition (2.5) is fulfilled. By definition,

z(t) = x(t) + px(t − τ).

Both x(t) andx(t − τ) are positive functions, meaning that the above expression can be

negative only ifp < 0 . Consequently,z(t) → −∞ only if x(t) is unbounded.

We show that there existsT0 ∈ R such that

z(T+
0 ) < sup

t≤T0

x(t) ∀T0 ∈ R.

Let us assume conversely that suchT0 does not exist. Then

x(T+
0 ) < 0 and x(T+

0 ) ≥ sup
t≤T0

x(t).

Consequently,∃ε > 0 such that∀s, T0 < s < T0 + ε, x(s) ≥ sup
t≤T0

x(t). Hence

sup

{

s : x(s) < sup
t≤T0

x(t)

}

= T ∈ R

must exist, otherwisex(s) is bounded contrary to our earlier assertion.
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But then for T,

sup
t≤T

x(t) = x(T )

holds. With thisT0 := T , we obtain the inequality

0 > z(T+
0 ) = x(T+

0 ) + p x(T0 − τ+) ≥ x(T+
0 )(1 + p).

This is only possible ifp < −1, sincex(T+
0 ) > 0.

(ii) ⇒ (iii) Let p < −1. Also, let us assume thatz is finally positive. Thenz is

decreasing andz → 0 by Lemma 2.1. If

0 < z(t) = x(t) + p x(t − τ)

then

x(t) > (−p) x(t − τ). (2.13)

On the other hand, byz(t) → 0 and






z′(t) = −qx(t − σ), t /∈ S

∆z(tk) = −q0x(tk − σ), ∀tk ∈ S,

0 − z(t) = −q

+∞
∫

t

x(s − σ)ds − q0

∑

t≤tk

x(tk − σ) > −∞.

Hence,
∞

∫

t−σ

x(s)ds < ∞,
∑

t≤tk

x(tk − σ) < ∞. (2.14)

Inequality (2.13) gives a contradiction since

x(tk + iσ) > (−p)ix(tk − σ), 1 ≤ i < ∞ (2.15)

would have led to infinity in (2.14).

Indeed,x(tk + iσ) = x(tk + im2) by C2.1,1 ≤ i < ∞. Hence, by inequality (2.15),

x(tk + iσ) = x(tk + im2) > (−p)ix(tk − σ).

In the statement (ii)⇒ (iii), p < −1 ⇔ −p > 1. Thus,

x(tk + iσ) = x(tk + im2) > (−p)ix(tk − σ) > 0

andx is finally positive by the condition of Lemma 2.1. Therefore,the set{x(tk −σ) | tk ≥

t} is an infinite subsequence with each value greater than a positive constantx(tk − σ).

Thus, the sum adds up to+∞. Hencez cannot be finally positive. Thus, by Lemma 2.1,

z → −∞ if t → ∞. Consequently, there existsT0 such thatz(s) < 0 if s > T0.

Since

z(t) = x(t) + p x(t − τ)
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andz(t) → −∞,

0 > z(t) > p x(t − τ)

which implies

0 <
z(t)

p
< x(t − τ) → +∞.

(iii) ⇒ (i) Assume thatx(t) → ∞ for t → ∞. We show that ifz(t) → 0, it implies

thatx(t) 6→ ∞. Really,






z′(t) = −qx(t − σ), t /∈ S

∆z(tk) = −q0x(tk − σ), ∀tk ∈ S.

Hence,

0 − z(t) = −q

+∞
∫

t

x(s − σ)ds − q0

∑

t≤tk

x(tk − σ) < ∞.

Thus,
∞

∫

t

x(s − σ)ds < ∞ and
∑

t≤tk

x(tk − σ) < ∞

which contradicts the statement thatx(t) → ∞. Hence,z(t) → 0 meansx(t) 6→ ∞.

Therefore,x(t) → ∞ leads toz(t) → −∞ by Lemma 2.1. This completes the proof.

(i) ⇒ (iv) q > 0, q0 > 0 and equation (2.5) leads to






w′(t) = −qz(t − σ), t /∈ S

∆w(tk) = −q0z(tk − σ), ∀tk ∈ S.
(2.16)

The integration of (2.16) gives (iv).

(iv) ⇒ (i) If w(t) → +∞ for t → ∞, then by equation (2.16), it implies thatz(s) < 0

for somes > T0. Hence by the proof of Lemma 2.1a(i),z(t) → −∞.

(b) Applying contraposition to the statements of Lemma 2.2(a),we obtain

¬(j) ⇒ ¬(jj) ⇒ ¬(jjj) ⇒ ¬(jv) ⇒ ¬(j).

Thus,

¬(j) ⇒ ¬(jj) meansz(t) → 0 ⇒ p ≥ −1;

¬(j) ⇒ ¬(jjj) meansz(t) → 0 ⇒ x(t) 6→ ∞;

¬(j) ⇒ ¬(jv) meansz(t) → 0 ⇒ w(t) 6→ ∞.

(j) ⇒ (jj) We know thatz(t) → 0 ⇒ p ≥ −1. Let us assume thatp = −1. If z, being

a decreasing function, has negative values, thenz(t) finally tends to−∞ by Lemma 2.1.

Hence,z(t) → 0 implies thatz is finally positive. Thus,

0 < z(t) = x(t) − x(t − τ), ∀t > T0.
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Hence,

x(t − τ) < x(t), ∀t > T0.

Iterating the above inequality, we obtain

x(t + iτ) > x(t − τ) > 0. (2.17)

On the other hand,






z′(t) = −qx(t − σ), t /∈ S

∆z(tk) = −q0x(tk − σ), ∀tk ∈ S,

wheretk belongs to the set of points of impulse effect. Hence

0 − z(t) = −q

+∞
∫

t

x(s − σ)ds − q0

∑

t≤tk

x(tk − σ).

From this
∑

t≤tk

x(tk − σ) < ∞ which contradicts condition (2.17). Hence the assumption

that,z(t) → 0 whenp = −1 leads to a contradiction. Therefore, onlyp > −1 is admissible.

(jj) ⇒ (jjj) Now we are familiar with the fact whenp > −1, x(t) 6→ ∞. Let us check

what happens whenp ≤ 0. Since, wheneverx(t) 6→ ∞ impliesz(t) 6→ −∞, it follows by

Lemma 2.1, thatz(t) → 0. Therefore,

z(t) = x(t) + px(t − τ) > x(t) > 0, ∀t > T0.

Hence,x(t) → 0.

Let −1 < p < 0. Then, the fact thatz is a strictly decreasing function andt ∈

[T0, T0 + τ ] implies

x(t) = (−p)x(t − τ) + z(t) < (−p)x(t − τ) + z(T0 − τ).

We rewrite the above inequality in the form

x(t) < (−p)x(t − τ) + z(T0 − τ)

and replace the functionx(t − τ) with its supremum

x(t − τ) ≤ sup
s∈[T0−τ, T0]

x(s).

Then,

x(t) < (−p) sup
s∈[T0−τ, T0]

x(s) + z(T0 − τ),

and hence

sup
s∈[T0, T0+τ ]

x(s) < (−p) sup
s∈[T0−τ, T0]

x(s) + z(T0 − τ). (2.18)

Let

θk := T0 + kτ, Mk := sup
s∈[θk−τ, θk]

x(s) ∀ − 1 ≤ k < ∞.
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Then we get

Mk+1 < (−p)Mk + z(θk − τ). (2.19)

We recall that−1 < p < 0 ⇔ 0 < −p < 1. Multiplying both sides of (2.19) by−p,

we obtain

(−p)Mk+1 < (−p)2Mk + (−p)z(θk − τ).

By the assumption thatz is a strictly decreasing function,

z(θk+1 − τ) ≤ z(θk − τ), 1 ≤ k < ∞. (2.20)

Hence,

Mk+2 < (−p)Mk+1 + z(θk+1 − τ) < (−p)2Mk + (−p)z(θk − τ) + z(θk − τ)

or

Mk+2 < (−p)2Mk + z(θk − τ)(1 + (−p)).

We repeat the process again and obtain the inequality

Mk+3 < (−p)Mk+2 + z(θk+2 − τ) < (−p)3Mk + z(θk − τ)(1 + (−p) + (−p)2)

≤ (−p)3Mk + z(θk − τ)
2

∑

s=0

(−p)s.

Employing the principles of induction, we finally obtain, for ℓ > k

Mℓ ≤ (−p)ℓ−kMk + z(θk − τ)

ℓ
∑

j=k

(−p)j ≤ (−p)ℓ−kMk + z(θk − τ)
1

1 + p
. (2.21)

We return to inequality (2.19) and immediately observe that

sup
t>ℓ

Mt ≤ (−p)ℓ−kMk + z(θk − τ)
1

1 + p
.

On the other hand,

inf
ℓ≥k

sup
t>ℓ

Mt ≤ (−1)ℓ−kMk + z(θk − τ)
1

1 + p
, ∀k ≤ ℓ < ∞. (2.22)

We take the limit of both sides of (2.22) inℓ and obtain

lim sup Mℓ ≤ z(θk − τ)
1

1 + p
.

Hence, asℓ → ∞,

lim sup Mℓ ≤ z(θk − τ)
1

1 + p
→ 0, (2.23)

therefore

Mℓ → 0 ⇒ x(t) → 0.

(jjj) ⇒ (jv) From the fact thatw(t) 6→ ∞ whent → ∞, it follows, from (jjj), that

z(t) = x(t) + p x(t − τ) → 0
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and hencez is finally positive. Therefore applying Lemma 2.1 toz andw, it follows that

w(t) 6→ ∞ implies thatw(t) → 0 sincew(t) = z(t) + pz(t − σ) andz is finally positive.

(jv) ⇒ (j) Sincew(t) 6→ 0 ast → ∞, it implies thatz(t) 6→ −∞ hence, by Lemma

2.1,z(t) → 0 ast → ∞. This completes the proof of Lemma 2.2.

From Lemmas 2.1 and 2.2, we deduce the following additional assertions.

Lemma 2.4. Let us assume that conditionC2.1is fulfilled and that

τ, σ ∈ R, qq0 > 0.

Suppose also, that equation(2.1)has a finally positive solutionx(t) and the functionsz(t)

andw(t) are defined by equations(2.3)and(2.4) respectively. Then,

(a) conditions(2.11)are satisfied providedx(t) is an unbounded function;

(b) conditions(2.12)are satisfied providedx(t) is a bounded function.

Proof. This follows from Lemma 2.2:

(a) (iii) ⇔ (iv); and

(b) (jjj) ⇔ (jv).

In what follows, we try to deduce the oscillatory conditionstaking advantage of the

above lemmas.

3. MAIN RESULTS

Consider the impulsive delay differential equation










y′(t) +
n
∑

i=1

qi(t)y(t − τi(t)) = 0, t /∈ S

∆y(tk) +
n
∑

i=1

qiky(tk − τi(tk)) = 0, ∀tk ∈ St.
(3.1)

and the impulsive delay inequalities










x′(t) +
n
∑

i=1

pi(t)x(t − τi(t)) ≤ 0, t /∈ S

∆x(tk) +
n
∑

i=1

pikx(tk − τi(tk)) ≤ 0, ∀tk ∈ S
(3.2)

and










z′(t) +
n
∑

i=1

ri(t)z(t − τi(t)) ≥ 0, t /∈ S

∆z(tk) +
n
∑

i=1

rikz(tk − τi(tk)) ≥ 0, ∀tk ∈ S.
(3.3)

We introduce the condition:
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C3.1






pi, qi, ri ∈ PC(R+, R+), τi ∈ C(R+, R+), i = 1, 2, . . . , n

pik, qik, rik ≥ 0, k ∈ N, i = 1, 2, . . . , n.

Let t0 ≥ 0. The initial interval associated with the above equation and inequalities is

the segment[t−1, t0], where

t−1 = min
1≤i≤n

{

inf
t≥t0

{t − τi(t)}

}

. (3.4)

Theorem 3.1.Let conditionC3.1be fulfilled and






pi(t) ≥ qi(t) ≥ ri(t); ∀t ∈ R+, i = 1, 2, . . . , n

pik ≥ qik ≥ rik; k ∈ N, i = 1, 2, . . . , n.
(3.5)

Assume thaty(t), x(t) andz(t) are solutions of equation(3.1) and inequalities(3.2) and

(3.3) respectively and belong to the spacePC([t−1, +∞), R) and such that

x(t) > 0, t ≥ t0, (3.6)

z(t+0 ) ≥ y(t+0 ) ≥ x(t+0 ), (3.7)

x(t)

x(t0)
≥

y(t)

y(t0)
≥

z(t)

z(t0)
≥ 0, t−1 ≤ t ≤ t0 (3.8)

(see[1]). Then,

z(t) ≥ y(t) ≥ x(t), ∀t ≥ t0. (3.9)

Now consider the impulsive differential inequality (3.2) together with the impulsive

differential equation










x′(t) +
n
∑

i=1

pi(t)x(t − τi(t)) = 0, t /∈ S

∆x(tk) +
n
∑

i=1

pikx(tk − τi(tk)) = 0, ∀tk ∈ S.
(3.10)

Using Theorem 3.1, we obtain the following.

Corollary 3.2. Let conditionC3.1be fulfilled. Then the following statements are equiva-

lent:

(a) The inequality(3.2)has a finally positive solution.

(b) The equation(3.10)has a finally positive solution.

Comparison results are also needed for differential equations and inequalities with

advanced arguments. The following result is an analogue of Corollary 3.1.

Corollary 3.3. ([1]) Suppose that

pi ∈ PC(R+, R+), τi ∈ C(R+, R+), pik ≥ 0, k ∈ N. (3.11)

The following statements are equivalent:
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(i) The inequality










x′(t) −
n
∑

i=1

pi(t)x(t + τi(t)) ≥ 0, t /∈ S

∆x(tk) −
n
∑

i=1

pikx(tk + τi(tk)) ≥ 0, ∀tk ∈ S,

has a finally positive solution.

(ii) The equation










x′(t) −
n
∑

i=1

pi(t)x(t + τi(t)) = 0, t /∈ S

∆x(tk) −
n
∑

i=1

pikx(tk + τi(tk)) = 0, ∀tk ∈ S,

has a finally positive solution.

Armed with the above tools, we can now go ahead to establish the expected oscillatory

conditions.

Theorem 3.4. Let conditionsC2.1 and (2.2) be fulfilled. Then assuming thatx is non-

oscillatory,

(a) p < −1 if and only if lim
t→+∞

|x(t)| = +∞ ;

(b) p > −1 if and only if lim
t→+∞

|x(t)| = 0.

This implies that it can be finally positive or finally negative. Hence, its proof follows

immediately from Lemma 2.2. Precisely,

(a) (ii) ⇔ (iii);

and

(b) (jj) ⇔ (jjj).

Theorem 3.5.Consider the neutral delay impulsive differential equation






[x(t) − x(t − τ)]′ + qx(t − σ) = 0, t /∈ S

∆[x(tk) − x(tk − τ)] + q0x(tk − σ) = 0, ∀tk ∈ S
(3.12)

that is, equation(2.1)whenp = −1. Let conditionC2.1be fulfilled and suppose that

τ, σ ∈ R+, qq0 ≥ 0, q + q0 > 0.

Then each regular solution of equation(3.12)is oscillatory.

Proof. If equation (3.12) has a finally positive solutionx(t), then in view of Lemma 2.1,

we have for the solutionz(t) = x(t) − x(t − τ) either

lim
t→+∞

z(t) = −∞ or lim
t→+∞

z(t) = −∞.

Then by Lemma 2.2, eitherp > −1 or p < −1, that is, the equalityp = −1 is impossible.

This completes the proof of the theorem.
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The following theorem gives sufficient conditions for the oscillations of the solutions

of equation (2.1) in the casep 6= −1.

Theorem 3.6.Let conditionC2.1be fulfilled and suppose

τ, σ ∈ R+, p 6= −1, q > 0, q0 > 0, (1 + p)(σ − τ) > 0.

Assume further, that each regular solution of the followingequation










w′(t) +
q

1 + q
w(t − (σ − τ)) = 0, t /∈ S

∆w(tk) +
q0

1 + p
w(tk − (σ − τ)) = 0, ∀tk ∈ S

(3.13)

is oscillatory. Then each regular solution of equation(2.1) is also oscillatory.

Proof. Let us assume that equation (2.1) has a finally positive solutionx(t). Then the func-

tion w(t) defined by equation (2.4) is finally positive and moreover, satisfies the following

equation






w′(t) + p w′(t − τ) + qw(t− σ) = 0, t /∈ S

∆w(tk) + p∆w(tk − τ) + q0w(tk − σ) = 0, ∀tk ∈ S.
(3.14)

Sincew′(t) is an increasing function andz(t) is decreasing, we have






w′(t) ≥ w′(t − τ), t /∈ S

∆w(tk) ≥ ∆w(tk − τ), ∀tk ∈ S.

Then it follows from equation (3.14) that






(1 + p)w′(t − τ) + qw′(t − σ) ≤ 0, t /∈ S

(1 + p)∆w(tk − τ) + q0∆w(tk − σ) ≤ 0, ∀tk ∈ S,

where we deduce that










w′(t) +
q

1 + q
w(t− (σ − τ)) ≤ 0, t /∈ S

∆w(tk) +
q0

1 + p
w(tk − (σ − τ)) ≤ 0, ∀tk ∈ S

(3.15)

if 1 + p > 0, and














w′(t) −

[

q

−(1 + q)

]

w(t + (τ − σ)) ≥ 0, t /∈ S

∆w(tk) −

[

q0

−(1 + p)

]

w(tk + (τ − σ)) ≥ 0, ∀tk ∈ S
(3.16)

if 1 + p < 0.

Therefore, the differential inequalities (3.15) and (3.16) as well as Corollaries 3.1 and

3.2 imply that equation (3.13) has a finally positive solution, which leads to a contradiction.

This proves Theorem 3.4.
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Remark 3.7. Let condition C2.1 be fulfilled. Then, in view of the conditions of Theorems

3.3 and 3.4, each regular solution of the equation






[x(t) + px(t − τ)]′ + qx(t − σ) = 0, t /∈ S

∆[x(tk) + px(tk − τ)] + q0x(tk − σ) = 0, ∀tk ∈ S
(3.17)

is oscillatory providedq 6= 0.
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