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ABSTRACT. We consider classes of systems of first order functionagiffitial equations. Criteria are es-
tablished for the existence of positifeperiodic solutions of the systems under consideratiore &ample
is also included to illustrate the applications of our résul
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1. INTRODUCTION

Letn > 1 be aninteger” > 0, andR, = [0,00). Fori = 1,...,n, leta;,7; €
C(R,R), b; € C(R,R,) beT-periodic functions and; € C(R},R.). In this paper, we
are concerned with the existence of positi«eriodic solutions of the system of first order
functional differential equations

u'(t) = —A(t)u(t) + B(t) f(g(u(t))), (1.1)
where
u(t) = (ui(t), ..., ua(t)”,
A(t) = diagfai (1), . . ., an(t)],
B(t) =diag b (t),...,b,(t)],
Flg(u(t)) = (filg(u(®))s -, falglu®)))"
and

glu(t)) = (wi(t = (), .-, ualt — (1))
We also obtain the existence of positiVeperiodic solutions of the associated eigenvalue
problem
u'(t) = —A(t)u(t) + AB(t) f(g(u(t))), (1.2)
where ) is a positive parameter. By a positiZéperiodic solution of (1.1), we mean a
functionu € C*(R, R’} ) such that.(¢) satisfies (1.1) and at least one component(of is
positive onR. Similar definition also applies for system (1.2).
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Functional differential equations with periodic delaygagar in a number of applica-
tions, such as in the model of blood cell productions in amahi6, 16], the control of
testosterone levels in the blood stream [13], and so on.cknteyears, the existence of pos-
itive periodic solutions of such equations has been ingattd by many authors; see, for
example, [1, 2, 5, 9, 10, 11, 12, 15, 18] and the referencesithdn particular, the scalar
case of system (1.2) has been studied in [1, 2, 12, 15]. Ip#per, by means of fixed point
index theory, we obtain several sufficient conditions far ¢xistence of positivé-periodic
solutions of systems (1.1) and (1.2). Some of our resulslvathe smallest positive char-
acteristic values of some related linear operators to tlstesys. The technique used in
this paper has been previously employed in the literatuch st in the papers [3, 7, 14].
But all of these papers treated scalar differential equatido the best of our knowledge,
this paper is the first work to establish some eigenvaluerifor systems of differential
equations.

We assume throughout, and without further mention, thatfdhewing assumption
holds:

(H) fOT a;(v)dv >0 andfOT b;(v)dv > 0fori=1,...,n.

The rest of this paper is organized as follows. Section 2anatsome preliminary
lemmas, Sections 3 contains the main results of this papkioas simple example for
demonstration, and the proofs of the main results are predem Section 4.

2. PRELIMINARY RESULTS

Fori =1,...,nandt,s € R?, define
exp ([ a;(v)dv)

Gi(t, S) = ,
exp <f0T ai(v)dv) -1
¢ = min Gi(t,s), andd; = max Gi(t,s). (2.1)

Then, itis easy to see thdt > ¢; > 0,
¢ <Gi(t,s) <d; ft<s<t+T. (2.2)
For: =1,...,n, consider the scalar equation
y' = —a;(t)y + h(t) (2.3)
whereh € C(R,R) is aT-periodic function.

The following lemma can be directly verified.

Lemma2.1.Fori = 1,...,n, y(t) is aT-periodic solution of(2.3)if and only if

y(t) = /t Gi(t, s)h(s)ds.
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Let X be a Banach space ardd: X — X be a linear operator. We recall that
is an eigenvalue of. with a corresponding eigenvectarif ¢ is nontrivial andL¢ =
A¢. The reciprocals of eigenvalues are called the charatiteviglues of.. The spectral
radius of L, denoted by-(L), is given by the well known spectral radius formul@.) =
limy_.o ||L*||*/*. Recall also that a conk in X is called a total cone ik = P — P.

We refer the reader to [4, Theorem 19.2] or [17, Propositict6}for the following
well known Krein-Rutman theorem.

Lemma 2.2. Assume thaP is a total cone in a real Banach spacé. LetL : X — X be
a compact linear operator witth(P) C P andr(L) € (0,00). Thenr(L) is an eigenvalue
of L with an eigenvector irP.

Throughout this paper, let the Banach spacke defined by
X={ueCR,R") : u(t+17T)=u(t)fort € R}

equipped with the nornijul| = Y7, ||ui||s, Whereu = (uy,...,u,) and ||yl =
sup,cg |ui(t)|. Define a cone” in X by

P={ueX : u(t)>00nR}. (2.4)
Let
=7 i=1,...,n, and azlrgii%lnai. (2.5)
We also define a subcori¢ of P by
K={ueP :u=(uy...,u,), uj(t) > o||u||oc ONR}. (2.6)
Foru = (uy,...,u,) € X, letthe linear operatak : X — X be defined by

Lu(t) = (Lyu(t), . .., Lyu(t))?, (2.7)

/ Gi(t, s) <Z uj(s —7i(s > ds (2.8)

The next two lemmas provide some information about the aperfa

where

fori=1,....,n

Lemma 2.3. The operator, mapsP into K and is compact.

Proof. We first showL(P) C K. Foru = (uy,...,u,) € P,t € R,andi = 1,....n
from (2.2), we have

Liu(t) > c,/ (Z uj(s —7;(s ) ds



140 L. KONG

Liu(t) < / (Z u;(s ) ds,

from which it follows that

and

Liu(t) > (ci/ds)|| Liv||oo = 03] | Liti||oo > || Litt||oo-

Hence,L(P) C K. A standard argument can be used to show fth&t compact and we
omit the details here. This completes the proof of the lemma. 0J

Lemma 2.4. The spectral radius;(L), of L satisfies (L) € (0, cc). Moreover,(L) is an
eigenvalue of, with an eigenvectos; € P.

Proof. By the spectral theory in Banach spaces (see, for exampl), [it is clear that
r(L) < oco. In the following, we show-(L) > 0. Letu = (uy,...,u,) € K andt € R.

Fori=1,...,n,we have
Liu(t) > / (Zu] )ds
> U<Z\\uj||oo> cz-/o bi(s)ds:a||u||ci/0 b(s)ds  (2.9)
and
L2u(t) = (Li(Lu(t)), ..., Lo(Lu(®))".
Fori=1,...,n, from (2.9), we have
Li(Lu(t)) = [ Gi(t, s)bi(s) <Z Lju(s—fj(s))> ds

> cZ/t bi(s) <a||u||ch/O b](s)ds> ds

= aHuH( CJ/O bj(s)ds> Ci/o b;(s)ds
Then,

3

|1 Li(Lu)]|oo = ol ful] (

which in turn implies that

2l = 3L L)l
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Fork € N, note that

LFu(t) = (L (LF (), . . ., Ly (L u(t)T.
By induction, we can obtain that

[ LFul|| > of|ul] (Zci/ bi(s)ds> :

i=1 0
Hence,
k

n T
LE[] full > || LFul] > offul] (Z cz-/o bz(S)d8>
i=1

|ILF|] > o (Zci/o b,-(s)ds) .

Then, from Assumption (H), we have

As a result,

n T
r(L) = khm ||LkH1/k > ch/ bi(s)ds > 0.
o i=1 0

Now, sincer(L) € (0,00) and the cone” defined by (2.4) is a total cone, the “more-
over” part readily follows from Lemmas 2.2 and 2.3. This cdetps the proof of the
lemma. O

Letr(L) and¢, be given as in Lemma 2.4 and let

¢L = (¢L,17 R ¢L,n)

and
1

ST)
Then, it is clear that:;, is the smallest positive characteristic valuelogatisfyinge¢; =
prLlor.

Define

(2.10)

1 1

= and = .
¢ Sy d; f) bi(s)ds oy e [T bi(s)ds

The following lemma give some useful estimates;igr

(2.11)

Lemma 2.5. The characteristic valug, satisfies < up <.

Proof. Fori =1,....nandt € R, from ¢, = Ly, it follows thater, ; = urLi¢y, i.€.,

bri(t) = p /t ’ Gi(t, s)b;(s) (Z b (s — Tj(s))> ds. (2.12)
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Then,

T

i /t+T /
¢ri(t) < p ( ¢ ,'Hoo> d; bi(s)ds = pr|lorlldi | bi(s)ds,
L L p L,j ) L||PL )

and so

T
6zalloe < pzllézlld: / bi(s)ds.
0

Hence,
n n T
ool = llorall < uLHsbLHZdi/O bi(s)ds.
=1 i=1
Thus,
1
pL = =&

T Y di fy bi(s)ds
On the other hand, from (2.12), we have

T

n T
bualt) > pio (Z Hm,juoo) / bi(s)ds = uzollowllc / bi(s)ds.

Then,

T
62l = pzollosllc / bi(s)ds.
0

Hence,

n n T
ool =D lwill > prollwll ZC/O bi(s)ds,
=1 1=1

from which we have
1

pr <
g oy G fOT bi(s)ds
This completes the proof of the lemma. O

We also need the following two well known lemmas. We referrdader to [8, Corol-
lary 2.3.1. and Lemma 2.3.1.], respectively, for their ggoo

Lemma 2.6. Let X be a Banach space arfd C X be a cone. Assume thatis a bounded
open subset of X and th@t: K N Q — K is compact. If there existg € K \ {0} such
that

u—"Tu# Tuy forallu e KNoQandr > 0.

Then the fixed point index
(T, KNQ,K)=0.
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Lemma 2.7. Let X be a Banach space arfd C X be a cone. Assume thatis a bounded
open subset of X with € 2 and thatT : K N Q) — K is compact. If

u#7tTu forallue KNoQandr € [0,1].
Then the fixed point index

(T, KNQK) =1.

3. MAIN RESULTS

In this section, we state our existence results. For coevemi, we introduce the fol-
lowing notations. Forany = (z1,...,,) € R%, let|z| =37 | x;, andfori = 1,...,n,
define

fi,(] = liminf fl(x)7 fi,oo = lim inf fi(x)7
F;o = limsup fl(x)) F, ., = limsup fz(x)’
5 ‘x‘—>0+ ‘SL’| ’ le_)oo |.’L“

In the sequel, we let; be defined by (2.10) anglandn be given in (2.11). We now
state a result for system (1.1).

Theorem 3.1. Assume either

Fo<pr< fieo fOri=1,... n, (3.1)
or

Fiw<pp < fio fori=1,... n. (3.2)
Then syster(il.1) has at least one positivE-periodic solution.

The following corollaries are immediate consequences @ofém 3.1.

Corollary 3.2. Assume either

0 fori=1,....n, (3.3)
§ n

or 2
oo g S0 gor 1,...,n. (3.4)
3 n

Then systerfil.1) has at least one positivE-periodic solution.

Corollary 3.3. Assume either

n § :
<A< fori=1,...,n, 3.5
fi,oo F;',O ( )
or 5
n :
<A< fori=1,...,n. 3.6
fi,O E,oo ( )

Then syster(il.2) has at least one positivE-periodic solution.
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In what follows, we establish several results for the exiseeof multiple positivel-
periodic solutions of system (1.1). To do so, we first introglthe following conditions
that describe the “smallness” and “largeness’f of) on “slabs” of R’} .

(Al) Fori =1,...,n,there existp, > 0 such that

f2<.l’) <p1£ for anyr = ('rlu s '7'Tn> S R:L— with ij Spl
7=1

(A2) Fori =1,...,n, there existg, > 0 such that

fl<x) > apan for anyr = ('rlu s 7xn) S R:L- with ap2 < Zx] < b2,
j=1

whereo is defined in (2.5).

The following criteria provide sufficient conditions foralexistence of multiple posi-
tive T-periodic solutions of system (1.1).

Theorem 3.4. Assume one of the following conditions holds:

(Bl) F,p < prfori=1,...,n,and (A1) and (A2) hold with;, > p;

(B2) fioo > purfori=1,...,n,and (Al) and (A2) hold with, > p,;
(B3) fio > prfori=1,...,n,and (Al) and (A2) hold with; < po;

(B4) F, < prfori=1,...,n,and (Al) and (A2) hold witp, < po;
(B5) fio > prandf; o > ppfori=1,...,n,and (Al) holds;

(B6) Fio < prandF, o < ppfori=1,...,n,and (A2) holds.

Then systerfil.1) has at least two positiv€-periodic solutions.

Moreover, if either boti{B1) and (B2) hold or both(B3) and (B4) hold, then system
(1.1) has at least three positivE-periodic solutions.

Corollary 3.5. Assume one of the following conditions holds:

(C1) F,p < fori=1,...,n,and (Al) and (A2) hold witp, > po;

(C2) fioo >nfori=1,...,n,and (Al) and (A2) hold with; > ps;
(C3) fio>nfori=1,...,n,and (Al) and (A2) hold with; < p,;

(C4) F, <&fori=1,...,n,and (A1) and (A2) hold with; < p;
(C5) fio>nandf; . >nfori=1,...,n,and (Al) holds;

(C6) Fip<fandF,, < ¢fori=1,...,n,and (A2) holds.

Then systerfil.1) has at least two positiv€-periodic solutions.

Moreover, if either bot{C1) and (C2) hold or both(C3) and (C4) hold, then system
(1.1) has at least three positivE-periodic solutions.
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Corollary 3.6. In systen{1.1), assume that, for=1,...,n,a;(t) = a > 0, b;(t) = b > 0,
7, € C(R,R) is T-periodic, and forz = (x4, ..., z,) € RY, f; satisfies either

{ fi@) = Lig]zFr i 0 < 2] < mmaxgcjcy, (I, C~H) Y/ ARin), (3.7)
fi(x) > v Dlz| if |z|is large enough
or
{ fi(z) = liglx|F2  if 0 < |z| < me™ maxlgign(li_’;D)l/(km_l), (3.8)
fi(x) < wClz| if |z|is large enough
where0 < ki1 < 1,kio > 1,0l1,li2>0,m>1,v; > 1,1, <1,and
el _q eal (ol _
¢= nbTedT’ b= % (3:9)

Then systerfil.1) has at least two positiv€-periodic solutions.

Results similar to Theorem 3.4 and Corollaries 3.5 and 3r6hmaeasily formulated
for system (1.2). We leave this to the interested reader.

We conclude this section with the following example.

Example. Fori = 1,2, leta,(t) andb;(t) be nonnegativé-periodic continuous functions
satisfying (H), and fo(y, z) € R%, define

(y + 2)™, y+z<1,
fily,2) =< W0y y - 1) 41, 1<y+2< 100, (3.10)
(y+2)7, y+ 2 > 100,

wherew;, 3; € R,. Clearly, f; € C(R2,R.).

Let ¢ andn be defined by (2.11) with the aboug(t) andb;(t). Then we claim that if
either

(Dl) a; < 1,8, >1,i=1,2,and¢ > 1, or
(D2) o; > 1,6, < 1,i=1,2,andy < 1/100' 7, where3 = min{s;, 3},

then the system
u'(t) = —ar(H)u(t) + by (t) fr(u(t), v(t)),
v'(t) = —az(t)u(t) + bi(t) fa(u(t), v(t)),
has at least two positivE-periodic solutions.

Proof of the ClaimWe first assume (D1) holds. Then, foe 1, 2, from (3.10), we see that

Ji0 = fico = 00. (3.11)

Moreover, from¢ > 1, we have(1/¢)Y1-*) < 1. Then, we can choose a constansuch
that
(1/&)07) < py < 1.
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Thus,pi§ > pi". Hence, for(y, z) € R% with y 4+ z < p,, from (3.10), we have
fily,2) = (y + 2)% < pi* < pié,

e., (A1) holds. Then, in view of (3.11), (C5) of Corollary 3.5 holdshél'claim now
follows from Corollary 3.5.

Next, we assume (D2) holds. Then, foe 1, 2, from (3.10), we see that
Fio = Fioo = 0. (3.12)

Moreover, fromn < 1/100'~%, we have(1/n)"/0-# > 100. Then, we can choose a
constanp, such that
100 < opy < (1/7)"/079),
whereo is defined in (2.5). Thus(,apz)B > opon. Hence, for(y, z) € R with op, <
y + z < po, from (3.10), we have
fily. ) = (y+2)" = (y+2)° > (op2)’ > apm,

e., (A2) holds. Then, in view of (3.12), (C6) of Corollary 3.5 holdshélclaim again
follows from Corollary 3.5.

4. PROOFS OF THE MAIN RESULTS

Define an operatdf : X — X by 7u = (Thu,...,7,u), where

Tout) = / G(t, $)bi(s) (g uls)))ds. (@.1)

By Lemma 2.1, d-periodic solution of system (1.1) is equivalent to a fixedhpof the
operator?7 . Let K be defined by (2.6). Using a similar argument as in the prodeshma
2.3, it is easy to see thati(K) C K. Moreover, a standard argument shows thais
compact.

Proof of Theorem 3.1WVe first assume (3.1) holds. Fot= 1, .. ., n, sincef; .. > ., there
existsR; > 0 such that

filz) = polz| = MLZ% (4.2)
foranyz = (z1,...,2,) € R} with |z| =377 | z; > o—Rl. Let
le{UEX . HUH<R1}

Then, foru = (uy,...,u,) € K N0Q; andt € R, we have

> ui(t —7i(6) > 0y [Julleo = olull = o Ry
j=1

J=1

Hence, from (4.2),
Flgu(®) 2 ne Y- ut = 75(1) (4.3)
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Now, in view of (2.8), (4.1), and (4.3), we reach that
t+T n
Tu(t) > ,uL/ Gi(t, s)bi(s) Zuj(s —75(8))ds = prLiu(t) > 0.
t =1
Thus,

Tu(t) > prLu(t) > 0. (4.4)

We may suppose th&t has no fixed point ok N 0S2;. Otherwise, we can see that system
(1.1) has a positivé'-periodic solution and the proof is then finished. ketbe given as
in Lemma 2.4. Thenp,(t) > 0onR and¢; = uyLe¢r. In the following, we show that

u—Tu+#1¢y, forallue KnNoQ andr > 0. (4.5)

If this is not the case, then there exigtse KNo$; andr* > 0 such thau*—7 u* = 7%¢;..
Thus, > 0 and
u=Tu" + 71, > 7¢L.
Define
7 =sup{7 : u* > 71¢L}.
Then,r; > 7 > 0, u* > 7¢, and so from (4.4),

u=Tu +1"¢y > prlu* + 70 > (11 + 7)1,
which contradicts the definition of. Hence, (4.5) holds. By Lemma 2.6, we have
i(T,KNQ, K)=0. (4.6)
Fori=1,...,n,sinceF;, < pr, there exish < e < 1 and0 < Ry < R, such that

filz) < (1= Opelal = (1 - e)ur Y, (4.7)
j=1

foranyz = (z1,...,2,) € R} with 2| =377, 7; < R,. Let

QQ = {U e X : HUH < RQ}

Foru = (ur, ..., u,) € K N0, andt € R, from (4.7),
o) < (1 - s S wlt — 1)
Hence, .
Ttt) < (= [ Gile ) Yl s

= (1= urLiu(t),

Tu(t) < (1—e)prLu(t). (4.8)
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We now claim that
u#7Tu foralue KNoQ,andr € [0,1]. (4.9)

For otherwise, there exist" = (uf,...,u) € K NdQy and7* € [0,1] such that* =

'

T*Tu*. Sinceu* = (uf,...,ur) € K Ny, we have that

rn

lwr|l = l[uflloo = R > 0. (4.10)
=1
Note that
ui(t) > ol|ufl|lee fori=1,....nandtcR. (4.11)

Then, from (4.10) and (4.11), there exists at leastigre {1, ..., n} such that

ug (t) >0 onR. (4.12)
Moreover, from (4.11), we also have the observation that o1, ..., n} \ {io}
either u;(t)=0 or wui(t)>0 onR. (4.13)
Let
I={ie{l,....,n} : u;(t) >0 onR}. (4.14)

Theniy € I (and hencd # () andl C {1,...,n}. From (4.13), it is also obvious that if
I'is a proper subset dfl, ..., n}, thenu;(t) =0onRfort € {1,...,n}\ I.

Note that
oL = (b1, OLn)

and
¢L7i(t) = ,UL/t Gz(t, S)bz(S) (Z QSLJ(S — Tj(S))) s 1= 1, Lo, n.

Then, from the facts that, > (0,...,0) is nontrivial andG;(t,s) > ¢ > 0 onR, it
follows that

¢ri(t) >0 foralli=1,...,nandt e R. (4.15)

Fori e {1,...,n}, let
k; = max ui (1) — max 2 () .
teR ¢L,i(t> t€[0,T] ¢L,i(t>

Then, in view of (4.14) and (4.15), is well defined k; > 0 fori € I, and

0 <u(t) < kipr,(t) forie IandteR. (4.16)

Let the setS be defined by
S={r: u <7¢r},

S={r: (ul,...,u) <7(br1, .., 0Ln)}
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Then, from (4.16), we see thatax;c; k; € S (In fact, any number larger than or equal to
max;er k; € SisinS.), so,S # (). Define

=inf S,

ie.,
o =1inf{r : (u],...,w) <7(dr1,...,0Ln)}
Then, from (4.13), (4.14), and (4.16), it is clear thats well definedu* < ¢, and

T = maxk; > kio > 0.
el
Thus,

prlu® < ppl(mor) = nuLler = Tadr.
This, together with (4.8), implies that

uw=17"Tu <Tu" < (1 —e€)ndr,
which contradicts the definition af,. Therefore, (4.9) holds. By Lemma 2.7, it follows
that
(T, KNy, K) =1. (4.17)
By (4.6), (4.17), and the additivity property of the fixed poindex, we obtain that

Thus, from the solution property of the fixed point ind&xhas at least one fixed poiat=
(w1, ..., u,) in KN (4 \Qy), which is aT-periodic solution of system (1.1). Sinfe|| =
Yo Nuilloo > Re @andu;(t) > ||uil|c ONR fori = 1,...,n, at least one component of
is positive onR, i.e.,u(t) is a positive solution.

Now, we assume (3.2) holds. Fore= 1,...,n, sincef;o > u, there existsR; > 0
such that

filx) 2 prle| = MLZ%
foranyz = (z1,...,2,) € R} with 2] =377 | 7; < R3 Let
Qs ={ue X : ||ju| <Rs}.
Then, foru € K N 095 andt € R, we have
Filg(u(®)) > pe Y it —75(t)). (4.18)
j=1
From (2.8), (4.1), and (4.18), we see that
t+T
Tu(t) > ,uL/ Zu] ))ds = prpLyu(t) > 0.
t

Thus,
Tu(t) > prLu(t) > 0.
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Now, by an argument similar to the one used in proving thd&)(dolds, we can show that
u—Tu#1¢y, forallue KnNoQsandr > 0.

Then, by Lemma 2.6,

i(T,KNQs, K)=0. (4.19)
Fori=1,...,n,sinceF, ., < ur, there exist) < e < 1 andR, > R3 such that
file) < (1= pule| = (1 —pur Y = (4.20)
j=1

foranyr = (zy,...,2,) € R} with |z| =77 2; > o Ry. Let
Q4:{U€X . HUH<R4}
Foranyu = (uq,...,u,) € K N0y, andt € R, we have

> us(t =75() 2 0 ) lluyllee = ollull = o R,
j=1

j=1
From (4.20), it follows that

Filg(u(®)) < (1 —epur Y uy(t —7(1)).

j=1

Then,u(t) satisfies (4.8), Now, as in verifying that (4.9) holds, weadit
u#77Tu forallue KNoQ, andr € [0, 1].

Lemma 2.7 then implies
(T, KNQy, K) =1. (4.21)
By (4.19), (4.21), and the additivity property of the fixedmtandex, we obtain

Thus, from the solution property of the fixed point ind@xhas at least one fixed point
in K N (4 \ Q3), which is aT-periodic solution of system (1.1). As in the previous case,
u(t) is positive. This completes the proof of the theorem. O

Proof of Corollary 3.2.The conclusion follows from Lemma 2.5 and Theorem 3.1. [J
Proof of Corollary 3.3.The conclusion readily follows from Corollary 3.2. O

Proof of Theorem 3.4l e first assume (B1) holds. Foe= 1, ..., n, sinceF, , < yuy, there
exist0 < e < 1 and0 < R; < py such that

filr) < (1 —e)urlz| = (1 - G)MLZ%'

foranyr = (z1,...,2,) € RY with 2| =377, #; < R,. Let

Ql = {U € X : HUH < Rl} (422)
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Using a similar argument as in verifying (4.9), we obtain
u#7Tu foralue KNoQ andr € [0, 1].
By Lemma 2.7,
(T, KNQy, K)=1. (4.23)
Let
QQ = {U eX : ||u|| < pl} (424)
Then,fori =1,...,n,u € K N0y, andt € R, from (Al), we see that
T T
0 < Twu(t) < d,-/ bi(s)fi(g(u(s)))ds < plfdi/ bi(s)ds.
0 0
Thus,
T
0

Hence, in view of (2.11), we have
0o 00 T
1Tull =) | Toull <p1£Zdi/ bi(s)ds = p1 = [|u].
i=1 i=1 0
By Lemma 2.7, it follows that

(T, KN, K) =1. (4.25)
Let
Q3 = {U e X : HUH < pg} (426)
Foru = (uq,...,u,) € KN 03 andt € R, we have
opr = ollull = o Y |lusllee <D ui(t = 75() <D lusllee = [ull = pr.
j=1 j=1 j=1
Then, fori = 1,...,n, from (A2),
T T
Tu(t) > i [ b(s) flg(u(s)))ds > opanes [ bits)ds,
0 0
which implies that
T
|| Ziul| oo > apgnci/ b;(s)ds.
0
Thus, in view of (2.11), we see that

oo 00 T
17ull =) || Tl > UPWZ@/O bi(s)ds = pz = |[ul].
=1 =1

By Lemma 2.6,
(T, KNQ3, K)=0. (4.27)
Sincep; > p, > Ry, from (4.23), (4.25), and (4.27), we reach the conclusibas t
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and

Hence,7 has at least two fixed points; € K N (Q3 \ Q1) anduy, € K N (2, \ Q3).
As in the proof of Theorem 3.1, it is clear that(¢) andu,(t) are two positivel-periodic
solutions of system (1.1).

Now, we assume (B2) holds. Fok= 1, ..., n, sincef; ., > ur, there existRy > p;
such that

filx) = prle] = p Y

J=1
n

foranyz = (z1,...,2,) € R} with [z] = Y7, 7; > o R,. Let
QY ={ueX :|lull <R} (4.30)
As in demonstrating (4.5), we have
u—Tu#1¢;, foralue KnNoQ andr > 0.

By Lemma 2.6,

i(T,KNQy, K)=0. (4.31)
Note that (4.25) and (4.27) still hold in this case. Thenjewof the fact thaf?; > p; > po
and from (4.25), (4.27), and (4.31), it follows that (4.28)ds and

Therefore, 7 has at least two fixed points; € K N (2, \ Q3) anduy € K N (Q4\ Q2),
which are two positivd’-periodic solutions of system (1.1).

The cases where (B3) and (B4) hold can be proved similarhases (B1) and (B2).
We omit the details here.

Next, we assume (B5) holds. Since (Al) holds ghd > u fori =1,...,n, there
exists R, > p; such that (4.25) and (4.31) hold, whepg and(), are defined by (4.24)
and (4.30) withp; and the above?,. Fori = 1,...,n, sincef;o > pz, using a similar
argument as in verifying (4.19), there exi#tg < p; such that

i(T,KNQs, K) =0, (4.33)
where
Q5 = {U e X : HUH < Rg}
SinceRy > p; > R3, from (4.25), (4.31), and (4.33), we see that

and
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Hence,7 has at least two fixed points; € K N (2, \ Q5) anduy € K N (2, \ Q2), which
are two positivel-periodic solutions of system (1.1).

The proof when (B6) holds is similar to that of case (B5) anevecmmit the details.

Finally, we prove the “moreover” part of the theorem whenho@1) and (B2) hold.
The proof when both (B3) and (B4) hold is similar. As befores derive (4.23), (4.25),
(4.27), and (4.31). Hence, (4.28), (4.29), and (4.32) holls,7 has at least three fixed
pointsu; € K N (Q3\ 1), up € KN (2 )\ Q3), andus € K N (24 \ ), which are three
positiveT’-periodic solutions of system (1.1). This completes theopad the theorem. ]

Proof of Corollary 3.5.The conclusion follows from Lemma 2.5 and Theorem 3.4. [J

Proof of Corollary 3.6 We first assume (3.8) holds. Foandn givenin (2.11), by a simple
computation, we see that= C' andn = D, whereC' and D are defined in (3.9). Then,
from (3.7), it follows that

fio = lim fil@) =o0o>n and f; . =liminf filz)

ZV1D>7].

Moreover, for anyp, satisfying

max (li,lc_l)l/(l_ki’l) < p1 < m max (li’IC'_l)l/(l—ki,l)7

we have
filz) <lapy <piC=p& H0< o] <p,
i.e., (Al) holds. Thus, (C5) of Corollary 3.5 holds. By a demiargument, we can show

that (C6) of Corollary 3.5 holds if; satisfies (3.8). The conclusion then follows from
Corollary 3.5. O
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