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1. INTRODUCTION

In this paper we present some results of existence and ricitlyof positive solutions
for the boundary value problem

—u"(z) = f(z,u(x)) x € (0,1)
au(0) — bu'(0) = 0, (1.1)
cu(1) 4+ du'(1) = 0,
wherea, b, ¢ andd are nonegative real numbers such ihat ad+cb > 0andf : [0, 1] x
R*— R" is a continuous function such thatt, z) > 0 for all (¢,z) € [0,1] x (0, +00) .

By a positive solution to problerfi.1) we understand a functiane C? ([0, 1]) satis-
fying all equations in1.1).

We can find in many papers conditions which guarantee existen multiplicity of
positive solutions for problenil.1), see [2], [3], [4], [5], [7], [8] and [9] and refernces
therein. Often in these hypotheses is involved the posiidhe ratiof (¢, x) /= about\,
at0 or oo (see [3], [4], [5] and[9]) Here )\, is the first eigenvalue of

—u"(x) = Au(x) x € (0,1)
au(0) — bu'(0) =0,
cu(l) 4+ du'(1) = 0.

In the same spirit, we will prove in this paper that if theréséxtwo bounded intervals

I andJ satisfying some conditions at there endpoints (see The@tdrn section 3) and

such that the ratig (¢, z) /= is great than\; in [ and is less than, in J, then the boundary
value problem(1.1) admits a positive solutiorThis result is obtained by combining fixed
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point index properties with quadratures technics. Thraughforu € C ([0,1]) ||u| =
sup{|u (x)|,z € [0,1]}.

The paper is organized as follows. In the following secti@recall breefly some basic
facts related to the fixed point index theory. In the thirdteecwe state main results. In
the fourth section we prove some technical lemmas. Proafsaif results are posteponed
to the fifth section and we end the paper by two examples otBlat boundary value
problems having multiple positive solutions.

2. FIXED POINT INDEX THEORY

Let £’ be a real Banach space aRda closed subset df.
K is called a cone if

e K is convex

eitr c Kforallt > 0andx € K,

oif z € K and(—z) € K thenz = 0.

K is called a retract of if there exists a continuous mapping £ — K such that
r(z) =z forall z € K. A such mapping is called a retraction.

From a theorem proved by Dugundiji, every nonempty closedeoset of £ is a
retract of £. In particular every cone oF is a retract ofF.

Let K be a retract of2 andU an open bounded subset &fsuch that/ c B(0, R).
For any completly continuous mappirfg: U — K with f (z) # x for all x € 9U, the
integer given by
i(f,U,K)=deg (I — for,B(0,R)Nr~"(U),0)
wheredeg is the Leray-Schauder degree, is well defined and is called fpoint index.
Properties of fixed point index:
1. Normality : i (f,U, K)=11if f(z) =o€ Uforallz € U
2. Homotopy invariance : Let H : [0,1] x U — K be a completly continuous mapping
such thatH (¢,z) # « for all (t,z) € [0,1] x OU. The integeri(H (t,-),U, K) is
independent of.
3. Additivity :
Z(vavK) :Z(valaK)+Z(f7U2aK)
whenevelU; andU; are two disjoint open subsets Gfsuch thatf has no fixed point
in U\ (Ul U UQ)
4. Permanence: If K’ is a retract ofK’ with f (U) C K’ then
i(f,UK)=i(f,UNK K').

5. Solution property : If i (f, U, K) # 0 then f admits a fixed point ifi/.
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Now we assume that is a cone and for alkR > 0, we denote byxr = B (0, R) N K.
We need in this work the following lemmas which give a comgiateofi (f, U, K) .

Lemma 2.1.If f (x) # Az forall z € 0Kr = 0B(0, R) N K and\ > 1 then
i(f,Kp, K)=1.
Lemma 2.2. If
f(z) # Xz forall x € 0Kr = 0B(0,R) N K and\ € ]0,1] and
o inf {||f(z)||: x € OKr} >0

then
i(f,Kg,K)=0.

For more details and proofs we refer the reader to [6].

3. MAIN RESULTS

The statement of main results need the following notatibes D be the subset dk*
defined by

D:{(a,b,c,d)€R4:a20, b>0,c>0, d20andac+ad+cb>0.}

Forallx ¢ R

|z| .
0if x =0.
For all (a, b, c,d) € D we denote by
2* =2 (a,b, ¢, d) = 259",
Throughout this paper, fdi, b, ¢, d) € D, Ay = A\ (a, b, ¢, d) is the first eigenvalue of
the boundary value problem

—u"(z) = Au(x) z
au(0) — bu'(0) =0,
cu(l) + du'(1) = 0.

For (a,b,c,d) € D andg € (0,\1), n* = n(a,b,c,d, () is the positive real number

defined by
)
. b2\ \/ d* )\, .
inf (\/a2+b2)\1’ Z 1 BN if b# 0andd # 0

/ b2)\1
if b dd =
= b2)\ if b=£0an 0

dz)\
02+d;)\ if b=0andd # 0
1

in<”_2 ) if b= 0andd = 0.

€ (0,1),

w0
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For(a,b,c,d) € D letG* : (0,+00) — (0,400) be the function defined by

. : bz _ d*zr
G* () = /z + arcsin (\ / m) + arcsin (\/ m) -

Proposition 3.1. )\, is the unique solution of the equati6ii (x) = 0. Moreover); (a, b, ¢, d)
is nondecreasing with respect to the variablesndd and is nonincreasing with respect to
the variables: andc.

Proposition 3.2. Problem(1.1) admits no positive solution whenever one of the following
situations

f (Z ZE) > )\1 for all (t’;)j) e [0, 1] X (0, +OO)7

and

f (Z D < forall (t,2) € [0, 1] x (0, 40c)

holds true.

Remark 3.3. We deduce immediatly from Proposition 3.2 that a necessamglition for
existence of a positive solution to Problé€inl) is that the ratiof (¢, z) /x must change its
position relatively to the eigenvalug.

The main result of this paper is the following theorem.

Theorem 3.4. Suppose that there exist six real numbersg, r, s, a andg such that
0<p<qg<r<s

and
0<fB< M <a.

If one of the following situation§3.1) and(3.2)

ft,z) > axV(t,z) € [0,1] X [p,q],
f(t,z) < Bz V(t,x) € [0,1] x [r, 5],

2* < P T . (p) (3.1)
———— 4+ — —arcsin | — <land
\/a 2 — p? 3 * q
- <
s
f(t,l’) < 6$V(t,l‘) S [07 1] X [p,q],
ft,z) > axV(t,x) € [0,1] x [r,s],
(3.2)

2 (47 aresin (D)) < 1 and
—F— — —arcsin | —
\/5 52 — 12 2 S
p

holds true, then Problerfi.1) admits a positive solution with ¢ < ||u|| < s.

Remark 3.5. 1. The condition? < \; < «in Theorem 3.4 is suggested by Remark 3.3.
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2. Note that a necessary condition for existence of an iatépyg| such that the condi-
tion

o L—— i <p) <1
| —— 4+ = —arcsin [ =
\/a 1/qz—p2 2 q

N A1 (a,0,¢,0) if ac#0
o > (—W) = A1(0,b,¢,0) if be £ 0
A1 (a,0,0,d) if ad # 0.

is satisfied is

Since \; (a, b, ¢, d) nondecreasing with respect of the variableand d and is non-

decreasing with respect of the variablesandc, it is easy to see that > \; implies

a > (%7?)2 .

Remark 3.6. Itis proved in [8] (see Theorem 3) that if there exist two @onbus functions
gi : Rt — R* fori = 1,2 such that

g1 (z) < f(t,x) < go (x) forall (t,z) € [0,1] x (0,400) (3.3)

and there existy, w € Rt with

/Ow (g2(s) — A1s ) ds < 0 < /Ow (g1(s) — A\1s ) ds (3.4)

then Problen{1.1) admits a positive solution.

It is easy to see that Hypothes@s3) and(3.4) implies that there exist two bounded
intervals/ and.J such that

f(t,z) < M\azforall (t,z) € [0,1] x I and
Max < f(t,z)forall (t,z) € [0,1] x J.
Theorem 3.4 recover the following result proved in [4].

Corollary 3.7. Suppose that one of the following hypotheses

lim inf <min AGED)

z—0 tef0,1]

) >)\; and limsup <maxf(t’x)> <\ (3.5)

T——+00 tel0,1] €

and

lim sup (maxf(t’x)) <)X and liminf <min f(t,x)) > A\ (3.6)

—0 telo,] x T—+00 telo,1]] X

holds true, then Problerfi.1) admits a positive solution.

Proof. If Hypothesis(3.5) holds true (the other case is proved similarly) thendas 0
small enough there exist$ < ¢ < r such that

ft,z) > (M +e)x forz e|0,q] and

-
—~
\‘@F
8
S~—
IN

(M —e)x forx € [r,+00).
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Thus, takingp = 0 ands = ér with ¢ large enough Hypothesi8.1) is satisfied and
Theorem 3.4 ensures existence of positive solution to Brobl.1) . O

We derive from Theorem 3.4 the following multiplicity resul

Corollary 3.8. Suppose that there exists six finite sequengg®, . ", (¢:)' =", (r:) ="

=1 =17
(si):=y, () =y and (3,)iZ) (n > 1) such that
0<p <@ <rn<s$1<pa<@<r<s3<- <71, <8 < Por1 < Gnyt-
If one of the following situation&.7) and(3.8)

f(t,z) > oz V(t,z) €[0,1] x [p;,qj],
f(t,l’) S ﬁzx V(t,l') € [07 1] X [TZ',SZ'],
0<Bi< < 78

o , ' (3.7)
Pi + g — arcsin (&) < land
Va4 P b
r

_i <77;k:77(a7b707d75z’)-
S,

7

ft,z) <ajz V(t,z)el0,1] X [pj,q],
f(t,l’) 2 ﬁzx V(t,l') € [07 1] X [TZ',SZ'],
0< a; < A < 6@

z i +2 - in () | <1and 29
\/E 322 = riz B arcsin s,

& <?7;=77(a,b,c,d,a,-).
d;

holds true for alll < : < mnandl < j < n+ 1, then Problem1.1) admits2n positive

1=n

solutions(u;)!— and (v;)!=1 with ¢; < |lu;|| < s; ands; < ||| < giys forall 1 <i < n.

Proof. We give the proof in the case where Hypothd8ig) is satisfied, the other case is
checked similarly.

Takingp = p;, ¢ = ¢;,r = r; ands = s; then Hypothesig3.1) of Theorem 3.4 is
satisfied for alli = 1,...,n. Thus, Porblem(1.1) admitsn solutions(u;)!=} with ¢; <
||| < s;foralli =1,2,...,n.

Also, takingp = r;, ¢ = s;, 7 = p;+1 ands = ¢;;; then Hypothesi$3.2) of Theorem
3.4 is satisfied for all. < i < n. Thus, Porblen(1.1) admitsn solutions(v;)!—; with
si < ||lvi]l < qipq forall 1 <i < n. O
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4. TECHNICAL LEMMAS

Let u be a positive solution to the boundary value problem

—u"(z) = g(z,u(z)) z € (0,1)
au(0) — bu'(0) = 0, (4.1)
cu(1l) + du'(1) =0,
where(a, b, ¢,d) € D andg : [0,1] x RT— R™ is a continuous function such that, =) >
0 forall (t,z) € [0,1] x (0, +00).
It is clear that is concave and admits a unique critical poinftnl| denoted through-

out by 4, at whichu reaches its maximum value. Moreoverait£ 0, v IS increasing on
[0,0] and ifc # 0, u is decreasing of9, 1] .

Multiplying the differential equation iri4.1) by «" and integrating betweehands €
0, 1] we get

0
(u/(5))? = 2 / o(ru (P (7)dr (4.2)
Thus, ifa # 0 then for allt € [0, 6]
L w0 du(s) B u(®) du(s)
’ t_/u(t) w'(s) _/ @3

u(t) \/2)\ fj f(ryu(r))u'(T)dr
and ifc # 0 then for allt € [6, 1]
u(®) du(s) u(®) du(s)
t—0— _aws) . (4.4)
oo = = L V2 Fru

Lemma4.1. a)Suppose that # 0 and there exists some € [0,6] and A > 0 such
that

g(t,u(r)) > Au(r) forall 7 € [t1,0]. (4.5)
Then for allt € [0, 6]

T . U(tl) .
| |5 —axesin ( ) if t € [t1,0]

<= () ‘) (t1)
v NEOETa O R u(@)) el

Moreover ift; = 0 then

1 (= ) b?A
0 < ﬁ (5 — arcsin (\ / m)) . 4.7)

b) Suppose that # 0 and there exists someg € [0, 1] and A > 0 such that

0 —t (4.6)

g(1,u(t)) > Au(r) forall 7 € [6,ts]. (4.8)
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Then for allt € [0, 1]

] g — arcsin (u((t;))) ift € [0,
\/u2 —u2 t2)+§—arcsm(u(8)) | 6[2, ]

Moreover ift, = 0 then

1-60< \/1_ (— — arcsin (\/ %)) (4.10)

Proof. a) Fort € [0, ] we distinguish two cases.
o If ¢ € [t1, 0] then we derive fron{4.2) and(4.6) that

h-t < u?j) \/A(quU(SEUQ = (4.11)
- (5 ()
e ()

e If t € [0,t], since the functiors — ffg(r, u (7))u/(T)dr is decreasing of, 0],
we derive from(4.2) and(4.6) that

u(® du(s) u(ta) du(s)
0 —
' ater) VAW (0) —u? (5)) ! /u(t) VAW 0) —u? (1))

_ ! u(h) T arcsin u(t)
B <\/u2 (0) — u?(t1) - 2 (U(9)>> . *.12)
Now if ¢, = 0 it follows from (4.11)
L E — arcsin @
<75 (@) @19

Moreover, we obtain fronf4.2)
[4

a*u?(0) = b? (u'(O))2 = b2/ g(r,u(T)u'(t)dr > b*A (u2(9) —u? (0))

0
whence

(4.14)

Inserting(4.14) in (4.13) we obtain

- \/17 (f — arcsin <\/%>> |

b) is checked similarly since the function— ff g(7,u (1))u/(7)dr is increasing on
6,1]. O
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Lemma 4.2. a) Suppose that # 0 and there exists sontg € [0, §] and B > 0 such that

g(t,u(7)) < Bu(r) forall 7€ [t3,0]. (4.15)
Then for allt € [0, 6]
s . [ u(t) ) _
— —arcsin | —= if t € [ts, 0]
0—t> % 2 Z(@) (4.16)

— — arcsin
2

Moreover ift; = 0 then

1 (n ) [ b*A
0> ﬁ <§ — arcsin < m)) (4.17)

b) Suppose that # 0 and there exists sontg € [#, 1] and B > 0 such that

g(1,u(7)) < Bu(r) forall € [0,t,]. (4.18)
Then for allt € [0, 1]
7r . [ u(t) ) .
— —arcsin | —= if t € (0,14
L—6> % 2 Y éi)) .f ) (4.19)
5 —aresin | — (8)) if t € [ty 1]

Moreover ift, = 1 then

1 (= ) [ d?A
1-86 Z ﬁ (5 — arcsin ( m)) (420)

Proof. We present the proof of the case a) the other case is cheakddrby. It follows
from (4.3) for t € [t3, 0]

0—1

v

/“<9> du(s)
w0 27 flru () (r)dr

u(®) du(s)
- A@ VB(20) — 2 (5)
()

u(®) du(s)
60—t >
1%>¢zfmnuwwuﬂm

~—

and fort € [0, 3]

v

/“(6) du(s)
uts) /B (u?(0) —u? (s))

- e ()
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In particular ift; = 0 then

5o (25)

As in the proof of Lemma 4.1, we check froft.2)

u(0) b’ B
= a? + 2B

0> L (7 resin [ YB _
=B \l2 % 2+02B ||

and then

5. PROOFS

5.1. Proof of Proposition 3.1. Applying Lemmas 4.1 and 4.2 fgr= f andA = B = \;
we deduce fron{4.7), (4.10), (4.17) and(4.20)

oW WER Ve Tra) T Ve ea

G* (A1) = 0.

that is

Atthe end, using Implicit Function Theorem yield the momoéity properties of\; (-, -, -, ).

5.2. Proof of Proposition 3.2. Let ¢ be the positive eigenfunction associated to the eigen-
value ;. If u is a positve solution to Problef.1) then multiplying the differential equa-
tionin (1.1) by ¢ and integrating ovel0, 1] we get the relation

1
| ttate) = xu ) o wyar =0
0
which is impossible in both the cases

f(t,x)

i

> A\ forall (¢,2) € [0,1] x (0, +00),

and

f(t )

T

< X\ forall (¢,2) € [0,1] x (0, +00).
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5.3. Proof of Theorem 3.4. Let E be the Banach space of all continuous function defined
on [0, 1] equiped with its norm

[ull = sup {[u ((x))|, = [0,1]}.

We denote’, = {u € C*([0,1]) : au(0) — bu'(0) = 0 andcu(1) + du'(1) = 0} . Let
L:C; — Ebe the operator defined byu = —u” with the inverse L=' : E — C3,
is given by L=t ( fo t) dt whereg is the Green function associated to the
operatoru — u” W|th the boundary conditionsu(0) — bu'(0) = 0, cu(1) + du'(1) = 0.

It is well known thatu is a solution to Problenil.1) if and only if u = T'u where

Tu(z) :/0 g (x,t) f(t, u(t))dt.

T is completely continuous SincE = jo L -'o N : E — E wherej : C; — Eis
the compact embeding «ifi in EandN : F — E is the Nymitski operator defined by
Nu(x) = f(x,u(x)).

Let K be the cone defined by

K ={ue€ FE:u(x) > p(x)|u| foralz e [0,1]},

where forz € [0, 1]
p(z) = min(z, 1 — z).

Let us show thal'(K) C K. If uw € K andv = Twu then the positivity or{0, 1] of
f(t,u(t)) implies thatv is concave and it reaches its maximum &§ then we have in all
the situations

o to € (0,1), v(z) = v((35)to + (1 = (5
if z € [0,t0) andv(x) = v((+=2
if x € [to, 1],
o to=1,v(z) =v(x+ (1 —2)0) > zv(l) + (1 — 2)v(0) > p(x) ||v| and
o fo=0,v(x) = v(z+ (1 -2)0) = zv(l) + (1 —2)v(0) = p(z) [|v].
We suppose in the followingc # 0 and Hypothesi$3.1) is satisfied (the other cases can
be proved in similar way).

Let us compute (7, K, K) where K, = K N B(0,s). In view of Lemma 2.1, let
u € E be such thal'uv = pu with ¢ > 1 and||u|| = s. Thenu satisfies
—u(x) = p~ f(z, u(z)) = € (0,1)
au(0) — bu'(0) =0,
cu(1) 4+ du'(1) = 0.

)0
=)

© ~—

— |V

(75)v(to) + (1 = (5))v(0)

0 0 Z p
> (55)o(to) + (F52)v(1) > p(a) [|v]|

/-\OH

1- to)

Applying Lemma 4.2 forg = u~'f, t3 < t4 are such that (t3) = u(t4) = r and
B = u~'3 we obtain from(4.16), (4.17), (4.19) and(4.20)

v
125

(m — arcsin (p;) — arcsin (p2)) (5.1)
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! a2+ Bu~th?’ s 2 A+ putd?’ s |

Since < n*andfBu~t < A;, the inequality(5.1) becomes
S

1> L T — arcsin & — arcsin &
o a2 + b2\, 2+ d*\

G* ()\1) >0

where

that is

which is impossible.
So, hypothesis of Lemma 2.1 is satisfied and
i(T, K, K) = 1.

Now, let us compute(T, K,, K). In view of Lemma 2.2, let. € E' be such thai'v = pu
with ¢ < 1 and||u|| = ¢. Thenu satisfies

—u"(z) = p~ f(z, u(z)) z € (0,1)
au(0) — bu'(0) =0,
cu(l) +du'(1) = 0.

Applying Lemma 4.1 forg = p~1f, t; < t, are such that: (¢;) = u (t;) = p and
A = au~! we obtain from(4.6) and(4.9)

2\/p p ™ : (p)
1< + — —arcsin | — ,
va (x/q2 -2 2 q

this is impossible since < 1 and

2 P +2 ' p) <1
— | —YF/— — — arcsin | — .
Ve \Ve@—p? 2 q
It remains to prove thahf{||7Tu||, v € KNOB(0,q)} > 0. Denotem = inf{f (¢, x) /z,

(t,z) € [4,3] x [1¢,4]} > 0and letu € K N 9B(0,q). We have for alle € [1, 3]

1

Tu(z) = / oo ) Ftul)dt = M [ gttt u(t))dt

0

> M / Lot O FEu))dt > Mm [ gt tu(t)dt

1
4

> Mg [ gt 0p(0)d > 0

4

N R (R
B 4(c+d) 4(a+b)

where
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is computed as in formula (2.4) of [4].

Thereforeinf{||Tul|, u € K NOB(0,q)} > Mmq [ g(t, t)p(t)dt > 0.

Thus, hypotheses of Lemma 2.2 are satisfied ané

i(T, K, K) =0.

At the end, we deduce from the additivity of the fixed pointardand the solution
property that

(T, K, K) =i (T, Ky, K) — i (T, K, K) = 1

and7" admits a fixed point in{,; = {z € K, ¢ < ||z|| < s} which is a positive solution
to Problem(1.1). This completes the proof of Theorem 3.4.

6. EXAMPLES

6.4. Example 1. Consider the boundary value problem

—u"(z) = f(u(x)), = € (0,1)
{ u(0) = u(l) =0, (6.1)

wheref(u) = 72 <u2 - %u + 2) .

By simple computations we can see that

3 1
> — 2 —
flz) > 27r xforz e [0, 2} ,

1
szx forz € [1,2] and

=
.
IA

f(z) > 9r?xforx € [12,13].

. 1
So, taklngp1 =0, ¢ = 5, rm=18=2 p =12, =13, a1 = %71'2, G = i’ﬂj

anda, = 972 we deduce from Corollary 3.8 that Problgm1) has two positive solutions
uy andus such thab < [ju]] <2 < |lug|| < 13.

6.5. Example 2. Consider the boundary value problem

{ —u"(x) = f(u(x)), e (0,1)

u(0) = u(1) =0, (62)

where f(u) = mu (1 + wsin (u)) andw = 0.99.
Choosingyy, = or+2(k—1)mandg, = (1 — o) 7+ 2 (k — 1) 7 for all k € N* with
o€ (0,1),we get

flu) > * (1+wsin(om)u  Vu € [pr, al

thatisay, = 72 (1 + wsin (on)) for all k € N*,
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One can prove by simple computations that the funcfiodefined oriR* by

H(x) = 2 ot +z — arcsin (70%—29: )
_ﬂ\/l—ﬂusin(mr) \/(1—20)(1+4x) 2 1l—0+42z

is increasing and has

:(:11—>I20H (z) = m/1+ wsin (o7) /(1 — 20)

Thus, choosing small enough, we get

H(k-1) <1

Now, takingr, = 7 (1+60) +2(k—1)7m andsy = 7 (2—60) + 2(k — 1)« for all
k € N*with 6 € (0,3) , we get

flu) < 7% (1 —wsin (07)) uVu € [ry, sk,
thatisg, = 72 (1 — wsin (7)) for all k € N*.

, , , 11
Numerical computations give fér= 51

E, E, 5 <n* =sin (E (1— 1—wsin(97r))> < 3

S1 S22 S3 2 S4

Thus, we deduce from Corollary 3.8 that Problésr2) admits six positive solutions,
(u;)!=% such that

@ < [Junll <51 <luall < ga < flusll < so < fluall <gs <lusl| < s3 < Jug|| < ga-
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