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1. INTRODUCTION

It is well known (see eg., [1, page 306]) that the nonhomogeneous linear equation

x′(t) = A(t)x(t) + f(t) has periodic solutions if and only if
∫ ω

0

yT (t)f(t)dt = 0 (1.1)

for all periodic solutionsy(t) of periodω of the adjoint equationy′(t) = −AT (t)y(t) where

A ∈ C(R,Rm×m) andf ∈ C(R,Rm) are periodic of periodω. ’T’ denotes the transposi-

tion andR
m denotes them−dimensional Euclidean space. This result was extended in [2,

page 423] to delay differential equations of the form

x′(t) = A(t)x(t) +B(t)x(t− τ) + f(t), (1.2)

whereA,B andf satisfy the same conditions andτ > 0 is a fixed real number. Indeed,

Halanay proved that (1.2) has periodic solutions if and onlyif (1.1) holds for all periodic

solutionsy(t) of periodω of the adjoint equation

y′(t) = −AT (t)y(t) − BT (t+ τ)y(t+ τ), (1.3)

which was constructed in terms of

〈y(t), x(t)〉 = yT (t)x(t) +

∫ t+τ

t

yT (s)B(s)x(s− τ)ds. (1.4)

Recently, the above result has been carried out for linear impulsive delay differential equa-

tions [3] and for linear impulsive differential equations with distributed delay [4]. In this

paper, however, we shall consider a discrete time analogue of the above result and establish
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a necessary and sufficient condition for the existence of periodic solutions for a class of

linear delay difference equations.

For a given differential equation, a difference equation approximation would be most

acceptable if the solution of the difference equation is thesame as the differential equa-

tion at the discrete points. However, it is impossible to satisfy this requirement unless we

can explicitly solve both equations. Often, it is desirablethat a difference equation when

derived from a differential equation preserves the dynamical features of the corresponding

continuous time model. If such discrete models can be derived from continuous time delay

models, then the discrete time models can be used without anyloss of functional similari-

ties of continuous models. There are several methods for deriving discrete time version of

dynamical systems corresponding to continuous time formulations. One of the methods is

based on appropriate modifications of the models. For this technique, differential equations

with piecewise constant arguments prove helpful, see [5] for more information.

Assume that the average growth rate in (1.2) changes at regular intervals of time, then

we can incorporate this aspect in (1.2) and obtain the following modified equation with

piecewise constant arguments

x′(t) = A([t])x([t]) +B([t])x([t − τ ]), t ≥ 0, (1.5)

where[t] denotes the integer part oft for t ≥ 0. This equation occupies a position midway

between differential and difference equations. For more details on the theory of this type

of equations, see the recent interesting papers [6, 7, 8]. Integrating (1.5) on any interval of

the form[n, n + 1), n = 0, 1, 2, . . ., we obtain

x(t) − x(n) = A(n)x(n) +B(n)x(n− τ)
(

t− n
)

.

Letting t→ n+ 1, we have

∆x(n) = A(n)x(n) +B(n)x(n− τ), (1.6)

where∆x(n) := x(n + 1) − x(n). Equation (1.6) is considered to be a discrete analogue

of equation (1.2). For the sake of convenience, however, we shall consider equation of the

form

∆x(n) = A(n)x(n) +B(n + 1)x(n− j + 1), n ≥ 0. (1.7)

In the previous two decades, the study of qualitative properties of delay difference equations

has attracted significant interest by many researchers. This is due, in a large part, to the

rapidly increasing number of applications of the theory of these equations to various fields

of applied sciences and technology [9, 10, 11, 12, 13, 14, 15]. In particular, existence

of periodic solutions for delay difference equations has been extensively developed, see

for instance [14, 16, 17, 18, 19]. This paper contributes to the theory of delay difference

equations by proving a well known result using easily formulated algebraic analysis.
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2. ADJOINT EQUATION AND SOLUTIONS REPRESENTATIONS

Let N be, as usual, the set of natural numbers. In equation (1.7), it is assumed that

2 ≤ j is a fixed positive integer number andA,B : N → R
m×m. For anya, b ∈ N, define

N(a) = {a, a+1, . . .} andN(a, b) = {a, a+1, . . . , b} wherea ≤ b. By a solution of (1.7),

we mean a sequencex(n) of elements inRm which is defined for alln ∈ N(n0 − j) and

satisfies (1.7) forn ∈ N(n0) for somen0 ∈ N. It is easy to see that for any givenn0 ∈ N

and initial conditions of the form

x(n) = φ(n), n ∈ N(n0 − j, n0), (2.1)

(1.7) has a unique solutionx(n) which is defined forn ∈ N(n0 − j) and satisfies the initial

conditions (2.1).

We shall construct the adjoint equation of (1.7) with respect to a function resembles

(1.4). It turns out that the discrete analogue of (1.4) has the form

〈y(n), x(n)〉 = yT (n)x(n) +

n+j−1
∑

k=n+1

yT (k)B(k)x(k − j). (2.2)

We should remark that no periodicity condition is used throughout the results of this sec-

tion.

Lemma 2.1. Letx(n) be any solution of(1.7)andy(n) be any solution of

∆y(n) = −AT (n)y(n+ 1) −BT (n + j)y(n+ j), (2.3)

then

〈y(n), x(n)〉 = constant. (2.4)

Proof. Clearly, it suffices to show that∆〈y(n), x(n)〉 = 0. It follows that

∆〈y(n), x(n)〉 = yT (n+ 1)∆x(n) + ∆yT (n)x(n) + yT (n+ d)B(n + j)x(n)

− yT (n+ 1)B(n+ 1)x(n− j + 1).

In view of equations (1.7) and (2.3), we have

∆〈y(n), x(n)〉 = yT (n + 1)[A(n)x(n) +B(n + 1)x(n− j + 1)]

− [yT (n+ 1)A(n) + yT (n+ j)B(n + j)]x(n)

+ yT (n+ j)B(n + j)x(n) − yT (n+ 1)B(n+ 1)x(n− j + 1) = 0.

The proof is finished.

In virtue of Lemma 2.1, we may say that equation (2.3) is an adjoint of (1.7). It is easy

to verify also that the adjoint of (2.3) is (1.7), i.e., they are mutually adjoint of each other.

Definition 2.2. A matrix solutionX(n, α) of (1.7) satisfyingX(α, α) = I, (I is an identity

matrix), andX(n, α) = 0 for n < α is called a fundamental matrix of (1.7).
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Definition 2.3. A matrix solutionY (n, α) of (2.3) satisfyingY (α, α) = I andY (n, α) = 0

for n > α is called a fundamental matrix of (2.3).

Consider the nonhomogeneous equation

∆x(n) = A(n)x(n) +B(n+ 1)x(n− j + 1) + f(n), n ≥ 0, (2.5)

wheref : N → R
m. It is to be noted that the construction of function (2.2) is of special

interest in itself. Besides, it is used to derive the adjointequation in Lemma 2.1, solutions

representations of equations (1.7), (2.3) and (2.5) can also be obtained using this function.

In view of (2.4), we may write

〈y(n), x(n)〉 = 〈y(n0), x(n0)〉. (2.6)

Replacingy(α) by Y (α, n) and using the properties of the fundamental matrix, we have

the following result.

Lemma 2.4. Let X(n, α) be a fundamental matrix of(1.7) and n0 ∈ N. If x(n) is a

solution of (1.7), then

x(n) = X(n, n0)x(n0) +

n0+j−1
∑

k=n0+1

X(n, k)B(k)x(k − j).

One can also obtain the solutions representation of equation (2.5). Indeed,

Lemma 2.5. Let X(n, α) be a fundamental matrix of(1.7) and n0 ∈ N. If x(n) is a

solution of (2.5), then

x(n) = X(n, n0)x(n0) +

n0+j−1
∑

k=n0+1

X(n, k)B(k)x(k − j) +

n−1
∑

k=n0

X(n, k + 1)f(k).

Upon replacingx(α) by X(α, n) in relation (2.6), one can similarly derive the solu-

tions representation of the adjoint equation (2.3). Namely,

Lemma 2.6. LetY (n, α) is a fundamental matrix of(2.3)andn0 ∈ N. If y(n) is a solution

of (2.3), then

y(n) = Y (n, n0)y(n0) +

n0+j−1
∑

k=n0+1

Y (n, k − j)BT (k)y(k).

Furthermore, relation (2.6) tells us thatX(n, n0) = Y T (n0, n) which can be seen by

replacingx(n) byX(n, n0) andy(n) by Y (n, n0).
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3. PRELIMINARY ASSERTIONS

With regard to equation (2.5), the following conditions areassumed to be valid through-

out the rest of the paper.

(i) A,B : N → R
m×m arep periodic sequences,p > j;

(ii) f : N → R
m is p periodic sequence,p > j.

Let x(n) = x(n;ϕ) be the solution of equation (2.5) defined forn ≥ 0 such thatx(n)

coincides withϕ on [−j, 0]. The periodicity of the equation implies thatx(n + p;ϕ) is

likewise a solution of the equation defined forn + p ≥ j. If this solution coincides withϕ

in [−j, 0], then on the basis of the uniqueness theorem it follows thatx(n+p;ϕ) = x(n;ϕ)

for all n ≥ −j and the solution is periodic. Thus the periodicity condition of the solution

is written asx(n + p;ϕ) = ϕ(n) for n ∈ [−j, 0]. If W is defined byWϕ = x(n + p;ϕ),

n ∈ [−j, 0], then it follows thatx(n) is periodic if and only ifWϕ = ϕ, i.e.,ϕ is a fixed

point ofW .

Let z(n) = z(n;ϕ) be the solution of (1.7) defined forn ≥ 0 such thatz(n) = ϕ(n)

on [−j, 0]. Then by Lemma 2.5,

x(n;ϕ) = z(n;ϕ) +

n−1
∑

k=0

X(n, k + 1)f(k).

DefineU byUϕ = z(n + p;ϕ), n ∈ [−j, 0]. Then, since

Wϕ = Uϕ+

n+p−1
∑

k=0

X(n+ p, k + 1)f(k),

the periodicity condition reads as

ϕ = Uϕ +

n+p−1
∑

k=0

X(n+ p, k + 1)f(k). (3.1)

Let y(n) = y(n;ψ) be the solution of (2.3) defined forn ≤ p + j such thaty(n) = ψ(n)

on [p, p+ j]. Similarly, we conclude that ify(n− p;ψ) coincides withψ in [p, p + j] then

y(n− p;ψ) = y(n;ψ) and hence the solution is periodic. From Lemma 2.6, we get

ψ(n) = XT (p, n− p)ψ(p) +

p+j−1
∑

k=p+1

XT (k − j, n− p)BT (k)ψ(k),

for n ∈ [p, p+ j]. Let ϕ̃(s) = ψ(s+ p+ j) for s ∈ [−j, 0]. Settingη = k − p− j, we find

out

ϕ̃(s) = XT (p, s+ j)ϕ̃(−j) +

−1
∑

η=−j+1

XT (η + p, s+ j)BT (η + j)ϕ̃(η).

For convenience, we also use the notation

〈Ψ(s),Φ(s)〉 = ΨT (−j)Φ(0) +
−1
∑

k=−j+1

ΨT (k)B(k + j)Φ(k), (3.2)
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for matrix sequencesΨ andΦ defined on[−j, 0] as long as multiplication is possible. Note

that 〈Ψ(s),Φ(s)〉 is either a number or a vector or a matrix, depending on the sizes ofΨ

andΦ.

The following lemma, which is a discrete analogue of Lemma 4 in [3], plays a key role

in our later analysis. Its proof is straightforward and can be achieved directly by changing

the order of summations.

Lemma 3.1. For any matrix sequencesN,M,L ∈ R
m×m, we have

〈〈L(σ),M(α, σ)〉T , N(α)〉 = 〈L(σ), 〈MT (α, σ), N(α)〉〉.

By using this notation, the operatorU can be written as

Uϕ = 〈XT (p+ s, η + j), ϕ(η)〉.

If we defineŨϕ̃ = 〈ϕ̃(η), X(p+ η, s+ j)〉T , then in view of Lemma 3.1 we obtain

〈Ũϕ̃, ϕ〉 = 〈ϕ̃(η), 〈XT (p+ η, s+ j), ϕ(s)〉〉 = 〈ϕ̃, Uϕ〉.

Let Ṽ ψ = y(n0 − p;ψ) for n0 ∈ [p, p+ j]. That is,

Ṽ ψ = XT (p, n0 − p)ψ(p) +

p+j−1
∑

k=p+1

XT (k − τ, n0 − p)BT (k)ψ(k),

for n0 ∈ [p, p+ j]. If ρ is an eigenvalue of̃V , then there exists a nonzero solution of

ρϕ̃(s) = XT (p, s+ j)ϕ̃(−j) +

−1
∑

k=−j+1

XT (η + p, s+ j)BT (η + p)ϕ̃(η),

whereϕ̃(s) = ψ(s + p + j), s ∈ [−j, 0]. The right side of the above equation is nothing

but Ũ ϕ̃. Thus the eigenvalues of the operatorsŨ andṼ coincide and in addition, ifψ is an

eigenfunction for̃V , thenϕ̃ = ψ(s+ p+ j) is an eigenfunction for̃U .

Lemma 3.2. Equations(1.7)and (2.3)have the same number of linearly independent pe-

riodic solutions of periodp > j.

Proof. Consider the equation

ρϕ(s) − Uϕ(s) = F (s). (3.3)

It is obvious that the fundamental matrixX can be written as a linear combination of

linearly independent vectors. That is,

X(p+ s, η + j) =
m

∑

k=1

ak(s)bk(η) +K1(s, η), for s, η ∈ [−j, 0] × [−j, 0],

whereak(s) are column andbk(η) are row linearly independent vectors,K1 is a matrix

such that|K1| is chosen small. Clearly, we have

XT (p+ s, η + j) =
m

∑

k=1

bTk (η)aT
k (s) +KT

1 (s, η).
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Then, by using the fact that〈bTk (η)aT
k (s), ϕ(s)〉 = ak(s)〈b

T
k (η), ϕ(s)〉, (3.3) becomes

ρϕ(s) −

m
∑

k=1

ak(s)〈b
T
k (η), ϕ(η)〉 − 〈KT

1 (s, η), ϕ(η)〉 = F (s).

Setting

ν(s) =
1

ρ

m
∑

k=1

ak(s)〈b
T
k (η), ϕ(η)〉 +

1

ρ
F (s), (3.4)

we obtain

ν(s) = ϕ(s) −
1

ρ
〈KT

1 (s, η), ϕ(η)〉. (3.5)

Now consider equation of the form

ν(s) = ϕ(s) − λ〈KT
1 (s, η), ϕ(η)〉. (3.6)

We seek a solution of the formϕ(s) =
∑∞

i=0
λiϕi(s). Substituting this into (3.6) and

identifying the coefficients of the powers ofλ, we obtain

ϕ0(s) = ν(s) and ϕi(s) = 〈KT
1 (s, α), ϕi−1(α)〉, i = 1, 2, . . . .

It follows that |ϕi(s)| ≤ M i sup
s

|ν(s)|, whereM = sup |KT
1 | andi = 1, 2, . . .. Therefore,

the series converges if|λ|M < 1. We have

ϕ1(s) = 〈KT
1 (s, α), ν(α)〉.

By the induction principle, we obtain

ϕl(s) = 〈KT
l (s, α), ν(α)〉,

whereKl(s, η) = 〈KT
1 (s, α), Kl−1(α, η)〉. Indeed, we have

ϕl+1(s) = 〈KT
1 (s, α), ϕl(α)〉 = 〈KT

1 (s, α), 〈KT
l (α, η), ν(η)〉〉.

Using Lemma 3.1, we get

ϕl+1(s) = 〈〈KT
1 (s, α), Kl(α, η)〉

T , ν(η)〉 = 〈KT
l+1(s, η), ν(η)〉.

It follows that, if |λ| < 1

M
then the solution of equation (3.6) can be written as

ϕ(s) = ν(s) +
∞

∑

l=1

λlϕl(s) = ν(s) +
∞

∑

l=1

λl〈KT
l (s, α), ν(α)〉.

Thus,ϕ(s) = ν(s) + 〈ΓT (s, α), ν(α)〉 whereΓT (s, α) =
∑∞

l=1
λlKT

l (s, α). Therefore, if
1

|ρ|
< 1

M
andsup |KT

1 | < |ρ|, we deduce that

ϕ(s) = ν(s) + 〈ΓT (s, α), ν(α)〉 (3.7)

is a solution of (3.5).

On the other hand, consider the equation

ρϕ̃(s) − Ũ ϕ̃(s) = 0,
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which can be written as

ρϕ̃(s) =
m

∑

k=1

bTk (s)〈ϕ̃(α), ak(α)〉T + 〈ϕ̃(α), K1(α, s)〉
T .

Setting

ν̃(s) =
1

ρ

m
∑

k=1

bTk (s)〈ϕ̃(α), ak(α)〉T , (3.8)

we obtain

ν̃(s) = ϕ̃(s) −
1

ρ
〈ϕ̃(α), K1(α, s)〉

T . (3.9)

Following similar analysis, we obtain that the solution of (3.9) is in the form

ϕ̃(s) = ν̃(s) + 〈ν̃(α), Γ̃(α, s)〉T , (3.10)

whereΓ̃(α, s) =
∑∞

l=1
λlK̃l(α, s) andK̃l(η, s) = 〈KT

l−1
(η, α), K1(α, s)〉. However, using

the induction principle and Lemma 3.1, it is easy to verify that K̃l(η, s) = Kl(η, s) by

which one can see that

Γ̃(η, s) = Γ(η, s). (3.11)

In view of equation (3.4), we have

ρν(s) =

m
∑

k=1

ak(s)〈b
T
k (η), ϕ(η)〉 + F (s). (3.12)

Sinceϕ(s) = ν(s) + 〈ΓT (s, α), ν(α)〉, we have

ρν(s) =

m
∑

k=1

ak(s)〈b
T
k (η), ν(η) + 〈ΓT (η, α), ν(α)〉〉+ F (s),

which can be written as

ρν(s) =
m

∑

k=1

ak(s)
(

〈bTk (η), ν(η)〉 + 〈bTk (η), 〈ΓT (η, α), ν(α)〉〉
)

+ F (s).

Using Lemma 3.1, we get

ρν(s) =
m

∑

k=1

ak(s)〈b
T
k (α) + 〈bTk (η),Γ(η, α)〉T , ν(α)〉 + F (s).

Hence

ρν(s) =

m
∑

k=1

ak(s)〈b̄
T
k (α), ν(α)〉 + F (s), (3.13)

where b̄Tk (α) = bTk (α) + 〈bTk (η),Γ(η, α)〉T . Settingλk = 〈b̄Tk (α), ν(α)〉, it follows from

(3.13) that

ρν(s) − F (s) =

m
∑

k=1

λkak(s) (3.14)

which is of the form of the solution of (3.13). Analogously, the solution of

ρν̃(s) =
m

∑

k=1

bTk (s)〈ν̃(η), āk(η)〉
T , (3.15)
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has the form

ρν̃(s) =

m
∑

k=1

µkb
T
k (s), (3.16)

whereµk = 〈ν̃(η), āk(η)〉
T and āk(η) = ak(η) + 〈Γ̃T (η, α), ak(α)〉. In view of (3.13),

(3.14) becomes
m

∑

k=1

λkak(s) =

m
∑

k=1

ak(s)〈b̄
T
k (α),

1

ρ
F (α) +

1

ρ

m
∑

j=1

λjaj(α)〉. (3.17)

Similarly, equation (3.15) implies that (3.16) can be written as

m
∑

k=1

µkb
T
k (s) =

m
∑

k=1

bTk (s)〈
1

ρ

m
∑

j=1

µjb
T
j (η), āk(η)〉

T . (3.18)

Taking into account that the vectors{ak} are linearly independent, we obtain from (3.17)

the algebraic equation

ρλk =
m

∑

j=1

γkjλj + fk, (3.19)

whereγkj = 〈b̄Tk (α), aj(α)〉 andfk = 〈b̄Tk (α), F (α)〉. Similarly, we get from (3.18) the

algebraic equation

ρµk =
m

∑

j=1

γ̃T
jkµj , (3.20)

whereγ̃T
jk = 〈bTj (η), āk(η)〉. We know that equation (3.19) forλk has a solution if and only

if
m

∑

k=1

µkfk = 0 (3.21)

for all the solutionsµk of the equation

ρµk =
m

∑

j=1

γjkµj . (3.22)

By employing Lemma 3.1 and relation (3.11), however, we can obtain that̃γT
jk = γjk. Thus,

equations (3.20) and (3.22) coincide.

Therefore, we conclude that the equations

ρλk =
m

∑

j=1

γkjλj (3.23)

and

ρµk =

m
∑

j=1

γjkµj (3.24)

have the same number of linearly independent solutions. To asolution of (3.23) cor-

respondsν(s) = 1

ρ

∑m

k=1
λkak(s) and to this corresponds the solutionϕ(s) = ν(s) +
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〈ΓT (s, α), ν(α)〉 for the equationρϕ(s) − Uϕ(s) = 0, linearly independent solutions cor-

responding to the linearly independent solutions of equation (3.23). Likewisely, a solu-

tion of the equationρϕ̃(s) − Ũ ϕ̃(s) = 0 will correspond to a solution of equation (3.20)

which coincides with (3.24), linearly independent solutions corresponding to linearly in-

dependent solutions. It follows from here that the equations ρϕ(s) − Uϕ(s) = 0 and

ρϕ̃(s) − Ũϕ̃(s) = 0 have the same number of independent solutions, which implies in

particular the fact thatU andŨ have the same eigenvalues, hence ifρ is a multiplier of the

equation,1
ρ

is a multiplier of the adjoint equation. The proof of Lemma 3.2 is completed.

4. THE MAIN THEOREM

We are now in a position to state and prove the main result of this paper.

Theorem 4.1. A necessary and sufficient condition for the existence of periodic solutions

of periodp of equation(2.5) is that
p−1
∑

k=0

yT (k + 1)f(k) = 0, (4.1)

for all periodic solutionsy(n) of periodp of the adjoint equation(2.3).

NECESSITY. Let x(n) bep periodic solution of (2.5) andy(n) p periodic solution of

(2.3). It follows that〈y(n), x(n)〉 is p periodic. In view of (2.3) and (2.5), one can conclude

that

∆〈y(n), x(n)〉 = yT (n + 1)f(n), 0 ≤ n ≤ p. (4.2)

Summing (4.2) over the interval[0, p− 1] results in
p−1
∑

k=0

yT (k + 1)f(k) = 0,

which is the same as (4.1).

SUFFICIENCY. Suppose that (4.1) is satisfied for all periodic solutionsy(n) of period

p of (2.3). In virtue of relation (3.21), Lemma 3.2 tells us that

ρϕ(s) − Uϕ(s) = F (s)

has solutions if and only if

〈ϕ̃(α), F (α)〉 = 0 (4.3)

for all ϕ̃ satisfying

ρϕ̃(s) − Ũ ϕ̃(s) = 0.

Therefore, it suffices to show that (4.3) holds under condition (4.1). To see this we first

observe from (3.1) that

F (s) = ϕ(s) − Uϕ(s) =

s+p−1
∑

k=0

X(s+ p, k + 1)f(k).
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It follows that

〈ϕ̃(α), F (α)〉 = ϕ̃T (−j)F (0) +

−1
∑

k=−j+1

ϕ̃T (k)B(k + j)F (k). (4.4)

SubstitutingF into (4.4) leads to

〈ϕ̃(α), F (α)〉 = ϕ̃T (−j)

p−1
∑

k=0

X(p, k + 1)f(k)

+
−1
∑

k=−j+1

ϕ̃T (k)B(k + j)
[

k+p−1
∑

r=0

X(p+ k, r + 1)f(r)
]

.

Settingϕ̃(s) = ψ(s+ p+ j) and interchanging the order of summations, we obtain

〈ϕ̃(α), F (α)〉 = ψT (p)

p−1
∑

k=0

X(p, k + 1)f(k)

+

p−1
∑

r=0

−1
∑

q=−j+1

ψT (q + p+ j)B(q + j)X(q + p, r + 1)f(r),

where thatX(p+ η, α) = 0 for α > p+ η is used. Reordering the terms, we finally get

〈ϕ̃(α), F (α)〉 =

p−1
∑

k=0

[

ψT (p)X(p, k + 1)

+

−1
∑

q=−j+1

ψT (q + p+ j)B(q + j)X(q + p, k + 1)
]

f(k).

In view of Lemma 2.6 we see that the right hand side of the aboveequation is nothing but
p−1
∑

k=0

yT (k + 1)f(k)

which is clearly zero by our assumption (4.1). The proof is finished.
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