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ABSTRACT. We consider the non-autonomous system of nonlinear pacagmlations

ug + 1" Aqu = |v|?

v+t Agv = |uff
posed inQ := (0,00) x R, subject to the initial datéu(0,2) = ug(z),v(0,z) = vo(x)), wherep > 1
andgq > 1 are positive real numbers,, 3 €]0,2] andA, := (—A)7/2 is the (—A)7/2 fractional power

of —A in the x variable defined via the Fourier transforgnand its inversgg—! by (—A)"/?w(x,t) =
(€T (w)(€)) (x,t), wherer > —1 ands > —1.

The Fujita critical exponent which separates the case afiblp-up solutions from the case of globally
in time existing solutions is determined.
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1. INTRODUCTION

The equation
up — Au = |ul’
has been considered by Fujita in his pioneering article IH§.determined a critical expo-
nentp, = 1+ % (called since then the Fujita critical exponent) such that:

e Forp < p,., any positive solution blows-up at a finite time.
e However forp > p., there are solutions that blow-up, and under a certainictisin
solutions exist globally in time.

The critical casep = p. has been decided by Hayakawa [10] wh§h= 2, and by
Kobayashi, Sirao and Tanaka [14] for any > 1. Of course, many generalizations fol-
lowed these important articles, see [4] for a long list oérehces. Nagasawa and Sirao [18]
used a probabilistic treatment of blowing-up solutionsqaations with fractional powers
of the Laplacian of the form

u — Aqu = c(z) |ul’

Received March 18, 2009 1083-2564 $15@0ynamic Publishers, Inc.



204 S. KERBAL

for a certain positive function(z). Sugitani [20] treated the same equation with) = 1,
while Guedda and Kirane [9] considered
ug — Agqu = d(t) [ul?

for a certain positive functior(t). The very recent article of Kirane, Laskri and Tatar [12]
treated the more general equation

Dg‘tu — Aqu = h(t,z) |ul’
whereh(t,z) = O(t? |x|?) for large |x| andDg‘tu is the time fractional derivative af in
the sense of Caputo [12].

The case of the systefiRDS) has been studied when= s = 0 by Escobedo and
Herrero [5]; they showed that whewy > 1 and (u + 1)/(pg — 1) > N/2 with p =
max {p, ¢}, any nontrivial positive solution to syste@DS) blows-up in a finite time.
Certain generalizations have been considered in [6, 9, 13].

In this paper, we consider a more general case and preseRtfitee exponent for the
system(RDS) using the test function method due to Mitidieri and PohoZ4aéy 17, 19].

The study of fractional diffusion equation is motivated bg use of fractional models
in different fields of science such as transport theory,pphysics, porous media and so
on (see [2, 15] and the reference therein)

This article deals with the non-autonomous reaction-ditin system
uy +t" Ayu = |vl?
(RDS) " |v]
v+t Agv = |uf’
posed inQ := (0,00) x RY, subject to the initial daté&.(0, z) = ug(z), v(0, z) = vo(x)),
wherep > 1 andq > 1 are real numbersy, 5 € |0,2],r > —1,s > —1.

2. PRELIMINARIES AND NOTATIONS

Let S, (¢, x) be the semi-group associated with the heat equation
u+Aou=0, 0<a<?2 t>0 xR

It is known thatS,, (¢, x) is defined by

_ _ 1 ize—1]¢|” g
Sa(t,x) =: S,(t) )t /RN e £

satisfying the following properties

o Sa(t) € L®(RN) N L'(RY)
e S,(t) > 0and [,y Sa(t)dz =1,2 € RV, ¢ > 0.

and the following estimates:

o [|S.(t) * uoll, < [Juollp, uo € LP(RY), 1 < p < oo, t > 0.
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© [1Sa(t) % uolly < ct” 2678 .
o |[VS.(t)]q < ct~ 17975 foranyuy € LP(RY), 1 < p < ¢ < 00, t > 0.

_ﬂ(l 1

In the sequel,thé> and L" norms will be denoted by - || and|| - || respectively.H*
will denote the usual Sobolev space ghuiill denote the integral oveR”.

3. EXISTENCE OF LOCAL SOLUTIONS
The local existence is given by the following Theorem

Theorem 3.1.Let ug € LP(RY) N H*(RY) for 1 < p < 00,0 < a < 2and vy €
LYRN) N HP(RN) for 1 < ¢ < 00,0 < 3 < 2. Then, thereis a T}, > 0 such that
the system (RDS) has a unique mild solution (u, v) € C([0, Tiax); LP(RY) N HY(RY)) x
C ([0, Tinax); LYRY) N HP(RY)). Moreover, if ug > 0, vo > 0, thenu > 0 and v > 0.

Proof. It is natural to associate to the systéDS) the corresponding pair of integral
equations

u(t,x) = U(t, 0)ug(z) + /tU(t, s)v|i(s,x)ds, t>0, zeRY, (3.1)
0

and t
v(t,x) = V(t,0)v(x) +/ V(t,s)|ulP(s,2)ds, t>0, xR, (3.2)
0

where {U(t, s)i~s>0+ and {V(¢, s)i~s>0} are the evolution families o'z (RY) that de-
scribe the solutions to the homogeneous Cauchy problemhéofamilies of generators
{t"An},5o and{t*Ag},., respectively. We know from [8, 1] that

tr+1 _ o.r+1
mt®:8<—————>,t2020
r+1

and
ts—i—l _ o.s—l-l

V(t,a)z?'( —

where{S(t)},., and{7 (t)},., are the semigroups with infinitesimal generatadvs and
Ag, respectively.

), t>02>0,

Let us first show the positivity of the solutions in case theigElocally in time. As-
sume that,, > 0 andvy > 0, then from the representation of the mild solution

u(t) = U(t, 0)ug +/O U(t, s)|v|%(s) ds
and t
v(t) = V(t,0)vg +/0 V(t, s)|ulP(s) ds,

one immediately has
u(t) = Ut 0)ug
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and

v(t) > V(t,0)vp.
But asl/ andV are positively preserving sincgand7 have the same property, then

u(t) > 0 wheneverugy > 0

and
v(t) > 0 whenevery, > 0.

So in case a solutiofw, v) exists, it is positive and even more bounded from below by
(U(t,0)ug, V(t,0)vy) cOmponentwise.

The propagatora((t,0) andV(t,0) are Markovian fromZL>(R”) into L>(R"), that
is: ||U(t,0)]] < 1and|V(t,0)] < 1. Now, we takel’ > 0 fixed, but otherwise arbitrary,
and consider the set

Xr = {(u,v) : [0,T] = L*RY) x L*(R") such that||(u,v)||| < +oo}

wherel||(u, v)[|| = supg<, < ([[u(®)]| + [lo@)]).
Clearly, X1 is a Banach space and

Pr={(u,v) € Xr:u>0,v>0}
is a closed subset of. Let
Br = {(u,v) € Xr : |[|(u,v)|[]| < R}.

If we set .
O(v) =U(t,0)uy + / U(t, s)vlds,
0

U(u) = V(t,0)vy + /tV(t, s)uf ds

and
F(u,v) = (@(v), ¥(u))

then, if R > 0 is large enough an@ > 0 is sufficiently small /'(u, v) is a strict contraction
of By N Xr into itself. Indeed

F(u,v) — F(u,v)=
([ e v s, [V -wo)as).
Using the mean value theorem, it follows that
F(u,v) — F(u,v) = (Fi(v,7), F>(T, 7))

where .
Fi(v,v) = q/o Ut,s)(Ov(s) + (1 —0)v(s)) (v — 1) ds
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and t
Fy(u,u) = p /0 V(t, s)(Au(s) + (1 = N)a(s))" ™" (u(s) — a(s)) ds
for somed = 6(s) € (0,1) andX = A(s) € (0,1). Where upon

|F(u,0) = F(u,7v) |||—Q||v—v||/ 16 v(s —0)3(s))* " ds +

pllo =1 [ 0wts) + (1 = Ay s

<qllo =) (0R+ (1 = )R )T +pllu—a| (AR + (1 = N)RFT

< qllv =T R'T + pllu — @ RPT'T

< ll(u,v) = @D)|||(pR"~" + qR* )T
If we chooseR > 0 large enough and’ > 0 small enough, we ensure that the mapping
F(u,v) is a contraction fromBr N Xr N Pr into itself. Hence a local solution exists ity

The regularity of the solution is improved as usual leadimg &£ C([0, T1ax); LP(RY) N
H*(RY)) andC ([0, Trnax); LYRY) N HA(RY)). O

4. NON-EXISTENCE OF GLOBAL SOLUTIONS

For the sake of the reader, we recall the following propositirom ([11, Proposi-
tion 3.3]) which will be used in the proof of our main result.

Proposition 4.1([11]). Supposethat 6 € [0,2], 3+ 1 >0, and # € C3°(RY). Then, the
following point-wise inequality holds:

1
6(2)|7 6(x)(=A)"20(x) >

~ B+2

Proof. The proof given in N. Ju ( [11, Proposition 3.3]) fof = 2, making use of the
Riesz potential representation of the operdter\)’/? is motivated by the proof of the
Proposition3.2 of A. Cordoba and D. Cordoba [3].

For the sake of the reader, we will reproduce Ju’s Proof inegigion/N. Whend = 0
or § = 2, the result is obvious. Now, we consider the case (0,2). Then by proposi-
tion 3.3 [11],

(=A)"210(x))*2. (4.1)

(=A)°20(x) CPV/|

‘N—i—é

Therefore,

10(2)|°0(x)(—A)220(z) = C'(;PV/ 10(2)772 — [6(2)|°0(« )e(y)dy.

‘ |N+5

By Young’s inequality, if3 + 1 > 0, then

®

01) "8()0La) < 16()|*16(0)] < 51 0@ + 551001

=)
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Thus,

() 6(2)(~8)" () > s 5 PV, /\e S

|JJ _ y‘N+5

B 1
RS
The casgd = —1 is still valid from the above proof, without using Young'siquality. [

<—A>5/2|e<x>|ﬁ+2.

The main result on nonexistence of global solution is given b

Theorem 4.2. Assumethat [ ug(z) > 0, [wvo(xz) > 0,andlet N > 1andp > 1,¢ > 1,
a=2r+1),0=2(s+1).If

a(g+1) ﬁ(p+1)} 4.2)

r+1 " s+1

then problem (RDS') admits no global weak nonnegative solutions.

<pq—1)Ngmax{

Proof. The proof is by contradiction. Indeed we assume that thetisolis global. Mul-
tiplying the first equation scalarly ih? and the second equation of the systgRiD.S) by
©?, wherey is a test function satisfying(z, T') = 0 and integrating by parts, we obtain

/ o] + / wola)l(x) = —0 / g+ / Fuleg’ 4.3)
Q Q Q

/ 9 + / wol)l(x) = —0 / o + / oA, (4.4)
Q Q Q

According to Ju’s inequality, we hav&,’ < 0p’~1A, ¢, and sinca: andv are positive,
we may write

/vqape—l—/ uo(x)apg(a:) < —9/ uape_lapmt/ t’”uAaape (4.5)
Q supp{p} supp{et} supp{Aap}

and

/ uie’ + / vo(x)@h(z) < —0 / v’ oy + / "o’ (4.6)
Q supp{p} supp{pt} supp{Agp}

where supp stands for support. We are going to estimate terms in the Hghd side of
(4.5) and (4.6) using Holder’s inequality. For, we firstiestte

1/p
—/wpe‘lwtﬁ (/ IUIW) I (4.7)
Q Q
1/p
- [ rup i < ( / |u|%9) 7, (4.8)
Q Q
g—1-2 / e
I, - (/ o —Ww)
supp{e}

and

and

where
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) ) ) 1/p’
I, = (/ﬁ erw_k7mﬂﬁawV)
supp{Aap}

Similarly, one can verify that

1/q
- [ vt ( / |UW) 7 4.9)
Q Q

and

andp +p' = pp'.

and
1/q
—/tsvgoe_lAggpg </ |v|qg09> T (4.10)
Q Q

where

. ) 1/q

J = (/ 1= \<Pt|q)
supp{p}
and
1/¢'
’ 0,/ ’
Ty = / {500 | A g
supp{Apgp}

andq +¢' = qq.

) 1/p 1/q ) i
DefineZ = (fQ |u|p<p9) andJ = (fQ |v\qg09> . Using the above estimates, we
obtain the following inequalities

7+ [ wle)et@) <T(E+T) (4.11)
and
v / wd(#) < T (T + o). (4.12)
At this stage, we choose
t x|?
o(t,r) = x (ﬁ + %) (4.13)
wherey € C*(R) is defined by
1 ifo<e<i
X(€) =\ if1<e<2
0 if&>2

In order to estimate the integrdls, Z, , /1, and 7., we use the change of variables
t=R*r and z=Ry. (4.14)
Thus

24+N

1/p’
T, =0 ( / P15 R—2p’<pTR2+NdydT) < CL RV (4.15)
Q

and

1/p
T, = < / 77 R GO 100 par’ RREN AU 4y dT) < GRS (4.16)
Q
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while

2+ N

1/¢'
Ji=0 ( / P01 0d R=2 RN gy dT) < D\R 7 (4.17)
Q

and

1/q¢
Ty = ( / qu'Rszq'<p(9_1_%)q/R_ﬁqu“NA%go dydT) < DyR7PTEST2 (4.18)
Q

Observe thatZ; andZ, in one hand, and7; and > on the other hand are of the

same order iR as—2 + 52 = 2r —a + 572 and -2+ ZE =25 - f+ ZE e,

2 =2 — 5 asrequired wheré,, Cs, D;, D, are positive constants. Now, since
s+1

r—+1
/u0>0 and/v0>0

/uogbo >0 and /vogbo > (0 for R large

then

Now, it follows from inequalities (4.11) and (4.12) that

JI<TI(I1 +1I) (4.19)
and
"< T (i + o) (4.20)
respectively. Thus
T < (T + o) (Ji + To) (4.21)
and
T < (Li+ Do)t (T + ) (4.22)
Using the estimates df;, Z,, J1, and. 7., we obtain via (4.21)
T <CRPY R (4.23)
where(C' is a constant. We require
N+2 2 N+2
BRI LN (4.24)
p p pq

giving N <‘;‘IT‘11) < -2, Similarly, we obtain via (4.22) the conditiaN (’;?T‘ll) < 2
Finally, we have

(4.25)

N (pg — 1) Smax{a(q_'_l) 6(p+1)}.

r+1 " s+1
We consider two cases:
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e The sub-critical case:
If

a(@g+1) Blp+1)
NQW_1><HMX{ r+1 7 s+1 }
then the right hand side of inequality (4.21) will go to zesofa — oo and hence
limp_.. 7" = 0, which means that = 0 and hence: = 0. This is a contradiction
with our hypothesis.
e The critical case:

If

(4.26)

N (pg — 1) = max { (4.27)

then from estimation (4.21) we obtain

a(g+1) ﬁ(p+1)}
r+1 7 s+1

pq—1

J r < (71 < Q.

In this case
lim / / lv|?p = 0. (4.28)

R—oo
{R2<t+|z[2<2R?}

From the estimate
P < TJ(C+D) (4.29)
one can see that the integrals are computed only on the domain

Q={(z,t): R* <t+|z]’ <2R*}.

Letting R — oo in expression (4.22), we obtain thanks to Lebesgue’s damicezn-
vergence theorefimp_. [ [ |ul?% = [ [|u|?limpr_c ¢ = 0, givingu = 0. Con-
tradiction. This completes the proof.

O

Remark 4.3. One can observe thatjif = ¢, uo = vy, r = s = 0, anda = 3 = 2, we
obtainu = v, and inequality (4.25) will read

2
(p2—1)N§2p+2<:>p§N—|—1 (4.30)
which is the Fujita’s exponent for the parabolic equation

u = Au + |ul?.
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