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ABSTRACT. We consider the non-autonomous system of nonlinear parabolic equations






ut + tr ∆αu = |v|
q

vt + ts ∆βv = |u|
p

posed inQ := (0,∞) × R
N , subject to the initial data(u(0, x) = u0(x), v(0, x) = v0(x)), wherep > 1

andq > 1 are positive real numbers,α, β ∈]0, 2] and∆γ := (−∆)γ/2 is the(−∆)γ/2 fractional power

of −∆ in the x variable defined via the Fourier transformF and its inverseF−1 by (−∆)γ/2w(x, t) =

F−1 (|ξ|γF(w)(ξ)) (x, t), wherer > −1 ands > −1.

The Fujita critical exponent which separates the case of blowing-up solutions from the case of globally

in time existing solutions is determined.
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1. INTRODUCTION

The equation

ut − ∆u = |u|p

has been considered by Fujita in his pioneering article [7].He determined a critical expo-

nentpc = 1 + 2
N

(called since then the Fujita critical exponent) such that:

• Forp < pc, any positive solution blows-up at a finite time.

• However forp > pc, there are solutions that blow-up, and under a certain restriction

solutions exist globally in time.

The critical casep = pc has been decided by Hayakawa [10] whenN = 2, and by

Kobayashi, Sirao and Tanaka [14] for anyN ≥ 1. Of course, many generalizations fol-

lowed these important articles, see [4] for a long list of references. Nagasawa and Sirao [18]

used a probabilistic treatment of blowing-up solutions to equations with fractional powers

of the Laplacian of the form

ut − ∆αu = c(x) |u|p
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for a certain positive functionc(x). Sugitani [20] treated the same equation withc(x) = 1,

while Guedda and Kirane [9] considered

ut − ∆αu = d(t) |u|p

for a certain positive functiond(t). The very recent article of Kirane, Laskri and Tatar [12]

treated the more general equation

Dδ
0|tu − ∆αu = h(t, x) |u|p

whereh(t, x) = O(tσ |x|ρ) for large |x| andDδ
0|tu is the time fractional derivative ofu in

the sense of Caputo [12].

The case of the system(RDS) has been studied whenr = s = 0 by Escobedo and

Herrero [5]; they showed that whenpq > 1 and (µ + 1)/(pq − 1) ≥ N/2 with µ =

max {p, q}, any nontrivial positive solution to system(RDS) blows-up in a finite time.

Certain generalizations have been considered in [6, 9, 13].

In this paper, we consider a more general case and present theFujita exponent for the

system(RDS) using the test function method due to Mitidieri and Pohozaev[16, 17, 19].

The study of fractional diffusion equation is motivated by the use of fractional models

in different fields of science such as transport theory, plasma physics, porous media and so

on (see [2, 15] and the reference therein)

This article deals with the non-autonomous reaction-diffusion system

(RDS)







ut + tr ∆αu = |v|q

vt + ts ∆βv = |u|p

posed inQ := (0,∞) × R
N , subject to the initial data(u(0, x) = u0(x), v(0, x) = v0(x)),

wherep > 1 andq > 1 are real numbers,α, β ∈ ]0, 2], r > −1, s > −1.

2. PRELIMINARIES AND NOTATIONS

Let Sα(t, x) be the semi-group associated with the heat equation

ut + ∆αu = 0, 0 < α ≤ 2, t > 0, x ∈ R
N .

It is known thatSα(t, x) is defined by

Sα(t, x) =: Sα(t) =
1

(2π)
N
2

∫

RN

eixξ−t|ξ|αdξ

satisfying the following properties

• Sα(t) ∈ L∞(RN) ∩ L1(RN)

• Sα(t) ≥ 0 and
∫

RN Sα(t)dx = 1, x ∈ R
N , t > 0.

and the following estimates:

• ‖Sα(t) ∗ u0‖p ≤ ‖u0‖p, u0 ∈ Lp(RN ), 1 ≤ p ≤ ∞, t > 0.
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• ‖Sα(t) ∗ u0‖q ≤ ct−
N
α

( 1

p
− 1

q
)‖u0‖p.

• ‖∇Sα(t)‖q ≤ ct−
N
α

(1− 1

q
)− 1

α for anyu0 ∈ Lp(RN), 1 ≤ p < q ≤ ∞, t > 0.

In the sequel,theL∞ andLr norms will be denoted by‖ · ‖ and‖ · ‖r respectively.Hs

will denote the usual Sobolev space and
∫

will denote the integral overRN .

3. EXISTENCE OF LOCAL SOLUTIONS

The local existence is given by the following Theorem

Theorem 3.1. Let u0 ∈ Lp(RN) ∩ Hα(RN) for 1 ≤ p < ∞, 0 < α ≤ 2 and v0 ∈

Lq(RN ) ∩ Hβ(RN) for 1 ≤ q < ∞, 0 < β ≤ 2. Then, there is a Tmax > 0 such that

the system (RDS) has a unique mild solution (u, v) ∈ C([0, Tmax); L
p(RN)∩Hα(RN))×

C
(

[0, Tmax); L
q(RN ) ∩ Hβ(RN)

)

. Moreover, if u0 ≥ 0, v0 ≥ 0, then u > 0 and v > 0.

Proof. It is natural to associate to the system(RDS) the corresponding pair of integral

equations

u(t, x) = U(t, 0)u0(x) +

∫ t

0

U(t, s)|v|q(s, x) ds, t > 0, x ∈ R
N , (3.1)

and

v(t, x) = V(t, 0)v0(x) +

∫ t

0

V(t, s)|u|p(s, x) ds, t > 0, x ∈ R
N , (3.2)

where{U(t, s)t>s≥0} and{V(t, s)t>s≥0} are the evolution families onCB(RN) that de-

scribe the solutions to the homogeneous Cauchy problem for the families of generators

{tr∆α}t≥0 and{ts∆β}t≥0, respectively. We know from [8, 1] that

U(t, σ) = S

(

tr+1 − σr+1

r + 1

)

, t ≥ σ ≥ 0

and

V(t, σ) = T

(

ts+1 − σs+1

s + 1

)

, t ≥ σ ≥ 0,

where{S(t)}t≥0 and{T (t)}t≥0 are the semigroups with infinitesimal generators∆α and

∆β, respectively.

Let us first show the positivity of the solutions in case they exist locally in time. As-

sume thatu0 ≥ 0 andv0 ≥ 0, then from the representation of the mild solution

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)|v|q(s) ds

and

v(t) = V(t, 0)v0 +

∫ t

0

V(t, s)|u|p(s) ds,

one immediately has

u(t) ≥ U(t, 0)u0
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and

v(t) ≥ V(t, 0)v0.

But asU andV are positively preserving sinceS andT have the same property, then

u(t) > 0 wheneveru0 > 0

and

v(t) > 0 wheneverv0 > 0.

So in case a solution(u, v) exists, it is positive and even more bounded from below by

(U(t, 0)u0,V(t, 0)v0) componentwise.

The propagatorsU(t, 0) andV(t, 0) are Markovian fromL∞(RN) into L∞(RN), that

is: ‖U(t, 0)‖ ≤ 1 and‖V(t, 0)‖ ≤ 1. Now, we takeT > 0 fixed, but otherwise arbitrary,

and consider the set

XT =
{

(u, v) : [0, T ] → L∞(RN) × L∞(RN ) such that|||(u, v)||| < +∞
}

where|||(u, v)||| = sup0≤t≤T (‖u(t)‖ + ‖v(t)‖).

Clearly,XT is a Banach space and

PT = {(u, v) ∈ XT : u ≥ 0, v ≥ 0}

is a closed subset ofXT . Let

BT = {(u, v) ∈ XT : |||(u, v)||| < R}.

If we set

Φ(v) = U(t, 0)u0 +

∫ t

0

U(t, s)vq ds,

Ψ(u) = V(t, 0)v0 +

∫ t

0

V(t, s)up ds

and

F (u, v) = (Φ(v), Ψ(u))

then, ifR > 0 is large enough andT > 0 is sufficiently small,F (u, v) is a strict contraction

of BT ∩ XT into itself. Indeed

F (u, v) − F (u, v) =
(
∫ t

0

U(t, s)(vq(s) − vq(s)) ds ,

∫ t

0

V(t, s)(up(s) − up(s)) ds

)

.

Using the mean value theorem, it follows that

F (u, v)− F (u, v) = (F1(v, v), F2(u, u))

where

F1(v, v) = q

∫ t

0

U(t, s)(θv(s) + (1 − θ)v(s))q−1(v − v) ds



NON-LOCAL PARABOLIC SYSTEMS 207

and

F2(u, u) = p

∫ t

0

V(t, s)(λu(s) + (1 − λ)u(s))p−1(u(s) − u(s)) ds

for someθ = θ(s) ∈ (0, 1) andλ = λ(s) ∈ (0, 1). Where upon

|||F (u, v) − F (u, v)||| = q‖v − v‖

∫ t

0

‖(θ v(s) + (1 − θ)v(s))q−1‖ ds +

p‖u − u‖

∫ t

0

‖(λu(s) + (1 − λ)u(s))p−1‖ ds

≤ q‖v − v‖(θR + (1 − θ)Rq−1)T + p‖u − u‖(λR + (1 − λ)Rp−1)T

≤ q‖v − v‖Rq−1T + p‖u − u‖Rp−1T

≤ |||(u, v)− (u, v)|||(pRp−1 + qRq−1)T.

If we chooseR > 0 large enough andT > 0 small enough, we ensure that the mapping

F (u, v) is a contraction fromBT ∩XT ∩PT into itself. Hence a local solution exists inXT .

The regularity of the solution is improved as usual leading to u ∈ C([0, Tmax); Lp(RN ) ∩

Hα(RN)) andC
(

[0, Tmax); L
q(RN) ∩ Hβ(RN)

)

.

4. NON-EXISTENCE OF GLOBAL SOLUTIONS

For the sake of the reader, we recall the following proposition from ([11, Proposi-

tion 3.3]) which will be used in the proof of our main result.

Proposition 4.1 ([11]). Suppose that δ ∈ [0, 2], β + 1 ≥ 0, and θ ∈ C∞
0 (RN). Then, the

following point-wise inequality holds:

|θ(x)|β θ(x)(−∆)δ/2θ(x) ≥
1

β + 2
(−∆)δ/2|θ(x)|β+2. (4.1)

Proof. The proof given in N. Ju ( [11, Proposition 3.3]) forN = 2, making use of the

Riesz potential representation of the operator(−∆)δ/2 is motivated by the proof of the

Proposition3.2 of A. Cordoba and D. Cordoba [3].

For the sake of the reader, we will reproduce Ju’s Proof in dimensionN . Whenδ = 0

or δ = 2, the result is obvious. Now, we consider the caseδ ∈ (0, 2). Then by proposi-

tion 3.3 [11],

(−∆)δ/2θ(x) = CδP.V.

∫

θ(x) − θ(y)

|x − y|N+δ
dy.

Therefore,

|θ(x)|βθ(x)(−∆)δ/2θ(x) = CδP.V.

∫

|θ(x)|β+2 − |θ(x)|βθ(x)θ(y)

|x − y|N+δ
dy.

By Young’s inequality, ifβ + 1 > 0, then

|θ(x)|βθ(x)θ(y) ≤ |θ(x)|β+1|θ(y)| ≤
β + 1

β + 2
| θ(x)|β+2 +

1

β + 2
|θ(y)|β+2.
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Thus,

|θ(x)|βθ(x)(−∆)δ/2θ(x) ≥ Cδ
1

β + 2
P.V.

∫

|θ(x)|β+2 − |θ(y)|β+2

|x − y|N+δ
dy

=
1

β + 2
(−∆)δ/2|θ(x)|β+2.

The caseβ = −1 is still valid from the above proof, without using Young’s inequality.

The main result on nonexistence of global solution is given by

Theorem 4.2. Assume that
∫

u0(x) > 0,
∫

v0(x) > 0, and let N ≥ 1 and p > 1, q > 1,

α = 2(r + 1), β = 2(s + 1). If

(pq − 1)N ≤ max

{

α(q + 1)

r + 1
,
β(p + 1)

s + 1

}

(4.2)

then problem (RDS) admits no global weak nonnegative solutions.

Proof. The proof is by contradiction. Indeed we assume that the solution is global. Mul-

tiplying the first equation scalarly inL2 and the second equation of the system(RDS) by

ϕθ, whereϕ is a test function satisfyingϕ(x, T ) = 0 and integrating by parts, we obtain
∫

Q

|v|qϕθ +

∫

u0(x)ϕθ
0(x) = −θ

∫

Q

uϕθ−1ϕt +

∫

Q

tru∆αϕθ (4.3)

and
∫

Q

|u|qϕθ +

∫

v0(x)ϕθ
0(x) = −θ

∫

Q

vϕθ−1ϕt +

∫

Q

trv∆αϕθ. (4.4)

According to Ju’s inequality, we have∆αϕθ ≤ θϕθ−1∆αϕ, and sinceu andv are positive,

we may write
∫

Q

vqϕθ +

∫

supp{ϕ}

u0(x)ϕθ
0(x) ≤ −θ

∫

supp{ϕt}

uϕθ−1ϕt +

∫

supp{∆αϕ}

tru∆αϕθ (4.5)

and
∫

Q

uqϕθ +

∫

supp{ϕ}

v0(x)ϕθ
0(x) ≤ −θ

∫

supp{ϕt}

vϕθ−1ϕt +

∫

supp{∆βϕ}

trv∆αϕθ (4.6)

wheresupp stands for support. We are going to estimate terms in the right hand side of

(4.5) and (4.6) using Hölder’s inequality. For, we first estimate

−

∫

Q

uϕθ−1ϕt ≤

(
∫

Q

|u|pϕθ

)1/p

I1 (4.7)

and

−

∫

Q

truϕθ−1∆αϕ ≤

(
∫

Q

|u|pϕθ

)1/p

I2 (4.8)

where

I1 =

(
∫

supp{ϕ}

ϕ(θ−1− θ
p
)p|ϕt|

p′
)1/p′
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and

I2 =

(
∫

supp{∆αϕ}

tp
′rϕ(θ−1− θ

p
)p|∆αϕ|p

′

)1/p′

andp + p′ = pp′.

Similarly, one can verify that

−

∫

Q

vϕθ−1ϕt ≤

(
∫

Q

|v|qϕθ

)1/q

J1 (4.9)

and

−

∫

Q

tsvϕθ−1∆βϕ ≤

(
∫

Q

|v|qϕθ

)1/q

J2 (4.10)

where

J1 =

(
∫

supp{ϕ}

ϕ(θ−1− θ
q
)q′ |ϕt|

q′
)1/q′

and

J2 =

(

∫

supp{∆βϕ}

tq
′sϕ(θ−1− θ

q
)q′|∆βϕ|q

′

)1/q′

andq + q′ = qq′.

DefineI =
(

∫

Q
|u|pϕθ

)1/p

andJ =
(

∫

Q
|v|qϕθ

)1/q

. Using the above estimates, we

obtain the following inequalities

J q +

∫

u0(x)ϕθ
0(x) ≤ I (I1 + I2) (4.11)

and

Ip +

∫

v0ϕ
0
0(x) ≤ J (J1 + J2) . (4.12)

At this stage, we choose

ϕ(t, x) = χ

(

t

R2
+

|x|2

R2

)

(4.13)

whereχ ∈ C2(R) is defined by

χ(ξ) =



















1 if 0 ≤ ξ ≤ 1

ց if 1 ≤ ξ ≤ 2

0 if ξ ≥ 2.

In order to estimate the integralsI1, I2 , J1, andJ2, we use the change of variables

t = R2τ and x = Ry. (4.14)

Thus

I1 = θ

(
∫

Q

ϕ(θ−1− θ
p
)p′R−2p′ϕτR

2+Ndydτ

)1/p′

≤ C1R
−2+ 2+N

p′ (4.15)

and

I2 =

(
∫

Q

τ rp′Rr2p′ϕ(θ−1− θ
p
)p′R−αp′R2+N∆y

αϕ dy dτ

)1/p
′

≤ C2R
−α+ 2+N

p′
+r2 (4.16)
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while

J1 = θ

(
∫

Q

ϕ(θ−1− θ
q
)q′R−2q′R2+Nϕτ dy dτ

)1/q′

≤ D1R
−2+ 2+N

q′ (4.17)

and

J2 =

(
∫

Q

τ sq′Rs2q′ϕ(θ−1− θ
q
)q′R−βq′R2+N∆y

βϕ dy dτ

)1/q′

≤ D2R
−β+ 2+N

q′
+s2

. (4.18)

Observe thatI1 and I2 in one hand, andJ1 andJ2 on the other hand are of the

same order inR as−2 + N+2
p′

= 2r − α + N+2
p′

and−2 + 2+N
q
′ = 2s − β + 2+N

q′
; i.e,

2 = α
r+1

= β
s+1

as required whereC2, C2, D1, D2 are positive constants. Now, since

∫

u0 > 0 and
∫

v0 > 0

then
∫

u0φ0 ≥ 0 and
∫

v0φ0 > 0 for R large.

Now, it follows from inequalities (4.11) and (4.12) that

J q ≤ I (I1 + I2) (4.19)

and

Ip ≤ J (J1 + J2) (4.20)

respectively. Thus

J q− 1

p ≤ (I1 + I2) (J1 + J2)
1

p (4.21)

and

Ip− 1

q ≤ (I1 + I2)
1

q (J1 + J2) . (4.22)

Using the estimates ofI1, I2, J1, andJ2, we obtain via (4.21)

J q− 1

p ≤ C R
−2+ N+2

p′ R
− 2

p
+ N+2

pq′ . (4.23)

whereC is a constant. We require

−2 +
N + 2

p′
−

2

p
+

N + 2

pq′
≤ 0 (4.24)

giving N
(

pq−1
q+1

)

≤ α
r+1

. Similarly, we obtain via (4.22) the conditionN
(

pq−1
p+1

)

≤ β
s+1

.

Finally, we have

N (pq − 1) ≤ max

{

α(q + 1)

r + 1
,
β(p + 1)

s + 1

}

. (4.25)

We consider two cases:
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• The sub-critical case:

If

N (pq − 1) < max

{

α(q + 1)

r + 1
,
β(p + 1)

s + 1

}

(4.26)

then the right hand side of inequality (4.21) will go to zero as R → ∞ and hence

limR→∞ J
pq−1

p = 0, which means thatv ≡ 0 and henceu ≡ 0. This is a contradiction

with our hypothesis.

• The critical case:

If

N (pq − 1) = max

{

α(q + 1)

r + 1
,
β(p + 1)

s + 1

}

(4.27)

then from estimation (4.21) we obtain

J
pq−1

p ≤ C1 < ∞.

In this case

lim
R→∞

∫

{R2≤t+|x|2≤2R2}

∫

|v|qφ = 0. (4.28)

From the estimate

Ip ≤ J (C + D) (4.29)

one can see that the integrals are computed only on the domain

Ω ≡
{

(x, t) : R2 ≤ t + |x|2 ≤ 2R2
}

.

LettingR → ∞ in expression (4.22), we obtain thanks to Lebesgue’s dominate con-

vergence theoremlimR→∞

∫ ∫

|u|qφ =
∫ ∫

|u|q limR→∞ φ = 0, giving u ≡ 0. Con-

tradiction. This completes the proof.

Remark 4.3. One can observe that ifp = q, u0 = v0, r = s = 0, andα = β = 2, we

obtainu ≡ v, and inequality (4.25) will read

(

p2 − 1
)

N ≤ 2p + 2 ⇔ p ≤
2

N
+ 1 (4.30)

which is the Fujita’s exponent for the parabolic equation

ut = ∆u + |u|p.

ACKNOWLEDGMENTS

The author would like to thank Sultan Qaboos University for the financial support

under grant number: IG/SCI/DOMS/09/15. He is also very grateful to the referee for his

remarks and suggestions, in addition to his beneficial advice in using Ju’s inequality, which

consequently led to the improvement in the quality of this paper.



212 S. KERBAL

REFERENCES

[1] N. U. Ahmed,Semigroup Theory with Applications to Systems and Control, Pitman Res. Notes in Math.

Ser. 246, Longman Scientific and Technical and John Wiley, London, New York, 1991.

[2] B. Baeumer, M. Kovacs, and M. Meerschaert, Fractional reaction-diffusion equation

for species growth and dispersal,Journal of Mathematical Biology, Manuscript online:

http://www.maths.otago.ac.nz/∼mcubed/JMBseed.pdf

[3] A. Cordoba, D. Cordoba, A pointwise estimate for fractionary derivatives with applications to partial

differential equations,PNAS vol 10026 (2003).

[4] K. Deng and H. Levine, The role of critical exponents in blow-up theorems: the sequel,J. Math. Anal.

Appl. 243(2000) 85–126.

[5] M. Escobedo and M. A. Herrero, Boundedness and blow up fora semilinear reaction-diffusion system,

J. Diff. Equations 89 (1991), 176–202.

[6] M. Fila, H. A. Levine, and Y. Uda. A Fujita-type global existence-global non-existence theorem for

a system of reaction diffusion equations with differing diffusivities, Math. Methods Appl. Sci. 17 10

(1994), 807–835.

[7] H. Fujita, On the blowing-up o f solutions of the Cauchy problems forut = ∆u + u1+p, J. Fac. Sci.

Univ. Tokyo sect. I A13 (1966), 109–124.

[8] J. Goldstein,Semigroups of Linear Operators and Applications, Oxford University Press, New York,

1985.

[9] M. Guedda and M. Kirane, A note on nonexistence of global solutions to a nonlinear integral equation,

Bull. Belg. Math. Soc. 6 (1999), 491–497.

[10] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic diiferential equations,

Proc. Japan Acad. 49 (1973), 503–505.

[11] N. Ju , The Maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equa-

tions,Comm. Pure. Appl. Ana. (2005), 161–181.

[12] M. Kirane, Y. Laskri,and N. Tatar, Critical exponents of Fujita’s type for certain evolution equations and

systems with spatio-temporal fractional derivatives,J. Math. Anal. Appl. 312(2005) 488–501.

[13] M. Kirane, and M. Qafsaoui, Global nonexistence for theCauchy problem of some nonlinear Reaction-

Diffusion systems,Journal of Mathematical Analysis and Applications 268(1) (2002), 217–243.

[14] Y. Kobayashi, T. Sirao, and H. Tanaka, On the growing up problem for semilinear heat equations,J.

Math. Soc. Japan 29 (1977), 407–424.

[15] R. Mancinelli, D. Vergni, and A. Vulpiani, Front propagation in reactive systems with anomalous diffu-

sion,Physica D, Nonlinear Phenomena 185(2003), 175–195.

[16] E. Mitidieri, S. I. Pohozaev, Absence of global positive solutions of quasilinear elliptic inequalities,

(Russian) Dokl. Akad. Nauk 359 4 (1998), 456–460.

[17] E. Mitidieri, S. I. Pohozaev, Existence of positive solutions for a systems of quasilinear elliptic equations

and inequalities in Rn,Dokl. Math. 59 3 (1999), 351–355.

[18] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing-up of solutions for a nonlinear integral

equation,Trans. Amer. Math. Soc. 139(1969), 301–310.

[19] S.I. Pokhozhaev and A. Tesei, Critical exponent for theabsence of solutions for systems of quasilinear

parabolic inequalities,Differential Equations Vol.37 4 (2001), 551–558.

[20] S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations,Osaka J. Math.

12 (1975), 45–51.


