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1. INTRODUCTION

This paper deals with the existence of solutions to the initial value problems (IVP for

short) for the impulsive differential equations of the form,

cDαy(t) = f(t, yρ(t,yt)), a.e.t ∈ J = [0, b], t 6= tk, k = 1, . . . , m, 0 < α ≤ 1, (1.1)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (1.2)

y(t) = φ(t), t ∈ (−∞, 0], (1.3)

wherecDα is the Caputo fractional derivative,f : J × B → R, ρ : J × B → R, φ ∈ B

are given functions,Ik : R → R, k = 1, . . . , m are continuous functions,0 = t0 <

t1 < · · · < tm < tm+1 = b, ∆y|t=tk = y(t+k ) − y(t−k ), y(t+k ) = limh→0+ y(tk + h)

andy(t−k ) = limh→0− y(tk + h) represent the right and left hand limits ofy(t) at t = tk,

k = 1, . . . , m, andB is an abstractphase spaceto be specified later.

For any functiony and anyt ∈ [0, b], we denote byyt the element ofB defined by

yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. We assume that the historiesyt belong toB.

Differential equations of fractional order have recently proved to be valuable tools in

the modeling of many phenomena in various fields of science and engineering. Indeed, we

can find numerous applications in viscoelasticity, electrochemistry, control, porous media,
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electromagnetic, etc.; see the monographs of Kilbaset al. [19], Lakshmikanthamet al.

[22], Podlubny [24], and the papers [2, 3, 7, 9, 10, 31, 32] andthe references therein.

Differential delay equations, or functional differentialequations with or without im-

pulse, have been used in modeling scientific phenomena for many years. Often, it has been

assumed that the delay is either a fixed constant or is given asan integral in which case it

is called a distributed delay; see for instance the books [8,14, 18, 20, 21, 23, 27, 29], and

the papers [11, 13].

However, complicated situations in which the delay dependson the unknown functions

have been proposed in modeling in recent years (see for instance [6, 25, 28] and the ref-

erences therein). These equations are frequently called equations with state-dependent de-

lay. Existence results, among other things, were derived recently for functional differential

equations when the solution is depending on the delay on a bounded interval for impulsive

problems. We refer the reader to the papers by Abadaet al. [1], Ait Dads and Ezzinbi [4],

Anguraj et al. [5], and Hernandezet al. [16, 17]. In [12], the authors considered a class

of semilinear functional fractional order differential equations with state-dependent delay.

As far as we know, no papers exist in the literature related tofractional order functional

differential equations with state-dependent delay and impulses. The aim of this paper is to

initiate this study.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are

used throughout this paper. ByC(J, R) we denote the Banach space of all continuous

functions fromJ into R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.

Definition 2.1 ([19, 24]). The fractional (arbitrary) order integral of the functionh ∈

L1([a, b], R+) of orderα ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t − s)α−1

Γ(α)
h(s)ds,

whereΓ is the gamma function. Whena = 0, we write Iαh(t) = h(t) ∗ ϕα(t), where

ϕα(t) = tα−1

Γ(α)
for t > 0, andϕα(t) = 0 for t ≤ 0, andϕα → δ(t) asα → 0, whereδ is the

delta function.

Definition 2.2 ([19, 24]). For a functionh given on the interval[a, b], theαth Riemann-

Liouville fractional-order derivative ofh, is defined by

(Dα
a+h)(t) =

1

Γ(n − α)

(

d

dt

)n ∫ t

a

(t − s)n−α−1h(s)ds.

Heren = [α] + 1 and[α] denotes the integer part ofα.
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Definition 2.3 ([19]). For a functionh given on the interval[a, b], the Caputo fractional-

order derivative ofh, is defined by

(cDα
a+h)(t) =

1

Γ(n − α)

∫ t

a

(t − s)n−α−1h(n)(s)ds.

In this paper, we will employ an axiomatic definition of the phase spaceB introduced

by Hale and Kato in [13] and follow the terminology used in [18], but we will add some

transformations. Thus,(B, ‖ · ‖B) will be a seminormed linear space of functions mapping

(−∞, 0] into R. The first two axioms onB are motivated by the fact that we want a solution

of the problem (1.1)–(1.3) to be continuous on(tk, tk+1] and the left hand limit exists for

everytk. We will assume thatB satisfies the following axioms:

(A1) If y : (−∞, b) → R, b > 0, y0 ∈ B, andy(t−k ) andy(t+k ), k = 1, . . . , m exist with

y(t−k ) = y(tk), k = 1, . . . , m then for everyt ∈ [0, b) \ {t1, . . . , tm} the following

conditions hold:

(i) yt ∈ B; andyt is continuous on[0, b) \ {t1, . . . , tm};

(ii) There exists a positive constantH such that|y(t)| ≤ H‖yt‖B;

(iii) There exist two functionsK(·), M(·) : R+ → R+, independent ofy, with K

continuous andM locally bounded such that:

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t} + M(t)‖y0‖B.

(A2) The spaceB is complete.

DenoteKb = sup{K(t) : t ∈ [0, b]} andMb = sup{M(t) : t ∈ [0, b]}.

3. EXISTENCE OF SOLUTIONS

Consider the following space

PC(J, R) = {y :J → R : | y ∈ C((tk, tk+1], R), k = 0, . . . , m + 1 and there exist

y(t−k ) andy(t+k ), k = 1, . . . , m with y(t−k ) = y(tk)}.

PC(J, R) is a Banach space with the norm

‖y‖PC = sup
t∈J

|y(t)|.

Set

Bb = {y : (−∞, b] → R \ y ∈ PC(J, R) ∩ B},

and let‖ · ‖b the seminorm inBb defined by

‖y‖b = ‖y0‖B + sup{|y(t)| : 0 ≤ t ≤ b}, y ∈ Bb.

Set

J ′ := J\{t1, t2, . . . , tm}.
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Definition 3.1. A functiony ∈ Bb with its α-derivative exists onJ ′ is said to be a solution

of (1.1)–(1.3) ify satisfies (1.1)–(1.3).

For the existence of solutions for the problem (1.1)–(1.3),we need the following aux-

iliary lemmas.

Lemma 3.2([31]). If α > 0, then the differential equation

cDαh(t) = 0

has solutionsh(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,

n = [α] + 1.

Lemma 3.3([31]). If α > 0, then

IαcDαh(t) = h(t) + c0 + c1t + c2t
2 + · · · + cn−1t

n−1

for someci ∈ R, i = 0, 1, 2, . . . , n − 1, n = [α] + 1.

Lemma 3.4 ([15]). Supposeb ≥ 0, β > 0 and a(t) is a nonnegative locally integrable

function on0 ≤ t < T (someT ≤ ∞), and supposeu(t) is nonnegative and locally

integrable on0 ≤ t < T with

u(t) ≤ a(t) + c

∫ t

0

(t − s)β−1u(s)ds, 0 ≤ t < T.

Then

u(t) ≤ a(t) +

∫ t

0

∞
∑

j=1

(cΓ(β))j

Γ(jβ)
(t − s)jβ−1a(s)ds, 0 ≤ t < T. (3.1)

If a(t) ≡ a, constant on0 ≤ t < T , then the inequality(3.1) is reduced to

u(t) ≤ aEβ

(

cΓ(β)tβ
)

whereEβ is the Mittag-Leffler function[19] defined by

Eβ(z) :=
∞

∑

k=0

zk

Γ(βk + 1)
, z ∈ C, Re(β) > 0.

For more generalized Gronwall inequalities see Yeet al. [30].

As a consequence of Lemma 3.2 and Lemma 3.3, we have the following result which

is useful in what follows.

Lemma 3.5 ([10]). Let 0 < α ≤ 1 and leth : J → R be continuous. A functiony is a

solution of the fractional integral equation

y(t) =



























y0 + 1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds if t ∈ [0, t1],

y0 + 1
Γ(α)

∑k

i=1

∫ ti

ti−1
(ti − s)α−1h(s)ds

+ 1
Γ(α)

∫ t

tk
(t − s)α−1h(s)ds

+
∑k

i=1 Ii(y(t−i )), if t ∈ (tk, tk+1], k = 1, . . . , m,

(3.2)
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if and only ify is a solution of the fractional IVP

cDαy(t) = h(t), for eacht ∈ J ′, (3.3)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . , m, (3.4)

y(0) = y0. (3.5)

We will need to introduce the following hypotheses

(Hφ) The functiont → φt is continuous fromR(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J×B, ρ(s, ϕ) ≤

0} into B and there exists a continuous and bounded functionLφ : R(ρ−) → (0,∞)

such that‖φt‖B ≤ Lφ(t)‖φ‖B for everyt ∈ R(ρ−).

(H1) The functionf : J × B → R is continuous.

(H2) There exist functionsp, q ∈ C(J, R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖B for eacht ∈ J and allu ∈ B.

The next result is a consequence of the phase space axioms.

Lemma 3.6 ([16, Lemma 2.1]). If y : (−∞, b] → R is a function such thaty0 = φ and

y|J ∈ PC(J : R), then

‖ys‖B ≤ (Mb + Lφ)‖φ‖B + Kb sup{‖y(θ)‖; θ ∈ [0, max{0, s}]}, s ∈ R(ρ−) ∪ J,

where

Lφ = sup
t∈R(ρ−)

Lφ(t).

Remark 3.7. We remark that condition(Hφ) is satisfied by functions which are continuous

and bounded. In fact, if the spaceB satisfies axiomC2 in [18] then there exists a constant

L > 0 such that‖φ‖B ≤ L sup{‖φ(θ)‖ : θ ∈ [−∞, 0]} for everyφ ∈ B that is continuous

and bounded (see [18, Proposition 7.1.1]) for details. Consequently,

‖φt‖B ≤ L
supθ≤0 ‖φ(θ)‖

‖φ‖B
‖φ‖B, for everyφ ∈ B\{0}.

Theorem 3.8. Assume that the hypotheses (H1)–(H2) and(Hϕ) hold. Then the problem

(1.1)–(1.3)has at least one solution on(−∞, b].

Proof. The proof will be given in several steps.

Step 1: Consider the following problem

cDαy(t) = f(t, yρ(t,yt)), a.e, t ∈ J = [0, t1], (3.6)

y(t) = φ(t), t ∈ (−∞, 0]. (3.7)

Define the operatorN : Bt1 → Bt1 by:

N(y)(t) =







φ(t), if t ∈ (−∞, 0],

φ(0) + 1
Γ(α)

∫ t

0
(t − s)α−1f(s, yρ(s,ys)) ds, if t ∈ [0, t1].

(3.8)
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Let x(·) : (−∞, t1] → R be the function defined by

x(t) =







φ(t), if t ∈ (−∞, 0],

φ(0), if t ∈ [0, t1].

Thenx0 = φ. For eachz ∈ Bt1 with z0 = 0, we denote byz the function defined by

z(t) =







0, if t ∈ (−∞, 0],

z(t), if t ∈ [0, t1].

If y(·) satisfies the integral equation

y(t) = φ(0) +
1

Γ(α)

∫ t

0

(t − s)α−1f(s, yρ(s,ys))ds,

we can decomposey(·) into y(t) = z(t) + x(t), 0 ≤ t ≤ t1, which impliesyt = zt + xt,

for everyt ∈ [0, t1], and the functionz(·) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Set

C0 = {z ∈ Bt1 : z0 = 0}.

Let ‖ · ‖0 be the norm inC0 defined by

‖z‖0 = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ t1} = sup{|z(s)| : 0 ≤ s ≤ t1}.

We define the operatorP : C0 → C0 by

P (z)(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Obviously that the operatorN has a fixed point is equivalent toP has one, so we need to

prove thatP has a fixed point. We shall use the Leray- Schauder alternative.

Claim 1: P is continuous

Let {zn} be a sequence such thatzn → z in C0. Then

|P (zn)(t) − P (z)(t)| ≤ 1
Γ(α)

∫ t

0
(t − s)α−1|f(s, znρ(s,zns+xs) + xρ(s,zns+xs))

−f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds.

Sincef is a continuous function, we have

‖P (zn) − P (z)‖0 → 0 asn → ∞.

Claim 2: P maps bounded sets into bounded sets inC0.

Indeed, it is enough to show that for anyη > 0, there exists a positive constantℓ such

that for eachz ∈ Bη = {z ∈ C0 : ‖z‖0 ≤ η}, by (H2) we have for eacht ∈ [0, t1],

|P (z)(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1[p(s) + q(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B]ds
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≤
bα

Γ(α + 1)
‖p‖∞

+
1

Γ(α)

∫ t

0

(t − s)α−1q(s)(Kbη + Kb|φ(0)| + Mb‖φ‖B)ds

≤
bα

Γ(α + 1)
‖p‖∞

+
bα

Γ(α + 1)
‖q‖∞(Kbη + Kb|φ(0)| + Mb‖φ‖B) := ℓ.

Claim 3: N maps bounded sets into equicontinuous sets ofC0.

Let l1, l2 ∈ [0, t1], l1 < l2, let Bη a bounded set ofC0 as in Claim 2, and letz ∈ Bη.

Then,

|P (z)(l2) − P (z)(l1)| ≤
1

Γ(α)

∫ l2

l1

(l2 − s)α−1|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

+
1

Γ(α)

∫ l1

0

[(l2 − s)α−1 − (l1 − s)α−1]|f(s, zρ(s,zs+xs) + xρ(s,zs+xs))|ds

≤
‖p‖∞
Γ(α)

∣

∣

∣

∣

∫ l2

l1

(l2 − s)α−1ds +

∫ l1

0

(l2 − s)α−1ds

∣

∣

∣

∣

+
‖q‖∞(Kbη + Kb|φ(0)| + Mb‖φ‖B)

Γ(α)

∣

∣

∣

∣

∫ l2

l1

(l2 − s)α−1ds +

∫ l1

0

[(l2 − s)α−1ds

∣

∣

∣

∣

≤
2‖p‖∞(l2 − l1)

α

Γ(α + 1)

+
2‖q‖∞(l2 − l1)

α(Kbη + Kb|φ(0)| + Mb‖φ‖B)

Γ(α + 1)
.

As l1 → l2, the right-hand side of the above inequality tends to zero. As a consequence of

Claims 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude thatN is contin-

uous and completely continuous.

Claim 4: A priori bounds.

Let z be a possible solution of the equationz = λP (z) for someλ ∈ (0, 1). Then for

eacht ∈ [0, t1], we have

|z(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1q(s)‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B]ds +
bα‖p‖∞
Γ(α + 1)

.

But

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ ‖zρ(s,zs+xs)‖B + ‖xρ(s,zs+xs)‖B

≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t} + M(t)‖z0‖B

+ K(t) sup{|x(s)| : 0 ≤ s ≤ t} + M(t)‖x0‖B

≤ Kb sup{|z(s)| : 0 ≤ s ≤ t} + Mb‖φ‖B + Kb|φ(0)|.
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Let us take the right-hand side of the above inequality asw(t). Then, we have

|z(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1q(s)w(s)ds +
bα‖p‖∞
Γ(α + 1)

.

By the definition ofw we obtain

w(t) ≤ Mb‖φ‖B + Kb|φ(0)| +
Kbb

α‖p‖∞
Γ(α + 1)

+
Kb‖q‖∞

Γ(α)

∫ t

0

(t − s)α−1w(s)ds.

Set

a = Mb‖φ‖B + Kb|φ(0)| +
Kbb

α‖p‖∞
Γ(α + 1)

and

c =
Kb‖q‖∞

Γ(α)
.

Then Lemma 3.4 implies that for eacht ∈ [0, t1]

|w(t)| ≤ aEα (cΓ(α)tα) := M.

Then,

|z(t)| ≤
M

Γ(α)

∫ t

0

(t − s)α−1q(s)ds +
bα‖p‖∞
Γ(α + 1)

≤ M‖Iαq‖∞ +
bα‖p‖∞
Γ(α + 1)

:= M∗.

Set

U0 = {z ∈ C0 : ‖z‖0 < M∗ + 1}.

From the choice ofU0, there is noz ∈ ∂U0 such thatz = λP (z), for someλ ∈ (0, 1). As

a consequence of the nonlinear alternative of Leray-Schauder type, we deduce thatP has

a fixed pointz ∈ U0. HenceN , has a fixed point that is solution to the problem (1)-(3).

Denote this solution byy0.

Step 2: Consider the following problem

cDαy(t) = f(t, yρ(t,yt)), a.e, t ∈ J = (t1, t2], (3.9)

y(t+1 ) − y(t−1 ) = I1(y0(t
−
1 )), (3.10)

y(t) = y0(t), t ∈ (−∞, t1]. (3.11)

Let

C1 = {y ∈ Bt2 : y(t+1 ) exists},

and define the operatorN1 : C1 → C1 by

N1(y)(t) =







y0(t), if t ∈ (−∞, t1]

y0(t
−
1 ) + I1(y0(t

−
1 )) + 1

Γ(α)

∫ t

t1
(t − s)α−1f(s, yρ(s,ys)) ds, if t ∈ [t1, t2].

(3.12)
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Let x(·) : (−∞, t2] → R defined by

x(t) =







y0(t), if t ∈ (−∞, t1],

y0(t
−
1 ) + I1(y0(t

−
1 )), if t ∈ [t1, t2].

Thenxt1 = y0. For eachz ∈ C1 with z(t1) = 0, we denote byz the function defined by

z(t) =







0, if t ∈ (−∞, t1];

z(t), if t ∈ [t1, t2].

If y(·) satisfies the integral equation

y(t) = y0(t
−
1 ) + I1(y0(t

−
1 )) +

1

Γ(α)

∫ t

t1

(t − s)α−1f(s, yρ(s,ys)) ds,

we can decomposey(·) into y(t) = z(t) + x(t), t1 ≤ t ≤ t2 which impliesyt = zt + xt,

for everyt ∈ [t1, t2], and the functionz(·) satisfies

z(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Set

C̃t1 = {z ∈ C1 : zt1 = 0},

and consider the operatorP1 : C̃t1 → C̃t1 defined by

P (z)(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

As in Step 1, we can show thatP1 is continuous and completely continuous, and ifz is a

possible solution of the equationz = λP1(z) for someλ ∈ (0, 1), then there existsM∗1 > 0

such that

‖z‖t1 ≤ M∗1.

Set

U1 = {z ∈ C̃t1 : ‖z‖0 < M∗1 + 1}.

From the choice ofU0, there is noz ∈ ∂U1 such thatz = λP (z), for someλ ∈ (0, 1). As

a consequence of the nonlinear alternative of Leray-Schauder type, we deduce thatP1 has

a fixed pointz ∈ U1. HenceN1 has a fixed point that is solution to the problem (1)–(3).

Denote this solution byy1.

Step 3: We continue this process and taking into account thatym := y|[tm,b] is a

solution to the problem

cDαy(t) = f(t, yρ(t,yt)), a.e, t ∈ J = (tm, b], (3.13)

y(t+m) − ym−1(t
−
m−1) = Im(ym−1(t

−
m)) (3.14)

y(t) = ym−1(t), t ∈ (−∞, tm−1]. (3.15)
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The solution of problem (1.1)–(1.3) is then defined by

y(t) =































y0(t), if t ∈ (−∞, t1]

y1(t), if t ∈ (t1, t2],

. . .

ym(t), if t ∈ (tm, b].

4. AN EXAMPLE

To apply our results, we consider the functional differential equation with state depen-

dent delay of the form

y′(t) =
ety(t− σ(y(t)) + 2

1 + y2(t − σ(y(t))
, t ∈ [0, b], (4.1)

y(θ) = φ(θ), θ ∈ (−∞, 0], (4.2)

∆y(ti) =

∫ ti

−∞

γi(ti − s)y(s)ds, (4.3)

whereγi ∈ C([0,∞), R), σ ∈ C(R, [0,∞)), 0 < t1 < t2 < · · · < tn < b.

Setγ > 0. For the phase space, we chooseB to be defined by

B = PCγ = {φ ∈ PC((−∞, 0], R) : lim
θ→−∞

eγθφ(θ) exists}

with the norm

‖φ‖γ = sup
θ∈(−∞,0]

eγθ|φ(θ)|, φ ∈ PCγ.

Set

ρ(t, ϕ) = t − σ(ϕ(0)), (t, ϕ) ∈ J × B,

f(t, ϕ) =
etϕ + 2

1 + ϕ2
, (t, ϕ) ∈ J × B,

Ik(y(tk)) =

∫ ti

−∞

γi(ti − s)y(s)ds.

It is clear that (H1) and (H2) are satisfied with

|f(t, ϕ)| ≤ et‖ϕ‖B + 2 for all (t, ϕ) ∈ J × B.

Theorem 4.1. Let ϕ ∈ B be such thatHϕ is valid andt → ϕt is continuous onR(ρ−).

Then there exists a solution of(4.1)-(4.3).
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[5] A. Anguraj, M. M. Arjunan and E. M. Hernàndez, Existenceresults for an impulsive neutral functional

differential equation with state-dependent delay,Appl. Anal.86 (7) (2007), 861–872.

[6] O. Arino, K. Boushaba and A. Boussouar, A mathematical model of the dynamics of the phytoplankton-

nutrient system. Spatial heterogeneity in ecological models (Alcal de Henares, 1998).Nonlinear Anal-

ysis RWA1 (1) (2000), 69–87.

[7] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value problems with nonlinear

fractional differential equations,Appl. Anal.87 (7) (2008), 851–863.

[8] M. Benchohra, J. Henderson and S. K. Ntouyas,Impulsive Differential Equations and Inclusions, Hin-

dawi Publishing Corporation, Vol 2, New York, 2006.

[9] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order func-

tional differential equations with infinite delay,J. Math. Anal. Appl.338(2008), 1340–1350.

[10] M. Benchohra and B. A. Slimani, Impulsive fractional differential equations,Electron. J. Differential

Equations2009No. 10 (2009), pp. 1–11.

[11] C. Corduneanu and V. Lakshmikantham, Equations with unbounded delay,Nonlinear Anal.4 (1980),

831–877.

[12] M.A. Darwish, and S.K. Ntouyas, Semilinear functionaldifferential equations of fractional order with

state-dependent delay.Electron. J. Differential Equations2009, No. 38 (2009), pp. 1–10.

[13] J. Hale and J. Kato, Phase space for retarded equations with infinite delay,Funkcialaj Ekvac.21 (1978),

11–41.

[14] J. K. Hale and S. M. Verduyn Lunel,Introduction to Functional Differential Equations, Applied Math-

ematical Sciences 99, Springer-Verlag, New York, 1993.

[15] D. Henry,Geometric Theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag,

Berlin/New York, 1989.

[16] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with

state-dependent delay.Nonlinear Anal. Real World Applications7 (2006), 510–519.

[17] E. Hernandez, R. Sakthivel and S. Tanaka Aki, Existenceresults for impulsive evolution differential

equations with state-dependent delay,Electron. J. Differential Equations, 2008No. 28 (2008), pp. 1–

11.

[18] Y. Hino, S. Murakami, and T. Naito,Functional Differential Equations with Unbounded Delay,

Springer-Verlag, Berlin, 1991.

[19] A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,Theory and Applications of Fractional Differential

Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[20] V. Kolmanovskii, and A. Myshkis,Introduction to the Theory and Applications of Functional-

Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999.



224 M. BENCHOHRA AND F. BERHOUN

[21] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov,Theory of Impulsive Differntial Equations,

Worlds Scientific, Singapore, 1989.

[22] V. Lakshmikantham, S. Leela and J. Vasundhara,Theory of Fractional Dynamic Systems, Cambridge

Academic Publishers, Cambridge, 2009.

[23] V. Lakshmikantham, L. Wen and B. Zhang,Theory of Differential Equations with Unbounded Delay,

Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994.

[24] I. Podlubny,Fractional Differential Equations, Academic Press, San Diego, 1999.

[25] A.V. Rezounenko and J. Wu, A non-local PDE model for population dynamics with state-selective

delay: Local theory and global attractors,J. Comput. Appl. Math.190(1-2) (2006), 99–113.

[26] S.G. Samko, A.A. Kilbas and O.I. Marichev,Fractional Integrals and Derivatives. Theory and Appli-

cations, Gordon and Breach, Yverdon, 1993.

[27] A.M. Samoilenko, N.A. Perestyuk,Impulsive Differential Equations, World Scientific, Singapore, 1995.

[28] D.R. Will and C.T.H. Baker, Stepsize control and continuity consistency for state-dependent delay-

differential equations,J. Comput. Appl. Math.53 (2) (1994), 163–170.

[29] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New

York, 1996.

[30] H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differ-

ential equation,J. Math. Anal. Appl.328(2007), 1075–1081.

[31] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations,

Electron. J. Differential Equations2006, No. 36 (2006), pp, 1–12.

[32] Y. Zhou, Existence and uniqueness of fractional functional differential equations with unbounded delay.

Int. J. Dyn. Syst. Differ. Equ.1 (4) (2008), 239–244.


