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1. INTRODUCTION

This paper deals with the existence of solutions to theahi@lue problems (IVP for
short) for the impulsive differential equations of the form

D(t) = f(t,Yppy), @€t € J=[0,0], t #t, k=1,...,m, 0<a <1, (1.1)

Ay‘t:tk = Ik(y<t];)), k= 1, e, (12)

y(t) = ¢(t), t € (—00,0], (1.3)

wherec D is the Caputo fractional derivativg,: J x B - R,p: JxB - R, € B
are given functions/, : R — R, k = 1,...,m are continuous functions) = t, <

t) < o0 <ty <t = b, Aylimy, = y(&) — y(ty), y(t)) = limy o+ y(tr + h)
andy(t; ) = lim,_o- y(tx + h) represent the right and left hand limits gft) at¢ = ¢,
k=1,...,m,andB is an abstragbhase space be specified later.

For any functiony and anyt € [0, b], we denote byy, the element of3 defined by
y:(0) = y(t + 6) for € (—o0, 0]. We assume that the historigsbelong toB.

Differential equations of fractional order have recenttpyed to be valuable tools in
the modeling of many phenomena in various fields of sciendesagineering. Indeed, we
can find numerous applications in viscoelasticity, eleddtemistry, control, porous media,

Received August 02, 2009 1056-2176 $15®Dynamic Publishers, Inc.



214 M. BENCHOHRA AND F. BERHOUN

electromagnetic, etc.; see the monographs of Kiktaal. [19], Lakshmikanthanet al.
[22], Podlubny [24], and the papers [2, 3, 7, 9, 10, 31, 32]thedeferences therein.

Differential delay equations, or functional differenteduations with or without im-
pulse, have been used in modeling scientific phenomena foy years. Often, it has been
assumed that the delay is either a fixed constant or is givam astegral in which case it
is called a distributed delay; see for instance the book$4818, 20, 21, 23, 27, 29], and
the papers [11, 13].

However, complicated situations in which the delay depemdfie unknown functions
have been proposed in modeling in recent years (see fomicest{®, 25, 28] and the ref-
erences therein). These equations are frequently callegtiengs with state-dependent de-
lay. Existence results, among other things, were deriveentty for functional differential
equations when the solution is depending on the delay on adsalinterval for impulsive
problems. We refer the reader to the papers by Aledd. [1], Ait Dads and Ezzinbi [4],
Angurajet al. [5], and Hernandeet al. [16, 17]. In [12], the authors considered a class
of semilinear functional fractional order differentialwetions with state-dependent delay.
As far as we know, no papers exist in the literature relateffactional order functional
differential equations with state-dependent delay andiisgs. The aim of this paper is to
initiate this study.

2. PRELIMINARIES

In this section, we introduce notations, definitions, aneliprinary facts which are
used throughout this paper. BY(J,R) we denote the Banach space of all continuous
functions from.J into R with the norm

[Ylloo == sup{[y(®)] - t € J}.

Definition 2.1 ([19, 24]). The fractional (arbitrary) order integral of the functién &
L'([a,b],R,) of ordera € R, is defined by

Ig‘h(t):/ %h(s)ds,

whereI" is the gamma function. Whem = 0, we write I*h(t) = h(t) * @.(t), where
Va(t) = % fort > 0, andp,(t) = 0 for ¢t < 0, andy, — §(t) asa — 0, whered is the
delta function.

Definition 2.2 ([19, 24]). For a functionk given on the intervala, b], the ath Riemann-
Liouville fractional-order derivative of, is defined by

D30) = s (4 [ ey hisyas

(n —a)

Heren = [a] + 1 and|«] denotes the integer part of
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Definition 2.3 ([19]). For a functionk given on the intervala, b], the Caputo fractional-
order derivative of:, is defined by

1

(DI = s [ (= ).

In this paper, we will employ an axiomatic definition of theggle spac® introduced
by Hale and Kato in [13] and follow the terminology used in]j18ut we will add some
transformations. Thugp, || - ||z) will be a seminormed linear space of functions mapping
(—o0, 0] into R. The first two axioms o are motivated by the fact that we want a solution
of the problem (1.1)—(1.3) to be continuous @, t;.1] and the left hand limit exists for
everyt,. We will assume thaB satisfies the following axioms:

(A1) If y : (—00,b) — R,b > 0, yo € B, andy(t;) andy(t)), k = 1,...,m exist with
y(ty) = y(te), k = 1,...,m then for everyt € [0,b) \ {t1,...,t,} the following
conditions hold:

() v+ € B; andy;, is continuous o0, b) \ {t1,...,tm};
(i) There exists a positive constaft such thaty(t)| < H||y||s;
(iii) There exist two functiong<'(-), M(-) : Ry — R, independent of;, with K
continuous and/ locally bounded such that:

[yells < K (t) sup{ [y(s)] : 0 < s <t} + M(t)]|yol|5-
(A,) The spaces is complete.
DenoteK,, = sup{K(t) : t € [0,b]} and M, = sup{M (t) : ¢t € [0, b]}.

3. EXISTENCE OF SOLUTIONS

Consider the following space
PC(J,R)={y:J = R:|y € C((ty,txs1],R), k= 0,...,m+ 1 and there exist
y(ty) andy(t)), k=1,....m withy(t;)=y(t)}
PC(J,R) is a Banach space with the norm
Hprc==§g§\y@)L

Set
Bb = {y : (—OO,b] H]R\y S PC(J,R)QB},
and let|| - ||, the seminorm inB, defined by
1ylls = llwolls + sup{ly(£)] : 0 <t < b}, y € By

Set
J/ = J\{tl,tg, ce 7tm}
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Definition 3.1. A functiony € B, with its a-derivative exists o/’ is said to be a solution
of (1.1)—(1.3) ify satisfies (1.1)—(1.3).
For the existence of solutions for the problem (1.1)—(1w&) need the following aux-
iliary lemmas.
Lemma 3.2([31]). If & > 0, then the differential equation
°D*h(t) =0

has solutionsi(t) = ¢y + it + cot> + -+ + it ' € Ryi = 0,1,2,...,n — 1,
n = [a] + 1.

Lemma 3.3([31]). If « > 0, then
I°°Dh(t) = h(t) 4+ co + it + ot 4+ - -+ cpgt"
forsome;; e R,i=0,1,2,...,n—1,n=[a] + 1.

Lemma 3.4 ([15]). Supposé > 0, 3 > 0 anda(t) is a nonnegative locally integrable
function on0 < t < T (someT < oo), and suppose(t) is nonnegative and locally
integrable ond < t < T with

u(t) < af(t) + C/Ot(t — )% tu(s)ds, 0<t<T.

Then

u(t) < a(t) + /O Z (CPF((]@))j (t —s)"ta(s)ds, 0<t<T. (3.1)

If a(t) = a, constant o) < t < T, then the inequality3.1)is reduced to
u(t) < aBy (0(B)t°)
whereEj is the Mittag-Leffler functiofil 9] defined by
o k
z

Es(z) = kzzo NESE €C, Re(p)>0.

For more generalized Gronwall inequalities seeeYal. [30].

As a consequence of Lemma 3.2 and Lemma 3.3, we have the fiofaesult which
is useful in what follows.

Lemma 3.5([10]). Let0 < o < 1 and leth : J — R be continuous. A functionis a
solution of the fractional integral equation

[0+ ﬁ fot<t —5)*71h(s)ds ift € 0,14,

y(t)y={ Y%+ ﬁ i ftt,l(tz — )% h(s)ds
+ 57 Jo (8= 9)°71h(s)ds

|+ Ly(t)), if te(teti], k=1,...,m,
(3.2)
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if and only ify is a solution of the fractional IVP

°D*(t) = h(t), foreachte J, (3.3)
Aylm, = L(y(ty)), k=1,...,m, (3.4)
y(0) = yo. (3.5)

We will need to introduce the following hypotheses

(Hg) The functiort — ¢, is continuous fromR (p~) = {p(s, ) : (s, ) € JXB, p(s, ) <
0} into B and there exists a continuous and bounded fundtion R(p~) — (0, o)
such that|¢;||s < L?(t)| ¢ for everyt € R(p™).

(H1) The functionf : J x B — R is continuous.

(H2) There exist functiong, ¢ € C'(J,R") such that

| f(t,u)] < p(t) + q(t)|ul|5 for eacht € J and allu € B.

The next result is a consequence of the phase space axioms.

Lemma 3.6([16, Lemma 2.1]) If y : (—o0,b] — R is a function such thag, = ¢ and
yl; € PC(J : R), then

lyslls < (My + L) |65 + Ky sup{[ly(0)]; 6 € [0, max{0,s}]}, s € R(p™) U,

where
L? = sup L°(t).
teER(p™)
Remark 3.7. We remark that conditio(/,;) is satisfied by functions which are continuous
and bounded. In fact, if the spatesatisfies axiont; in [18] then there exists a constant
L > 0 such that|¢||z < Lsup{||¢(0)] : 0 € [—o0,0]} for every¢ € B that is continuous
and bounded (see [18, Proposition 7.1.1]) for details. €quently,

SuPg< [|¢(6) |
lallrs

Theorem 3.8. Assume that the hypotheses (H1)-(H2) afd) hold. Then the problem
(1.1){1.3) has at least one solution dr-oo, b].

el < L |6lls,  forevery¢ € B\{0}.

Proof. The proof will be given in several steps.
Step 1: Consider the following problem
‘Dy(t) = [, Ypty), a€teJ=[01], (3.6)
y(t) = o(t), te (—o0,0]. (3.7)
Define the operataN : B;, — B;, by:
{ (1), if e (—o0,0],

t (3.8)
$(0) + 1ay Jo (6 = 8)* 7 (8, Yp(op) ds, i £ € [0, 1],

N(y)(t) =
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Letz(-) : (—oo,t;] — R be the function defined by
¢(t)v if te (_0070]7
(t) =

#(0), if ¢te€]0,t].
Thenzy = ¢. For eache € B;, with zy = 0, we denote by the function defined by
0, if te(—o00,0],
2(t), if ¢e€]0,t].
If y(-) satisfies the integral equation

1 ! a—1
8) = 900) + s [ (=9 s
we can decomposg-) into y(t) = z(t) + =(t), 0 < t < t;, which impliesy; = z; + x4,

for everyt € [0, ¢,], and the functiorx(-) satisfies

1 t o 3
2(t) = m/o (t—s) 1f(5> Zp(sZstas) T xp(&?s-l-xs))ds'

(%
Set
C():{ZGBtl IZOIO}.
Let| - ||o be the norm irC, defined by
1Zllo = [lz0lls +sup{|z(s)| : 0 < s < #1} =sup{|z(s)| : 0 < s <1}

We define the operata? : Cy — Cy by

1

t
PO = 7 /0 (£ 8)"f (5, Zyomoay + ooz sa)d5.

Obviously that the operata¥ has a fixed point is equivalent #® has one, so we need to
prove thatP has a fixed point. We shall use the Leray- Schauder altemativ

Claim 1: P is continuous

Let{z,} be a sequence such thgt— z in Cy. Then

t a— _
PG~ PO < iy Jilt = )M F (5, Fnpisizmsbmn) + Tptosznntan)

ds.

_f(87zp(5725+xs) + xp(S,Es-i-:cs))

Sincef is a continuous function, we have

|P(2,) — P(2)]lo = 0 asn — oo.

Claim 2: P maps bounded sets into bounded setSjn
Indeed, it is enough to show that for any> 0, there exists a positive constaiguch
that for eache € B, = {2z € Cy : ||z]|o < 1}, by (H2) we have for eache [0, ¢1],
1

|P(2)(t)] < m/o (t— S)Q_l[p(s) + q(S>HEp(8,Es+xs) T Tp(s,zs+as)

B] ds
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ba

S -

Fa+1)

N ﬁ / (t = 8)*g(s) (Ko + Ko |6(0)] + My | 6lls)ds

<"l
= T(a+1) Pl

bOé
Tar

1P]]oo

1q]loo (K1 + K| 6(0)| + My||6||5) := £

Claim 3: N maps bounded sets into equicontinuous ses,o0f

Letly,l; € [0,41], {1 < Iy, let B, a bounded set afy as in Claim 2, and let € B,.
Then,

l2
IP()(E) = PO € s [ 0= ) 1705 Fpsz v + Ttz s

||p||00 & a— h a—
< T(a) /ll (Iy — s) 1ds+/0 (I — 5)* 'ds

lglloo(Kom + K| $(0)] + Ml lls) | [* a1 " a1
+ (o) /ll (Iy —s) ds—l—/o [(lo — $)*ds
2||plloo(la — )"

['(a+1)
L 2lalloolts = b)*(Ken + K4|¢(0)] + M| ¢lls)

['(a+1) '

As [, — [, the right-hand side of the above inequality tends to zemagonsequence of
Claims 1 to 3 together with the Arzela-Ascoli theorem, wa canclude thafV is contin-
uous and completely continuous.

Claim 4: A priori bounds

Let = be a possible solution of the equation= \P(z) for some\ € (0,1). Then for
eacht € [0, ], we have

Lo 1l
D12 = [ = 95 Bt )+t o ol + o2l
001 < a7 [ (= 9 b+ el +
But
HEP(S,ES‘F-TS) +xp(8,fs+$s) B S HEP(S7ES+:BS) B + pr(sygs“l‘xs) B

< K(t)sup{|z(s)] : 0 < s <t} + M(t)||20ll5
+ K(t)sup{|z(s)| : 0 < s <t} + M(t)||xolls
< Kpsup{|z(s)| : 0 < s <1} + M| ¢l[5 + Kp|o(0)].
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Let us take the right-hand side of the above inequality &. Then, we have

b*|[pllo
I(a+1)

1 [t -
wmm%wwwwwH

By the definition ofw we obtain

Kb |Iplloo |, Follalle [F, -
wlt) < Myloll + Kolo ) + PN 1 S [ sjetugsyas,

Set
Kyb®||pl
a = My|¢|ls + K| 6(0)] + F?TM)
and
C = %
F(a)

Then Lemma 3.4 implies that for eatke [0, 1]

lw(t)] < aFE, (cI'(a)t) := M.

Then,
Mo b° (Pl oo
)< —— [ (t—s5)*"g(s)ds + —1=
0*[|pll oo
< MI%G||loe + = = M".
Set

Uy = {Z e Cy: HZH() < M*+ 1}

From the choice ot/, there is na: € 0U, such that: = AP(z), for some\ € (0,1). As

a consequence of the nonlinear alternative of Leray-Satrayge, we deduce thdt has

a fixed pointz € U,. HenceN, has a fixed point that is solution to the problem (1)-(3).
Denote this solution by.

Step 2: Consider the following problem

CDay<t) = f(t,yp(t,yt)>7 agtc J = (th t2]7 (39)
y(t7) —y(tr) = Li(wo(ty)), (3.10)
y(t) = yo(t), te€ (—o0,t]. (3.11)

Let
Cy = {y € By, : y(t) existg,
and define the operatdy, : C; — C; by
{ Yo(t), if t € (—o0, ]

vo(t7) + Li(wo(t7) + w7 o (8= )27 F (5, Ypsn)) ds, 1T € [t 8],
(3.12)

Ni(y)(t) =
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Letxz(-) : (—oo,t2] — R defined by

yo(t), if te(—o0,t],
{ Yo(ty) + Li(yo(ty)), i t € [ty ).
Thenzx,, = yo. For eache € C; with z(¢;) = 0, we denote by the function defined by
{ 0, if +e(—o0,t];

Z(t), if ¢te [tl,tg].

x(t) =

If y(-) satisfies the integral equation

y(t) = yo(t7) + L (woltr) + / (t— ) F (5, Uptoy) d,

1
L(a) Jy,
we can decomposg-) into y(t) = z(t) + z(t), t; <t < t, which impliesy; = z; + x4,
for everyt € [t1, 5], and the functior(-) satisfies

1 t
)= —— t— a—1 = ~ s,
(0 = Fay [ €= 9" 6 Bz + )
Set
étl ={z€C:z =0},

and consider the operatét : C,, — C,, defined by

I o _
P(2)(t) = m/o (t—s) lf(s, Zp(s,7s4ws) T l‘p(s,gs+x3))d$.

As in Step 1, we can show th&; is continuous and completely continuous, and i a

possible solution of the equatian= AP, (z) for some\ € (0, 1), then there exist3/,; > 0

such that
[2lle < M.
Set
Uy ={zeC, :|zllo < M +1}.
From the choice ot/, there is na: € 0U; such that: = AP(z), for some\ € (0,1). As
a consequence of the nonlinear alternative of Leray-Sdaraiyge, we deduce thdt, has

a fixed pointz € U;. HenceN; has a fixed point that is solution to the problem (1)—(3).
Denote this solution bys;.

Step 3: We continue this process and taking into account ihat:= y|y,. 4 is a
solution to the problem

D) = f(t, Ypty)), a&te = (tn,b] (3.13)

y(t;) - ym—l(t;m—l) = ]m(ym—l(t;z)) (3.14)

y(t> = ym—l(t>7 te (—OO, tm—l]- (315)



222 M. BENCHOHRA AND F. BERHOUN

The solution of problem (1.1)—(1.3) is then defined by

p

Yo(t), if t € (—o0, ]
Y (1), ift € (t,ts],
y(t) =
| ym(t),  ift € (6, 0].

4. AN EXAMPLE

To apply our results, we consider the functional differahgiquation with state depen-
dent delay of the form

(t) = el?ﬁty;(:?fgi (;3)2 teo,b], (4.1)
y(@) = ¢(9)7 NS (—OO, O]v (42)
Ay(t;) = /_ vi(t; — s)y(s)ds, (4.3)

wherey; € C([0,00),R), 0 € C(R,[0,00)),0 < t; <ty <---<t, <b.
Sety > 0. For the phase space, we chods® be defined by

B=PC"={¢ e PC((—o0,0],R) : GEI_H e (0) exists

with the norm
I6l, = sup €’|¢(0)], ¢e PC.

0e(—00,0]
Set
p(t,p) =t —a(p(0), (t,p) € JxDB,
el + 2
t = — t Jx B
f(,gp) 1+¢27 (7%0)6 X 9

t;

Le(y(te)) = / Yi(t: — s)y(s)ds.

It is clear that (H1) and (H2) are satisfied with
ft,o)l <elells+2  for all  (t,p) € JxB.

Theorem 4.1.Letp € B be such that,, is valid andt — ¢, is continuous orR(p~).
Then there exists a solution ¢4.1)(4.3).
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paper.
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