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ABSTRACT. In this paper we consider the question of weak compactnetteedfet of attainable measures
on a Hilbert space induced by a class of partially observetstamdard stochastic systems. The system is
perturbed not only by Brownian motion but also by an arbjtrse&cond order random process taking values
from a Hilbert space. Structural controls used are measwitbsvalues from the space of bounded linear
operators,L(Y, X) whereX,Y are the state and output spaces, respectively. We congderas control
problems and prove existence of optimal policies.
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1. INTRODUCTION

In this paper we are interested in partially observed ststha@ontrol problem with
structural controls which are operator valued measuress iStdescribed by a stochastic
differential equation on Hilbert space coupled with an blgé& equation representing noisy
measurement process as follows:

de = Az dt + B(dt)y(t—) + o(t)dW(t), telI=]0,T],2(0)= zo, (1.1)
y(t) = C(t)x(t) +&(t), tel. (1.2)

The processt is the statey is the observation, and’ and ¢ are random processes to
be described shortly. The system is called “partially obsét since the state is not
accessible; only the noisy measured outpug available for control. The operatof is
the infinitesimal generator of @)-semigroup of bounded linear operators_ &rnand B is
an operator valued measure defined on the sigma algelmfasubsets of the sat with
values in the space of bounded linear operators froto X. Any change of this operator
valued measure means a structural change of the systemtorljzion of the operataA.
This operator valued measure is considered here as thaateoiscontrol variable which
is called the structural control. Our concern here is to wtie properties of the set of
attainable measures induced by the system on the state &pacel prove existence of
optimal controls for several interesting control problems
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This is a nonstandard stochastic system in several wayst, Eimcludes direct feed-
back control and its optimal choice. Second, the contradsagrerator valued measures
much more general than mere operator valued functions.dTthe system is corrupted
not only by Brownian motion; the measurement process isupted by a general Hilbert
space valued second order random process, not the standerdgales. All these features
allow a wider class of systems covering the classical onbssé class of systems are not
covered in the literature including the monograms due to BacRand Zabczyk [1], [2].

There are both physical and theoretical motivations fodgtf this class of problems.
For details see [4]. We mention here some physical motimatieading to such models. Itis
well known in aerospace engineering, that a change of paysamfiguration or structure of
an aircraft can significantly alter the flight dynamics. Tisidone by appropriate maneuver
of ailerons, rudders, elevators, wing flaps etc. These avetstal controls. In material
sciences, structural changes of molecules, for examplmpaization, can produce new
materials with desired properties. Many more examples &engdn [4].

In addition to the above physical motivations, there is aerable theoretical interest
in modeling hybrid systems and their control. See, for examihe special issue of the
journal of hybrid Systems [3, p. 490-509], [8, p. 544-5674 &7, 9] and the extensive
references there in. Except the recent paper [4], it seerhmnoh work has been done
on stochastic hybrid systems driven by structural contbalsed on partial information.
Here, we consider this problem under relaxed assumptiompaced to those used in [4]
and prove existence of optimal structural feedback costbalsed on an entirely different
approach involving functional analysis on the space of messon Hilbert space and weak
compactness property of the set of attainable measures.

The rest of the paper is organized as follows. In section 2esbasic notations and
definitions are presented. Precise formulation of the cbphioblem is given in section 3.
In section 4, we study the properties of the set of attainad@asures on the state space. Re-
sults on the existence of optimal structural feedback obsaare presented in section 5 for
several different objective functionals. The paper is ¢toded with some open problems.

2. NOTATIONS

Let £(Y, X) denote the space of bounded linear operators from a Hilpaxtes” to
a Hilbert spaceX. Furnished with the standard operator norm topology (umfoperator
topology), itis a Banach space. Liet= [0, '] be afinite interval an& the sigma algebra of
subsets of the sdt Let M,, (%, L(Y, X)) denote the space of all finitely additive bounded
operator valued measures furnished with the total vanatarm. For the uniform operator
topology, the variation oB € M,,(3, L(Y, X)) on any set/ € ¥ is given by

|Blu(]) = sup > 1B(0)l|cev,x) (2.1)

oEm
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wherer denotes any finite, disjoint; measurable partition of the sét The supremum
is taken over all such partitions. It is well known [10, 11hathfurnished with the total
variation norm,

|Bl, = sup{|Bl.(0),0 € T}, (2.2)

M (2, L(Y, X)) is a Banach space. Lét,(X, L(Y, X)) denote the class of bounded
countably additive members of this space. Furnished wightdlal variation norm, as de-
fined above, this is a closed subspacé®f (X, £(Y, X)) and hence also a Banach space.
We denote this space by....,, (3, £(Y, X)) indicating that its members are countably addi-
tive having bounded variation. The set....., (2, £(Y, X)) will denote the class of regular
measures contained M., (2, L(Y, X)).

Throughout the rest of the papgK’, Y} will denote a pair of separable Hilbert spaces.
This is what we need for study of stochastic systems. For a foxg arbitrary measure
e M1, (3), we introduce the following class of operator valued meesur

cabv

My = { B € M (2, £00.X)) s sup( (1B(0) el (o)} = 1B, < o0

oeT
wherer denotes any finite and disjoibt-measurable partition of the interval Here we
use the conventiof/0 = 1. SinceX, Y are Hilbert spaces, for evefy € M, there exists
anL(Y, X) valued measurable functidrs defined on/ such that

o) = / Fa(t)C oldt), CeY, o€,

with |B|, = [, |Fs(t)||lzv,x)0(dt). Itis easy to see thall, is a Banach space with respect
to this norm topology. A sef C M, is bounded if there exists a finite positive numbgr
such that

sup{|B|,, B € I'} < Cr.
For admissible structural controls, we choose a weakly @nhgubser’ of M,.

Definition 2.1 A bounded set” C M, is said to be conditionally weakly compact if for
every generalized sequengB,, } € I, there exists a generalized subsequence, relabeled as
the original sequence, and an elemB8pte 1/, such that

/I (9(8), Ba(d)F (1)) x — / (9(8), Bo(dt) f(£))x 2.3)

foreveryf € B (I,Y) andg € B, (I, X). And it is said to be weakly compact if the
limit B, € T".

For details on vector measures, the reader is refereed tavéfieknown books of
Diestel and Uhl [10] and Dunford and Schwartz [11].

For any Banach spacg, the space of nuclear operators (also called trace clasa-ope
tors) is a subset of the space of bounded linear oper&tgrs and it is denoted by, (7).
The collection of positive members @, (Z) is denoted by’ (7). We useB..(I, Z) to
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denote the vector space of boundedaneasurable functions with values ih Furnished
with the supnorm topology it is a Banach space.

Additional notations will be introduced as and when reqlire

3. ATTAINABLE SET OF MEASURES

Let (Q, F, Fi>0, P) be a complete filtered probability space. The filtrat{oh, t > 0}
is a family of increasing right continuous complete subsagatgebras of the sigma-algebra
F with P being the probability measure defined & According to standard notation,
the expected value of a random variables denoted byE(h) = [, h(w)P(dw) = h. Let
{X,Y, H} denote three separable real Hilbert spacégjenoting the state spack, the
output space anél the space where the Brownian motion takes values from. @enthe
partially observed stochastic system on the Hilbert sp&ées’, H} given by

de = Az dt + B(dt)y(t—) + o(t)dW(t), telI=10,T], xz(0)=x, (3.1)
y(t) =C(t)x(t) +£(t), tel, (3.2)

wherez is the state ang is the observation. The system is called “partially obsétve
since the state is not accessible; only the noisy measured ougdatavailable for control.
Our general assumptions are as follows. The operatisrthe infinitesimal generator of a
Co-semigroupS(t),t > 0, on X andB € M. (X, L(Y, X)), 0 € Bo(I,L(H, X)), W

is an H valued Brownian motion with covarianeég € L (H), (the class of positive self
adjoint linear operators iX), C € B (I, L(X,Y))NC(I, L(X,Y)) and¢ is ameasurable
random process taking values fram Without further notice, it is always assumed that all
the random processes are adapted to the filtrafion > 0.

LetI’ C M, C M.n(2, L(Y, X)) denote the class of admissible controls. The oper-
ator valued measurB < I" represents structural control which is activated by obeston
y controlling the process.

We need the following result.

Lemma 3.1 SupposeA generates &,-semigroupS(t),t > 0, on X andC € B.(I,
LX,Y)NC(I,L(X,Y)). Then for everyB € M (%, L(Y, X)) there exists a unique
strongly measurable bounded evolution operéfg(t, s), 0 < s < t < T, such that the
evolution equation

dz = Azdt + B(dt)C(t)z(t—), =z(s)=Ce X, telsT], (3.3)

has a unique mild solution € B.([s,T], X) given byz(t) = Ug(t, s)(, t > s. Further it
is easy to verify that

sup{||Us(t, s)||z(x), B € I'} < b= Mexp{MCCr},

whereM = sup{||S(t)|,t € I},C = sup{||C(t)||z(x,v),t € I}, andCr = sup{|B|,, B €
I'}.



ATTAINABLE SET OF MEASURES AND STRUCTURAL FEEDBACK CONTROL 229

Proof. The proof is based on Banach fixed point theorem similar toghen in [4]. For
a-priori bounds, it uses a generalized Gronwall type inétyuaroved in [9, Lemma 5].C]

Substituting the observation proceggiven by equation (3.2) into equation (3.1) we
obtain the feedback system

de = Az dt + B(dt)C(t)x(t—) + B(dt)E(t) + o(t)dW (t),z(0) =z, tel. (3.4)
It follows from Lemma 3.1 and Dhumels formula that for evétye M, .., (2, L(Y, X))
the mild solution of equation (3.4) is given by
() = (1) = Unlt, 0000+ [ Ut o) Blds)(s)
+ /Ot Ug(t,s)o(s)dW(s), tel. (3.5)

Let 5(.X) denote the sigma algebra of Borel subsets of the (sepatdibbeyt spaceX and
M (X) the space of probability measures 80X ). For eachB € I andt € I, define the
measure o8(X) by

pP(o) = Prob{z®(t) € o}, o€ B(X).
We are interested in the attainable set of measures
Aty={u?,Bel}, tel (3.6)

and their application to control problems.
In particular, we consider the following control probleros the feedback system (3.4).

P1: Let D C X be a given closed target set. Our problem is to find a struictaratrol
B¢ € T for the feedback system (3.4) such that the probability ity this target at time
T is maximum. Mathematically this can be formulated as folo®efineJ, (B) = 2 (D)
and find aB° € I" such that

J1(B°) > J,(B)V B €T. (3.7)

P2: Another problem of similar nature is the evasion problemreHn open seb C X is
given which is hazardous (forbidden) and must be avoidedraasf possible. The problem
is to find a structural controB® € T’ for the feedback system (3.4) that minimizes the
encounter probability with the sé? given by J,(B) = £(0). That is, findB° € T such
that

JQ(BO) < JQ(B)) VBel. (38)

P3: Lety : I x X — R be a real valued function measurable in the first argument and
continuous in the second, andis a countably additive bounded positive measure. The
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problem is to find a structural control for the system (3.4ttminimizes the functional;
given by,

J3(B) = / /X ()P (d)o(db). (3.9)

P4: Let o, € BC(X),t,(distinct)e I,i = 1,2,...mandF : R™ — R a lower semi-
continuous function. The problem is to find a structural colnfior the system (3.4) that
minimizes the functional,(B) given by

J4(B) = F(Hﬁ(@l)» MtB;(SOQ)v s nutBi,L((pm))v (310)

where, () = [y () (dz).
We are interested in the question of existence of optimalrotmfor the above prob-
lems subject to the dynamic constraints (3.1)-(3.2) orjantly equation (3.4).

4. COMPACTNESS OF ATTAINABLE SETS

In this section we prove that the attainable set of measasadgfined by the expression
(3.6), is conditionally weakly compact. For this we needfthilowing preliminary results.

Without loss of generality, we assume that the mean of théaanprocess is zero.
Thus, the evolution equation satisfied by the mean of thegssacis given by
dz = Azdt + B(dt)C(t)z(t—),z(0) = Zo.
Clearly the solution of this equation is given by
z(t) = 2°(t) = Up(t, 0)2,

whereUjy is the evolution operator correspondingfoc I" as given by Lemma 3.1. Con-
sequently, the error proce$s = = — =} satisfies the evolution equation

de = Aedt + B(dt)C(te(t—) + B(dO)E(L) + o(t)dW (t),e(0) = eg, te . (4.1)

Let % denote the covariance operator corresponding @iven by(Py(, ¢) = E{(eo, ()%},
¢ € X. Let@Q € LI (H)(space of positive self adjoint operators/if) denote the incre-
mental covariance of the Wiener procégstaking values fromf andQ(t) = o (t)Qo* (1),

t > 0, taking values fromCf(X). We assume that the random procgsét),t > 0}
satisfies the following property:

A(E) : The process$é(t),t > 0} is anF-adapted” valued second order centered random
process and there existglac R such that for the given finite intervdl= [0, T,

sup{E[¢(t)|y,t € I} < 4% < o0.

Lemma 4.1 Consider the system (4.1) and suppose the assumptions ah&erl hold,
and the random elemen{s,, W, £} are stochastically independent. Then the covariance of
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the procesg§z? = x(t),t € I} determined by equation (3.5), corresponding to any choice
of the control measur® € M., (X, L(Y, X)), is given by the following expression

PE(t) = Ug(t, 0)PyUj(t, 0) + / t Ug(t, r)Q(r)Us(t, r)dr

/ / Ug(t,s)B(ds)K (s,7)B*(dr)Uj(t,7),
= Pl(t)+ P(t)+ PP(t), tel, (4.2)
whereK is the correlation kernel of the procegs} given by
(K(s, )y, 2)y = B{(&(s),9)(&(7),2)}, .2 €Y, (4.3)
for (s,7) € I.

Proof. Using the evolution operatdrp given by Lemma 3.1, the (mild) solution of the
evolution equation (4.1) for the error procegsg is given by

t t
e(t) = Up(t,0)eq + / Ug(t,s)B(ds)&(s) + / Ug(t,s)o(s)dW(s), tel. (4.4)
0 0
Now using the standard definition of the covariance-openattued functionP?, given by
(PP(t)z,2) = E{(e(1),2)*}, ze€ X, tel,

it follows from straightforward computation using (4.4)dathe independence assumption
for {zg, W, ¢} that PP is given by the expression (4.2). O

Lemma 4.2 Consider the system (4.1) and suppose the assumptions ahaerl hold,
Py e LT(X),Q € Ly(I, £ (X)), and the random processatisfies the assumptiof(=).
The admissible set of structural contrdls— 1/, is bounded by’r. Then for eachB € T,
the covariancé’? € B, (I, L] (X)), and there exists a finite positive numbesuch that

sup{Tr(P5(t)),t e I, BeTl} < 7.
Proof. By virtue of Lemma 3.1, we have
sup{||Up(t,s)[,0 < s <t <T,BeTl} <b<co. (4.5)

We show that for each € I, PZ(t) is nuclear, positive, and thd@? € B (I, L] (X)).
Starting withPZ it is easy to see that

Tr(PE@t)) <v*Tr(P), tel, Berl, (4.6)

and hence, by nuclearity and positivity &%, and finiteness of the intervdl, we have
PJ € Byo(I, LT (X)). Similarly, for P§ we have,
Tr(PF(t)) < b? / Tr(Q(s))ds, tel, BeTl, (4.7)
1

and since) € L,(I, £} (X)) we havePj € B, (I,L{(X)). Now we consider the last
term P”(t). Note that, for each, s € I, it follows from the definition of the kernek given
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by (4.3) and the assumptioA(Z) that K (r,s) € L(Y) and K*(r,s) = K(s, ) for all
7,s € I,and(K (r,7)y,y) > 0forall y € Y. Further, for any complete orthonormal basis
{y;} of the Hilbert spacé’, it follows from the second order property 6fas mentioned
above and Fubini’s theorem that

/I/IZ (K (7, 8)yi, yi)|drds < K(I)(/IE|§(t)|§dt) < o0, (4.8)

with ¢(I) denoting the Lebesgue measure of the kefThis means thakk € L,(I x

I, £:(Y)). In other words, the kernét (7, s) defined on/ x I takes values from the space
of nuclear operator£, (Y') and that the integral of its nuclear norm is bounded as shown
in (4.8). Also, by the same assumptiQA(Z)), it is easy to verify that

SUP{HK(T, ey, (1,8) € I x I} < 32

and hence we havE € B, (I x I,£(Y)) also. Further, sincé is a finite interval, this
implies that’ € Ly(I x I, £(Y)). Using this kernel, we introduce the integral operator
as follows

(Ko)(t) = /I K(t,s)p(s)ds, tel. (4.9)

It is easy to verify that

1K@l o,yy < Bl Lo ,v)-
Thus, K is a bounded linear operator on the Hilbert spag€/, Y'). The reader can easily
verify that it is also positive and selfadjoint. Furtherfatiows from the inequality (4.8)
that it is also nuclear and so compact. Thus, it follows frbewell known spectral theory
for compact operators th& has discrete spectrum having the representation

K=Y ki @y,

where{«;} can be chosen as the eigenfunctions of the opef&ataith the corresponding
eigenvalueqk;}. The eigenvalues are all real and positive (nonnegative fivite mul-
tiplicity. The eigenfunctions are orthogonal and we mayiass that they are normalized.
Clearly, Tr(K) = 3 72, k; < co. ConsideringP?’, let us define the measures

(o) = /B(ds)wj(s), jEN, ocex. (4.10)

By virtue of assumptiotd(Z), we have seen thdf € B..(I x I, £(Y)) and the associated
integral operators is bounded and hence its spectrum is contained in a boundsetsof
[0, 00). Therefore, without any loss of generality, we may assuraettie sef«); }, which
is orthonormal inLy(1,Y"), is contained in a bounded subseti®f,(7,Y’). Hence, there
exists a finite positive numberso thatsup{||v;||5..(1,v),J € N} < 5. Using this bound,
it follows from (4.10) that

|slo < Uil Bty Blo < 1l B, (4.11)
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Thus, iy € Mg, (2, X) forall j € N and
sup{|uple,j € N, B € M,} <nCr.

Now, taking the trace oP” (t) with respect to any ortho-normal basis of the Hilbert space
X, it follows from simple computations that

Z%@/UMQ%@%QSFXMM%-
Hence,

Tr(PE(t) < (nCr)? Tr(K) < oo, Vt€ I,B € T. (4.12)

ol
SinceK is a positive nuclear operator, this shows thét € B, (I, £ (X)). Summarizing
the above results we have? € B, (I, L] (X)) for eachB € T'. Since the inequalities
(4.5),(4.6),(4.7) and (4.12) hold uniformly with respeot® € I, there exists a finite
positive numbett that

{Tr(PP(t)),te,BET} <# < . (4.13)
That is, the sef P?, B € T'} is a bounded subset &, (1, £ (X)). O

The following corollary readily follows from Lemma 4.2.

Corollary 4.3 Under the assumptions of Lemma 4.2, for ed¢he T, the process? =
2P(t),t € I, given by the expression (3.5) is a second orfevalued F;-adapted ran-
dom process. In particulag? € B. (I, Ly(Q, X)) with the mean given by?(t) =
Ug(t,0)Zo,t € I, and the covariancB?(t),t € I, given by the expression (4.2) and so for
eacht € I, the attainable set of measutdét) have finite second moments.

Now we are prepared to prove compactness of the attainatsi¢.4¢t),¢ € I}. For
eachn € N, letII" denote the projector in the Hilbert spa&egiven by

i>n
where{z;} is any complete orthonormal basis of the Hilbert space

Theorem 4.4 Let {z;} be any complete orthonormal basis of the Hilbert spaAcand
suppose the assumptions of Lemma 4.2 hold. Further asswanhththevolution operator
Ug(t,s),0 < s <t<T,iscompact for < ¢ satisfying the following conditions:

(a) : lim ZpJHH"UB(t 0)z,5% — 0,

n—oo

(3) ggZ/%wwmeMm—m
j=1"0

[e'] t
et S wm( [ s i@ )i —o
j=1 0
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uniformly with respect taB € I'. Then, for eacht € I, the attainable setl(¢) given by
(3.6) is a conditionally weakly compact subset/of; (X ).

Proof. Itis well known [8, Theorem 2, p. 377], that for a subséf C M, (X) to be condi-
tionally weakly compact (called weakly compact in the Rasditerature), it is necessary
and sufficient that the following conditions hold:

(1): for everye > 0 there exists a number> 0 such thau{z € X : |z|x > ¢} <«
for all u € M.
(2): The serieS ., (Q,x;, z;) is convergent uniformly in € Mo, where@,, is given
by
Q9= [ (@0 uldn), e x

X
Here we are interested in sufficient conditions for condiioweak compactness of the

attainable setsA(t),t € I. Therefore, we shall verify that fokl, = A(¢),t € I, the
conditions(«), (3) and(~y) imply conditions (1) and (2) as stated above. First noteftirat
everyB € M., (3, L(Y, X)), the solutionz?, given by the expression (3.5), satisfies the
relation

E|x(@t)|% = Tr(PP@) + |Z5(t) %, tel, (4.14)
and hence it follows from (4.5) and (4.13) that
ElzB(t)% <7+ 0|3|% <00, Vtel, BEeT,
and consequently by Chebyshev’s inequality, for any 0, andt € I,
uP{a € X : |t > ¢} = Prob{|e(t)|x > ¢} < (1/)(& + Plzof)

uniformly with respect toB € I'. Thus, by definition of the attainable set given by the
expression (3.6), it follows from this that

pl{r € X : |z > ¢} < (1/3) (7 + b |z0]?)
uniformly with respect tq: € A(t). Hence, for each > 0 there exists @ > 0 finite such
that
pf{r e X @ |x| >c} <e, VueAl),

verifying condition (1). Next, we verify condition (2). Iniew of the expression (4.14),
it suffices to verify that the seri€s ., (P”(t)x;, z;) is convergent uniformly with respect
to B € I'. Using any basigz;} of X, we compute>_,_ (P?(t)x;, ;) and verify that it
converges to zero uniformly with respecte I' asn — oo. We consider term by term

the expression (4.2). Sind®’ € L7 (X) there exist3” = (p}) € (] such thatP® has the
representatio® = >_p} r; ® x;. Hence, it follows from a simple computation that

> (PE(t)wi,x) =D pf [IMUp(t, 0);%. (4.15)

i>n Jj=1
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By our assumptiony) € L;(I, £{ (X)) and hence there exisjse L, (I, ¢}) such that

A = qi(t) z; @ ;.
j=1

Recalling the expression fd?ﬁB given by the second term of equation (4.2) and using the
representation of) it follows from simple computation that

SO PEW)rsz) = Y / 0 (U (t, sz, Peds. (4.16)
i>n j>1

Considering the last term and using the spectral represemtaf the correlation operator
K given by equation (4.9), it follows from straight forwardroputation that

> (Pt ZZ%/wﬂsuwwm%

i>n i>n j=1

_me/%rﬂwmwﬁ

t
0

=medmmw&mm, @4.17)
7j=1
whereug is aY valued vector measure given by

io(d)= [ B, Aes

In view of the assumption@gy), (), (), it follows from the expressions (4.15), (4.16) and
(4.17) that for every > 0, there exists an integer such that

sup{> (P"(t)z;,z;), BET} <¢, (4.18)
i>n
foralln > n.. Sinces > Ois arbitrary, it follows from this that the serigs .., (P ()x;, z;)

is convergent uniformly with respect #® < I'. Thus, we have condition (2) and hence, for
eacht € I, A(t) is conditionally weakly compact. This completes the proof. O

Remark. Under the assumptions of Lemma 4.2 and compactness of theiemoperator
Ug(t,s) for 0 < s < t < T, the conditiong«a) — () are also necessary. This follows
readily from the equivalence of the two expressions

O (PP(t)s, 2:), B €T} and{> (Quai,x:), 1 € A1)},

i>n i>n

whereQ),, is the covariance operator associated with any measered(t).
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5. EXISTENCE OF OPTIMAL POLICIES

Now we are prepared to consider the control problems state&gction 3. First we
consider problem P1.

Theorem 5.1Consider the control problem P1 subject to the system (3.B) or equiv-
alently equation (3.4) and suppose the assumptions of €hedr4 hold and further the
admissible set of structural contrdlsis a weakly sequentially compact subset\df C
Moo (2, L(Y, X)). Then the problem P1 has a solution.

Proof. Define the functionall, on M, (X) by J; (1) = u(D) whereD is the target set
as described in the problem P1. Thus, the stated problemuisagnt to the following
problem: findu® € A(T') that maximizes the functiondl on the attainable sed(7"). We
prove the existence of such:& by verifying thatA4(T") is weakly sequentially compact and
that./; is weakly upper semicontinuous (w.u.s.c). By Theorem Ad) is conditionally
weakly compact and so we prove that it is weakly closed. Byr@cticomputation using
the expression (4.2), we can show ti#at P, (T")) — Tr(P,(T)) wheneverB" - B°
inI" € M,. This means thatz"(T)||r,,x) — [|2°(T)||£.(0,x) Wherez™ and z° are
the (mild) solutions of equation (3.4) correspondingd and B°, respectively. Using
equation (3.5), we show that' (T') — 2°(T) in Ly (2, X) wheneverB™ - B°inT C
M,. SinceL,(£2, X) is a Hilbert space, itis a locally uniformly convex space tmetefore
it follows from well known Radon-Riesz theorem thet(7) —— z°(T) in Ly(2, X).
Thus, the mapB — zB(T) fromT' C M, to Ly(9, X) is continuous with respect to
the weak topology o/, and norm topology ofL,(2, X'). Clearly, norm convergence
in Ly(22, X) implies weak convergence if,(X). Hence, the ma@ — pZ from M,
to M;(X) is weak-weak continuous. It follows from this that every Wigaconvergent
sequence from4(7') has its limit in A(T). Thus A(T) is also weakly closed and hence
it is weakly compact. For the proof of weak u.s.c.hf let {;,} be any net (generalized
sequence) fromd(7") and suppose it converges weaklytoSinceD is a closed subset of
X, andX is a Hilbert space and so a complete metric space with regpexirm topology,
it follows from a well known result [12, Theorem 6.1, p. 404th

lim j14(D) < (D).

Thus, by the definition of;, we havdim .J; (1) < J;(1) proving weak u.s.c. Hence, there
exists au® € A(T) at which.J; attains its supremum. Therefore, there exist8°ac I
such tha2” = p°. This proves the existence of an optimal (structural) adreind hence
problem P1 has a solutionl

Now we consider problem P2.

Theorem 5.2 Consider the control problem P2 subject to the system ($i1d)sappose
the assumptions of Theorem 4.4 hold. Further assume thaidtiméssible set of structural
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controlsI" is a weakly sequentially compact subsetidf. Then the problem P2 has a
solution.

Proof. The proof is identical to that of the preceding theorem onighwininor changes. In
this case the functional, related toJ, is weakly lower semicontinuous (w.l.s.c) and this
follows again from the fact that for open sets

1(0) < lim p10(0)

whenevern, — u [12, Theorem 6.1, p. 40]. Thus, is weakly lower semicontinuous
and hence it attains its minimum of(7"). This in turn implies the existence of an optimal
policy. Hence, the problem P2 has a solution. O

Now we consider problem P3. L&C(X) denote the space of bounded real valued
continuous functions defined ok furnished with the standard sup norm topology. A
probability measure valued function: I — M 1(X) is said to be weakly measurable if
for every f € BC(X), the functiont — p,(f fX x)p(dr) is a measurable scalar
valued function taking values from the real number systeetaR thatM, (X) furnished
with the weak topology is a Hausdorff topological space. § line function spac#, (X)?!
is a Tychonoff space in the product topology.

We introduce the following class of measure valued fun&ify associated with the
attainable setsl(t),t € 1.

Tod = {M : I — M;(X) such that it is weakly measurable,

andthaty, € A(t)Vte I}.

Clearly, this is a subcollection of the function spdge , (X))’. This is given the topology
of point wise convergence ohin the weak topology ofM;(X). Naturally, a sequence
u" € 71,4 is said to converge weakly to € 7,, if for everyt € I andy € BC(X),
wi(v) — (). Note that the sef,,; furnished with the topology of point wise con-
vergence or in the weak topology of\1; (X) is a weakly compact subset of1,(X))’.
This follows easily from [13, Theorem 42.2, p. 278].

Theorem 5.3Consider the control problem P3 subject to the system (3idsappose the
assumptions of Theorem 4.4 hold. Further, assume that timésaithle set of structural
controlsT" is a weakly sequentially compact subsetMf C M ., (3, L(Y, X)). Let
1 : I x X — R be areal valued function measurable in the first argumentantnuous
in the second, and € M, (X). Suppose there exist € L;(I,v) andc; > 0 such that

[(t,x)] < c1(t) + exla|), t € 1,2 € X.

Then the problem P3 has a solution.
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Proof. First note that the functional; defined onI" is equivalent to the functionals
defined orZ,,; given by

Ji() = / /X (2 pue(de)(de), p € T (5.1)

The functional/; is bounded for each € 7,,4. Indeed, for any, € 7,4, py € A(t) and so
by Corollary 4.3 it has finite second moment. Hence, it foBdvom the assumption on
and the identity (4.14) with the associated estimate fahgwhe identity that

a()] < / /X {en(t) + ol () (i)
< /I e (Du(dt) + o /I (Tr(PH(1)) + |7 () b (dt)

< llerllzya + ca( + b*[o[5) V] (5.2)

Sincer has bounded variation and the expression on the righthaledodithe above in-
equality is independent of the choiceofe 7., it follows from this thatJ; is uniformly
bounded orv,. Thus,inf{jg(u), p € Toqt > —oo. We show that the infimum is attained
on7,4. Since7,, is weakly compact, it suffices to verify thas is weakly continuous. Let
p" —= p°in 7,4. Then, for eacht € I andyp € BC(X), u(p) — (). For any finite
positive number-, let B, C X denote the closed ball of radiuscentered at the origin.
Define

W(t, x), forz € B,
?/)r(tﬂ) =
W(t,re/|z|x), forz & B,.
Clearly, forv almost allt € 1, ¢,(¢,-) € BC(X) and

[, (t,z)| < ei(t) +eor?, V€ I, andz € X,

andy,, — ¢ for each(t, z) € I x X. Thus, forv almost allt € I, and every finite number
r > 0, we have, ag — oo,

Gr(t) = /X b (1, )l () — /X by (b, ) () = ool (5.3)

Therefore, by Lebesgue dominated convergence theoremwee &isu — oo,

/gr,n(t)l/(dt) — /gm(t)u(dt) for each finiter > 0.
1 1
Clearly, this is equivalent to the following statement

j3,7”(:“n) - j3,r(,uo) (5.4)

asn — oo. Hence,u — Js,(u) is weakly continuous for each finite positive number
r. Since the elements &f,; have bounded second moments, it follows from the estimate
(5.2) that

sup{Js- (1), 7 > 0, 1t € Toq} < oo.
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Thus, we haveim, . lim, o Js, (") = lim,_o Js,.(1°) = J5(u°) and we conclude
thaty — jg(,u) is weakly continuous ofi,;. And sinceZ,, is weakly compact it follows
from the abstract Wierstrass theorem thitattains its minimum orZ,,. This in turn
implies that there exists a control polidy® € I' at which J3(B) attains its minimum.
Thus, problem P3 has a solution. O

Next we consider problem P4.

Theorem 5.4Consider the control problem P4 subject to the feedbaclesy$8.4) and
suppose the assumptions of Theorem 4.4 hold. Further, asthanhthe admissible set of
structural controld’ is a weakly sequentially compact subsef\df. Lety; € BC(X),t; €

I, (distinct): = 1,2,...m andF : R™ — R is a lower semicontinuous function satisfy-

ing
inf{F(¢),¢ € R™} > —cc. (5.5)

Then problem P4 has a solution.

Proof. Clearly the expression (3.10) is equivalent to

j4(:u) = F(:uh (301)7 Mty (302)7 s nutm(gpm)) (56)

for u € T,4. Let {y"} € T., be a minimizing sequence fak. SinceZ,, is weakly
sequentially compact, there exists a subsequence of theeseef "}, relabeled as the

original sequence, and an elemesitc 7., such thaty” — u°. This, along with the
assumption thap;, € BC(X), implies that for each; € 1,

i () = /X i)l (d) — /X i)l (dz) = 12, ().

Hence, it follows from the lower semicontinuity &f on R™ that the functionajy —
Ji(11) given by (5.6) is weakly lower semicontinuous @y and by virtue of the assumption
(5.5),

inf{J, (1), p € Toq} > —o00.

Hence,J, attains its minimum of,,. Thus,J,(B) attains its minimum o’ proving that
problem P4 has a solution. O

P5: Another problem of significant interest is: fifg® € I" that minimizes the Prohorov
distance of a target measyre € M, (X) from the attainable se4(7"). The cost functional
in this case is given by the Prohorov metric which we denotg.bijhen the problem is to
find ap* € A(T) that minimizes the functional

Js(w) = p(p, ).
Since the Prohorov metric is equivalent to the topology ohkveonvergence, it is obvious
that;, — J5(y) is weakly continuous. Thus; attains its minimum on the attainable set
A(T) which is weakly compact. Hence an optimal policy exists.
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The reader may find many other interesting problems of thigrealike minimal time
problems.

Open Problems: We mention here two open problems. (1): Development of rszcgs
conditions of optimality. (2): Extension to nonlinear syfsis.
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