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1. INTRODUCTION

In 2007, Liu et al. [9] considered the third order two-poinndary value problem

u"(t) + Aa(t) f(t,u(t) =0, a<t<b, (1.1)
u(a) = u"(a) =u'(b) = 0. (1.2)
Motivated by this work, we in this paper consider the thirderboundary value problem
u(t) + g(t) f(u(t)) =0, 0<t<1, (1.3)
w(0) = u"(0) = /(1) = 0. (1.4)

In this paper, we shall derive some new a priori estimate®#itipe solutions of the prob-
lem (1.3)—(1.4). These estimates improve the ones obtamg. We shall also prove
some existence, nonexistence, and uniqueness resultsditivp solutions of the problem
(1.3)—(1.4). Here, by a positive solution, we mean a sotuti¢t) such thatu(¢) > 0 for
t e (0,1).

The problem (1.3)—(1.4) is closely related to a boundaryearoblem for the fourth
order beam equation, namely,

u""(t) = g(t)f(u(t)), 0<t<1, (1.5)
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w(0) = u"(0) = /(1) =u"(1) = 0. (1.6)

The boundary conditions (1.6) have definite physical megminThe conditions(0) =
u”(0) = 0 mean that the beam is simply supported &t 0, while the boundary conditions
u'(1) = «”"(1) = 0 mean that the beam is supported by a sliding clanmp=atl. Note that
(1.4) is just a part of (1.6). A study of the problem (1.3)4{1will give us more insight
into the problem (1.5)—(1.6).

Throughout this paper, we assume that

(H1) f : [0,00) — [0,00) andyg : [0,1] — [0, 00) are continuous functions, andt) # 0
on |0, 1].

This paper is organized as follows. In Section 2, we give thee@ function for the
problem (1.3)—(1.4), state the Krasnosel'skii fixed polrgdrem, and fix some notations.
In Section 3, we present some a priori estimates to positiltgiens to the problem (1.3)—
(1.4). In Section 4, we establish some existence and ndeexis results for positive solu-
tions to the problem (1.3)—(1.4). Then, in Section 5, weldisth some uniqueness results
for positive solutions to the problem (1.3)—(1.4).

2. PRELIMINARIES
The Green functio- : [0, 1] x [0, 1] — [0, oo) for the problem (1.3)—(1.4) is given by
t(1—s)—(t—s5)2/2, ifs<t,
Gl = J 1A=~ =)
t(1—s), if t <s.

Then problem (1.3)—(1.4) is equivalent to the integral ¢igma

u(t) = /0 G(t,s)g(s)f(u(s))ds, 0<t<1. (2.1)

It is easy to verify that? is a continuous function, and(¢, s) > 0if (¢,s) € [0,1]%. We
will need the following fixed point theorem, which is due toasnosel’skii [7], to prove
some of our results.

Theorem 2.1.Let (X, || - ||) be a Banach space over the reals, andifet X be a cone in
X. Let H, and H, be real numbers such that, > H; > 0, and let

QG ={veX||v|l<H} i1=1,2.
If L: PN (Qy — ;) — Pisacompletely continuous operator such that, either

(K1) ||Lo|| < ||| if v € PN 8Qy, and||Lo|| > |[v] if v € P N6y, or
(K2) ||Lv|| > |[v] if v e POy, and||Lo|| < |[v] if v € P 1Oy,

thenL has a fixed pointiP® N (Qy — ).
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For the rest of this paper, we lé&t = C'[0, 1] with the norm

|v]| = max |v(t)], Vve X.
te[0,1]

Clearly, X is a Banach space. We defive= {v € X |v(¢t) > 0for0 < ¢ < 1}, and
define the operatdf’ : Y — X by

(Tu)(t) = / Gt 5)g(s) F(u(s)) ds, 0<t<1. (2.2)

It is clear that if (H1) holds, thefi'(Y) C Y andT : Y — Y is a completely continuous
operator. We also define the constants

Fy = lim sup —f(x), fo = liminf —f(x),
z—0+ xXr z—0t xXr

F,, = limsup f—x), foo = liminf M
r—+oo X T—+oo I

These constants, which are associated with the fungtjovill be used later in Section 4.

3. ESTIMATES FOR POSITIVE SOLUTIONS

In this section, we shall prove some new a priori estimatepdsitive solutions of the
problem (1.3)—(1.4). To this purpose, we define the fundtiofo, 1] — [0, 1] by

b(t) =2t — 12,

It is easily seen thal(t) < 2t for 0 < ¢ < 1. Itis also easy to see thatt) > t for
0 <t < 1. Infact, we have

bt) —t=t—t*=t(1—-t)>0, 0<t<1.
Lemma 3.1. If u € C3|0, 1] satisfies the boundary conditio(ts 4), and
u"(t) <0 for 0<t<I1, (3.1)
then

u'(t) <0, W'(t) >0, ut)>0 for 0<t<1. (3.2)

Proof. Note that (3.1) implies that” is nonincreasing. Sinaé€’(0) = 0, we haveu”(t) <0
on [0, 1]. This means that’ is nonincreasing of0, 1]. Sinceu’(1) = 0, we haveu’(t) > 0
on |0, 1]. Sinceu(0) = 0, we haveu(t) > 0 for 0 < ¢ < 1. The proof of the lemma is now
complete. O

Lemma 3.2. If u € C3|0, 1] satisfieg1.4)and (3.1), then

u(t) > tu(l) for 0<t<1. (3.3)
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Proof. If we define
h(t) = u(t) —tu(l), 0<t<1,
thenh/(t) = «/(t) — u(1), and
R'(t) =u"(t) <0, 0<t<l.
To prove the lemma, it suffices to show thét) > 0 on [0, 1].

It is easy to see thd#(0) = h(1) = 0. Sinceh is concave downward 0, 1], we have
h(t) > 0for0 <t < 1. The proof is complete. O

Lemma 3.3. If u € C3[0, 1] satisfieg1.4)and (3.1), then
u(t) <wu(l)b(t) for te]0,1]. (3.4)
Proof. If we define
h(t) = b(t)u(l) — u(t) = (2t — tH)u(l) —u(t), 0<t <1,
then
P'(t) = (2 = 2t)u(l) — u'(t), Ah"(t) = —2u(l) —u"(¢),
" (t) = —u"(t) >0, 0<t<1. (3.5)

The last inequality implies thdt' is concave upward o), 1]. It is easy to see that(0) =
h(1) = K'(1) = 0. By the Mean Value Theorem, becaug®) = h(1) = 0, there exists
p € (0,1) such thath'(p) = 0. Now we haveh/'(p) = h'(1) = 0. Sinceh’(t) is concave
upward, we have

h'(t) > 00n(0,p), R'(t) <0on(p,1).
Sinceh(0) = h(1) = 0, we haveh(t) > 0on (0, 1). The proof is complete. O

Theorem 3.4. Suppose that (H1) holds. f(¢) is a nonnegative solution to the problem
(1.3)H1.4), thenu(t) satisfieq3.2), (3.3), and(3.4).

Proof. If u(t) is a nonnegative solution to the problem (1.3)—(1.4), thén satisfies the
boundary conditions (1.4), and

u(t) = —g() f(u(t)) <0, 0<t<1.

Now Theorem 3.4 follows directly from Lemmas 3.1, 3.2, an®l I he proof is complete.
[

Now we define
P={veX:v1)>0, tu(l) <v(t) <b(t)v(1) on[0,1]}.

Clearly P is a positive cone inX. It is obvious that ifu € P, thenu(1) = ||lu||. We see
from Theorem 3.4 that ifi(¢) is a nonnegative solution to the problem (1.3)—(1.4), then
u € P. In a similar fashion to Theorem 3.4, we can show thaP) ¢ P. To find a
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positive solution to the problem (1.3)—(1.4), we need oalfinid a fixed point: of 7" such
thatu € P andu(1) = |jul| > 0.

Remark 3.5. In [9], Liu et al. considered the following cone for the prebi (1.3)-(1.4),
namely,

P ={veX:u(t)>(t/2)|v]|on[0,1]}.
It is easy to see thaP is a subset of”’. In other words,P is a finer cone thar®’. If
we apply the Krasnosell'skii fixed point theorem on this finene, we will obtain sharper
existence and nonexistence results for positive solutioriee problem (1.3)—(1.4). Our
coneP is finer because our upper and lower estimates for positivtisos for the problem
(2.3)—(1.4), which are given in Lemmas 3.2 and 3.3, are snahan those in [9].
4. EXISTENCE AND NONEXISTENCE RESULTS

Now we define some important constants. Let
1 1
A :/ G(1,s)g(s)sds, B :/ G(1,s)g(s)b(s) ds.
0 0

The next two theorems provide sufficient conditions for tkestence of at least one
positive solution for the problem (1.3)—(1.4).

Theorem 4.1. Suppose that (H1) holds. BF, < 1 < Af., then the problenil.3)+(1.4)
has at least one positive solution.

Proof. First, we choose > 0 such tha{ F, +¢) B < 1. By the definition ofF, there exists
H, > 0 such thatf(x) < (Fy+¢)z for 0 < = < H;. Now for eachu € P with ||u|| = Hj,
we havel'vw € P and

(Tu)(1) = / G(1, 5)9(s)f (u(s)) ds
< / G(1, 5)g(5)(Fo + e)us) ds

1
< (Fo+2)lull [ G(1,9)9(s)b(s) ds
0
= (Fo +&)[[ul|B < |lul,
which meansg|Tu|| = (Tu)(1) < ||u||. Thus, if we let); = {u € X | ||u]| < H:}, then

| Tu|| < |Jul|| for uwe PNosy.

To construct?,, we choose > 0 andr € (0,1/4) such that

/ G(1,8)g(s)sds- (foo —9) > 1.
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There existdd; > 0 such thatf(z) > (fs — 0)x for x > Hj. Let Hy, = Hs/7 + Hy. If
u € P such that|u|| = H,, then for eacht € [r, 1], we have

u(t) Z Hgt Z HQT Z H3.

Therefore, for each € P with ||u|| = H,, we have
1

mezéG%$WHMW%
z/Gmwwmwmw
z/awm@wwmwww

1
> [ G19(s)sds- (= 8)ul = [l
which meang|Tu|| > ||ul|. Thus, if we let, = {u € X | |lu| < Hs}, thenQ; C Q,, and
|Tul| > ||ul] for we PN os.

Now that the condition (K1) of Theorem 2.1 is satisfied, thexists a fixed point of” in
PN (Qy — Q). The proof is now complete. O

Theorem 4.2. Suppose that (H1) holds. BF,, < 1 < Af,, then the problenil.3)-(1.4)
has at least one positive solution.

The proof of Theorem 4.2 is very similar to that of Theoremadnd is therefore omit-
ted. The next two theorems provide sufficient conditionstfi@ nonexistence of positive
solutions to the problem (1.3)—(1.4).

Theorem 4.3. Suppose that (H1) holds. Bf(z) < z for all x > 0, then the problem
(1.3)1.4) has no positive solutions.

Proof. Assume the contrary thatt) is a positive solution of the problem (1.3)—(1.4). Then
ue P,u(t)>0for0 <t <1,and

u(t) = [ G1s)gls) (u(s)) ds
< B /0 G(1, 5)g(s)u(s) ds
< B_1/0 G(1,s)g(s)b(s)ds-u(l)
= B~ 'Bu(1) = u(1),
which is a contradiction. The proof is complete. O

In a very similar fashion, we can prove the next nonexistéheerem.
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Theorem 4.4. Suppose that (H1) holds. Kf(z) > z for all x > 0, then the problem
(1.3)1.4) has no positive solutions.

Example 4.5. Consider the third order boundary value problem

u"(t) = =M1+ 2t + )u(t)(1+ 3u(?)) /(1 +u(t), 0<t <1, (4.1)

u(0) = u"(0) = /(1) = 0, (4.2)

where) > 0 is a parameter. In this example(t) = 1 + 2t + t*> and f(u) = Mu(1 +
3u)/(1+u). Itis easy to see thgt = Fy = \, foo = Fi'w = 3\, and

Ar < f(z) <3 x for x>0.
Calculations indicate that
A =3/10, B =59/140.

By Theorem 4.1, if
1111~ 1/(3A) < A < 1/B ~ 2.373,

then the problem (4.1)-(4.2) has at least one positive imsluErom Theorems 4.3 and 4.4
we see that if

A<1/(3B)~0.791 or X >1/A~ 3.333,

then the problem (4.1)—(4.2) has no positive solutions.

This example shows that our existence and nonexistencksgsgurk quite well.

5. UNIQUENESS RESULTS AND CONVERGENCE OF ITERATION
The next theorem is a uniqueness result for the problem-{(.3)).

Theorem 5.1. In addition to (H1), assume that

(Al) f(z)is nondecreasing im, and there exists a real number> 0 such thatf(r) > 0;
(A2) there existss € (0, 1) such that

f(0x) > 0°f(z) forall 6 ¢ (0,1) and x > 0.

Then the boundary value problgih 3)+1.4) has exactly one positive solution.

Proof. First we show that the boundary value problem (1.3)—(1.4)dtdeast one positive
solution. Ifz > r, then by (A2) we have (z) < (x/r)” f(r), which implies that,, = 0.

If z < 1, then by (A2) we have (x) > (x/r)? f(r), which implies thatf, = +o0o. Now
Theorem 4.2 implies that the problem (1.3)—(1.4) has at leaes positive solution.
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Next, we shall show that the problem (1.3)—(1.4) has at mostmositive solution.
If the boundary value problem (1.3)—(1.4) has two positioRiSons«(t) andwv(t), then
u = Twu andv = Tv. Note that

w(t) > tu(l) > b(t)u(l)/2
u(l) u(l)
> > <t<l.
> 2@(1)b(t)v(1) > 2@(1)11(15), 0<t<l1
If we let M be the largest positive number such that

u(t) > Mo(t) for 0<t <1,
thenM > wu(1)/(2v(1)).
Now we show thail/ > 1. Assume that contrary that < 1, then

u(t) = Tu(t) = / G(t, 5)g(s)f (u(s))ds
> / G(t,8)g(s) f(Mu(s))ds

> M / G(t, 5)g(s) f (v(s))ds
= MPTw(t)
= MPu(t), 0<t<1,

which contradicts the maximality of/ since M? > M. This contradiction shows that
M > 1.

SinceM > 1, we haveu(t) > v(t). In a similarly way we can show thatt) > u(t).
This implies that: = v. The proof is complete. O

We define two positive constants
1 1
K, ::/ G(1,5)g(s)f(1)ds and K, ::/ G(1,5)g(s)f(1)s"ds.
0 0

Lemma 5.2. Assume that (H1), (Al), and (A2) hold. Let be a positive constant such
thatM > 1 and
M > K09,

Then(Two)(t) < wy(t) for0 <t < 1wherewy(t) = M forall 0 <t < 1.

Proof. In fact, we have

(Two)(1) = / G(1,5)g(s) F(M)ds

IN

M / G(1, 9)g(s)f(1)ds
MP M
M.

IN
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SinceTw, € P, we have
(Two)(t) < (Twp)(1) < M =wo(t), 0<t<1.
The proof is complete. O

Lemma 5.3. Assume that (H1), (A1), and (A2) hold. ketbe a positive constant such that
m < 1 and
m < KY0-9)

Then(T'ug)(t) > ue(t) for 0 <t < 1 whereuy(t) = mt forall 0 < ¢ < 1.

Proof. First we have
Tw)) = [ GlL.9(s)f(ms)ds

mP /1 G(1,5)g(s)f(1)s"ds
mﬁKOg.
Then, sincél'uy € P, we have

(Tu)(t) >t - (Tup)(1) > mPEot >mt, 0<t<1.

The proof is complete. O

The next theorem shows that, under certain conditions, itae with any function
u € P with u(1) > 0 and apply the operatdr to thisu again and again, then the iterative
process will always converge to the unique solution to tlodjem (1.3)—(1.4).

Theorem 5.4. Assume that (H1), (Al), and (A2) hold. Le&tt) be the unique positive
solution for the problen(l.3)}+(1.4). If vy € P is such that,(1) > 0, then

lim T"vy = v*.

n—oo

Proof. ChooseM > 1 such that/ > K1/" andM > ||vo||. Choosen € (0, 1) such
thatm < K3/ andm < ||vo|. Let

and

Then we hav@ uy > ug, Twy < wg, andugy < vy < wy.

Now we letu,, = T"ugy, v, = T"vy, andw, = T"w, for n > 1. SinceT is an
increasing operator, we have
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Therefore both{w,} and{w,} are convergent sequences. Lét= limu, andw* =

lim w,,, then bothu* andw* are positive solutions to the boundary value problem (1.3)—
(1.4). Since the positive solution to the boundary valuejmm (1.3)—(1.4) is unique, we
haveu* = v* = w*. Itis also easy to see that for every positive integere have

Up < Uy < W

The squeeze theorem implies thiat v,, = v*. The proof of the theorem is complete.[]
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