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ABSTRACT. In this work we prove sharp weighted Rellich-type inequalities and their improved versions for

general Carnot groups. To derive the improved Rellich-typeinequalities we have established new weighted

Hardy-type inequalities with remainder terms. We also prove new sharp forms of the weighted Hardy-

Poincaré and uncertainty principle inequalities for polarizable Carnot groups.
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1. INTRODUCTION

The classical Rellich inequality [26] states that forn ≥ 5, for all φ ∈ C∞
0 (Rn),

∫

Rn

|∆φ(x)|2dx ≥
n2(n− 4)2

16

∫

Rn

|φ(x)|2

|x|4
dx. (1.1)

It is well-known that the constantn
2(n−4)2

16
in inequality (1.1) is sharp. In a recent paper,

Tertikas and Zographopoulos [28] obtained the following Rellich-type inequality that con-

nects first to second-order derivatives:
∫

Rn

|∆φ(x)|2dx ≥
n2

4

∫

Rn

|∇φ(x)|2

|x|2
dx, (1.2)

whereφ ∈ C∞
0 (Rn), n ≥ 5 and the constantn

2

4
is sharp. There has been considerable

amount work on the Rellich-type inequalities in Euclidean spaces and Riemannian man-

ifolds, e.g., [14], [5], [28], [24], [20] and the referencestherein. However, Rellich-type

inequalities have not been established for general Carnot groups. Our main contribution in

this direction is to find sharp weighted Rellich-type inequalities and their improved versions

for general Carnot groups.

The Rellich inequality (1.1) is the first generalization of Hardy’s inequality
∫

Rn

|∇φ(x)|2dx ≥
(n− 2)2

4

∫

Rn

|φ(x)|2

|x|2
dx (1.3)
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to the higher order derivatives and they are intimately related. For example, the Rellich

inequality (1.1) is an easy consequence of (1.2) and the weighted Hardy inequality:
∫

Rn

|∇φ(x)|2

|x|2
dx ≥

(n− 4)2

4

∫

Rn

|φ(x)|2

|x|4
dx, (1.4)

whereφ ∈ C∞
0 (Rn), n ≥ 5 and the constant(n−4)2

4
is sharp.

It is well-known that Hardy and Rellich inequalities as wellas their improved versions

play important roles in many questions from spectral theory, harmonic analysis and analysis

of linear and nonlinear partial differential equations. A striking example where the sharp

Hardy inequality (1.3) plays a major role is the following linear heat equation:






∂u
∂t

= ∆u+ c
|x|2
u in Rn × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Rn.
(1.5)

In their classical paper Baras and Goldstein [4] proved thatthe initial value problem (1.5)

has no nonnegative solutions exceptu ≡ 0 if c > C∗(n) = (n−2
2

)2. Moreover, all positive

solutions blow up instantaneously in the sense that ifun is the solution of the same problem

with the potentialc/|x|2 replaced byVn = min{c/|x|2, n}, thenlimn−→∞ un(x, t) = ∞ for

all x ∈ Rn andt > 0. If c ≤ C∗(n) = (n−2
2

)2, positive weak solutions do exist.

Note that the above inequalities are strict unlessφ is identically equal to0. Therefore

it is natural to expect some extra term might be added on the right hand side of the inequal-

ities (1.1), (1.2), (1.3) and (1.4). A remarkable result in this direction has been obtained

by Brezis and Vázquez [8]. They have discovered the following sharp improved Hardy

inequalities for a bounded domainΩ ⊂ Rn

∫

Ω

|∇φ(x)|2dx ≥
(n− 2

2

)2
∫

Ω

|φ(x)|2

|x|2
dx+ µ

( ωn

|Ω|

)2/n
∫

Ω

φ2dx, (1.6)

∫

Ω

|∇φ(x)|2dx ≥
(n− 2

2

)2
∫

Ω

|φ(x)|2

|x|2
dx+ C

(

∫

Ω

φqdx
)

2
q

, (1.7)

whereφ ∈ H1
0 (Ω), C = C(Ω, n) > 0, ωn and |Ω| denote then-dimensional Lebesgue

measure of the unit ballB ⊂ Rn and the domainΩ respectively. Hereµ is the first eigen-

value of the Laplace operator in the two dimensional unit disk, and it is optimal whenΩ is

a ball centered at the origin. In (1.7) we assume that2 ≤ q < 2n
n−2

and the critical Sobolev

exponentq = 2∗ = 2n
n−2

is not included. The work of Brezis and Vazquez [8] has been

a continuous source of inspiration and a lot of progress has been made to find further im-

provement of the inequalities (1.1), (1.2), (1.3), (1.4), (1.6) and (1.7) in the various settings

e.g., [30], [2], [6], [31], [1], [5], [19], [28], [24], [20],[23] and the references therein.

The connection between weighted Hardy and Rellich inequalities, and the importance

of Hardy’s inequality in analysis and partial differentialequations motivates us to establish

weighted Hardy-type inequalities and their improved versions on Carnot groups. Indeed,
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in our earlier paper, we found some sharp weighted Hardy-type inequalities and their im-

proved versions forL2-norms of gradients on Carnot groups [23]. In the present paper we

first prove a new (non standard) form of weightedLp-Hardy-type inequality with a sharp

constant and then derive new weightedL2-Hardy-type inequalities with remainder terms

for bounded domains in Carnot groups. We stress here that weighted Hardy-type inequal-

ities and their improved versions are the main tools for establishing weighted Rellich-type

inequalities and their improved versions, respectively.

We should mention that Hardy-type inequalities have been the target of investigation

in Carnot-Carathéodory spaces since the work of Garofalo and Lanconelli [18], and there

has been a continuously growing literature in this direction. We refer to the recent papers

by Danielli, Garofalo and Phuc [13], and Goldstein and Kombe[21], and the monograph

by Capogna et al. [11] and the references therein.

It is known that Hardy and Sobolev inequalities are closely related to the Heisenberg

uncertainty principle in quantum mechanics. The Heisenberg uncertainty principle says

that the position and momentum of a particle cannot be determined exactly at the same time

but only with an “uncertainty”. More precisely, the uncertainty principle on the Euclidean

spaceRn can be stated in the following way:

(

∫

Rn

|x|2|f(x)|2dx
)(

∫

Rn

|∇f(x)|2dx
)

≥
n2

4

(

∫

Rn

|f(x)|2dx
)2

(1.8)

for all f ∈ L2(Rn). It is well known that equality is attained in the above if andonly if

f is a Gaussian function (i.e.f(x) = Ae−α|x|2 for someA ∈ R, α > 0). There exists

large literature devoted to deriving various uncertainty principle type inequalities in the

Euclidean and other settings (see [16], [23] and the references therein). However, much

less is known about sharp uncertainty principle inequalities on Carnot groups. In [23] we

obtained the following uncertainty principle-type inequality:

(

∫

G

N2|∇GN |2φ2dx
)(

∫

G

|∇Gφ|
2dx

)

≥
(Q− 2

2

)2(
∫

G

|∇GN |2φ2dx
)2

, (1.9)

whereN = u1/(2−Q) is the homogeneous norm associated to Folland’s fundamental solu-

tion u for the sub-Laplacian∆G andQ is the homogeneous dimension ofG. It is clear that

this inequality is not sharp. In this paper, motivated by a result of Balogh and Tyson [3],

we prove a sharp analog of the uncertainty principle inequality (1.8) for polarizable Carnot

groups.

In order to state and prove our theorems, we first recall the basic properties of Carnot

groupG and some well-known results that will be used in the sequel. Further information

can be found in [3], [7], [10], [12], [15], [17], [25], [27], [29].
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2. PRELIMINARIES

A Carnot group is a connected, simply connected, nilpotent Lie groupG whose Lie

algebraG admits a stratification. That is, there exist linear subspacesV1, . . . , Vk of G such

that

G = V1⊕· · ·⊕Vk, [V1, Vi] = Vi+1, for i = 1, 2, . . . , k−1 and [V1, Vk] = 0 (2.1)

where [V1, Vi] is the subspace ofG generated by the elements[X, Y ] with X ∈ V1 and

Y ∈ Vi. This defines ak-step Carnot group and integerk ≥ 1 is called the step ofG.

Via the exponential map, it is possible to induce onG a family of automorphisms of

the group, called dilations,δλ : Rn −→ Rn(λ > 0) such that

δλ(x1, . . . , xn) = (λα1x1, . . . , λ
αnxn)

where1 = α1 = · · · = αm < αm+1 ≤ · · · ≤ αn are integers andm = dim(V1).

The group law can be written in the following form

x · y = x+ y + P (x, y), x, y ∈ R
n (2.2)

whereP : Rn × Rn −→ Rn has polynomial components andP1 = · · · = Pm = 0. Note

that the inversex−1 of an elementx ∈ G has the formx−1 = −x = (−x1, . . . ,−xn).

LetX1, . . . , Xm be a family of left invariant vector fields which form an orthonormal

basis ofV1 ≡ Rm at the origin, that is,X1(0) = ∂x1 , . . . , Xm(0) = ∂xm
. The vector fields

Xj have polynomial coefficients and can be assumed to be of the form

Xj(x) = ∂j +
n

∑

i=j+1

aij(x)∂i, Xj(0) = ∂j , j = 1, . . . , m,

where each polynomialaij is homogeneous with respect to the dilations of the group, that

is aij(δλ(x)) = λαi−αjaij(x). The horizontal gradient on Carnot groupG is the vector

valued operator

∇G = (X1, . . . , Xm)

whereX1, . . . , Xm are the generators ofG. The sub-Laplacian is the second-order partial

differential operator onG given by

∆G =

m
∑

j=1

X2
j .

The fundamental solutionu for ∆G is defined to be a weak solution to the equation

−∆Gu = δ (2.3)

whereδ denotes the Dirac distribution with singularity at the neutral element0 of G. In

[15], Folland proved that in any Carnot groupG, there exists a homogeneous normN such

that

u = N2−Q
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is harmonic inG\{0}. Furthermore there exists a constantc2 > 0 so thatc2u satisfies (2.3)

in the sense of distributions. The numberQ, called the homogeneous dimension ofG, is

defined by

Q =
k

∑

j=1

j(dimVj)

and plays an important role in in the analysis of Carnot groups.

We now set

N(x) :=







u
1

2−Q if x 6= 0,

0 if x = 0.
(2.4)

We recall that a homogeneous norm onG is a continuous functionN : G −→ [0,∞)

smooth away from the origin which satisfies the conditions :N(δλ(x)) = λN(x),N(x−1) =

N(x) andN(x) = 0 iff x = 0.

A Carnot groupG is said to be polarizable if the homogeneous normN = u1/(2−Q)

satisfies the following∞-sub-Laplace equation,

∆G,∞N :=
1

2
〈∇G(|∇GN |2),∇GN〉 = 0, in G \ {0}. (2.5)

This class of groups were introduced by Balogh and Tyson [3] and admit the analogue of

polar coordinates. It is known that Euclidean space, the Heisenberg group and the Kaplan’s

H-type group [22] are polarizable Carnot groups (see [12], [3]).

In [3], Balogh and Tyson proved that the homogeneous normN = u1/(2−Q), associ-

ated to Folland’s solutionu for the sub-Laplacian∆G, enters also in the expression of the

fundamental solution of the sub-ellipticp-Laplacian:

∆G,pu =

m
∑

i=1

Xi(|Xu|
p−2Xiu), 1 < p <∞, (2.6)

on polarizable Carnot groups. More precisely, they proved that for every1 < p < ∞, p =

Q

up =







N
p−Q

p−1 , if p 6= Q,

−logN, if p = Q.
(2.7)

is p-harmonic inG \ {0}. Furthermore there exists a constantcp so thatcpup satisfies

−∆G,p(cpup) = δ

in the sense of distributions. In the setting ofH-type groups, explicit formulas for the

fundamental solutions of the sub-ellipticp-Laplacian has been found by Capogna, Danielli

and Garofalo [10].

The following formula:

∇G ·
( N

|∇GN |2
· ∇GN

)

= Q in G \ Z (2.8)
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was proved by Balogh and Tyson [3]. HereZ := {0} ∪ {x ∈ G \ {0} : ∇GN(x) = 0} has

Haar measure zero and∇GN 6= 0 for a.e.x ∈ G.

The curveγ : [a, b] ⊂ R −→ G is called horizontal if its tangents lie inV1, i.e,γ′(t) ∈

span{X1, . . . , Xm} for all t. Then, the Carnot-Carathéodory distancedCC(x, y) between

two pointsx, y ∈ G is defined to be the infimum of all horizontal lengths
∫ b

a
〈γ′(t), γ′(t)〉1/2dt

over all horizontal curvesγ : [a, b] −→ G such thatγ(a) = x andγ(b) = y. Notice that

dcc is a homogeneous distance and satisfies the invariance property

dcc(z · x, z · y) = dcc(x, y), for all x, y, z ∈ G,

and is homogeneous of degree one with respect to the dilationδλ, i.e.

dcc(δλ(x), δλ(y)) = λdcc(x, y), for all x, y, z ∈ G, for all λ > 0.

The Carnot-Carathéodory balls are defined byB(y, R) = {x ∈ G|dcc(y, x) < R}. By left-

translation and dilation, it is easy to see that the Haar measure ofB(y, R) is proportional

byRQ. More precisely

|B(y, R)| = RQ|B(y, 1)| = RQ|B(0, 1)|.

We now set

B̺ := B(0, R) = {x ∈ G : ̺(x) < R}

where̺ := dcc(0, x) is the Carnot-Carathéodory distance ofx from the origin. Note that̺

is a homogeneous norm and equivalent to other homogeneous norm onG. At this point we

remark that|∇GN | is uniformly bounded andN : (G, dcc) −→ R is Lipschitz (see [3]).

We now recall the following integration formula in polar coordinates onG
∫

G

f(x)dx =

∫ ∞

0

∫

S

f(δλu)λ
Q−1dσ(u)dλ

which is valid for allf ∈ L1(G). HereS = {N = 1} is the unit sphere with respect to the

homogeneous normN anddσ is a Radon measure onS (see [17], [3], [25], [7]). Now it

is clear the radial functionρα ( ̺ is any homogeneous norm onG) is locally integrable if

α > −Q.

3. SHARP WEIGHTED HARDY TYPE INEQUALITIES

In this section we prove various weighted Hardy-type inequalities and their improved

versions. We begin this section by proving a new form of the weighted Hardy-Poincaré-

type inequality with a sharp constant.

Theorem 3.1. Let G be a polarizable Carnot group with homogeneous dimensionQ ≥ 3

and letφ ∈ C∞
0 (G), 1 < p < Q andα > −Q. Then the following inequality is valid :

∫

G

Nα+p |∇GN · ∇Gφ|
p

|∇GN |2p
dx ≥

(Q+ α

p

)p
∫

G

Nα|φ|pdx. (3.1)

Furthermore, the constant(Q+α
p

)p is sharp.
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Proof. Using the volume growth condition formula (2.8) and integration by parts, we get

(Q+ α)

∫

G

Nα|φ|pdx = −p

∫

G

|φ|p−2φNα+1

|∇GN |2
∇GN · ∇Gφdx.

An application of Hölder’s and Young’s inequality yields

(Q+ α)

∫

G

Nα|φ|pdx ≤ p
(

∫

G

Nα|φ|pdx
)(p−1)/p(

∫

G

Nα+p|∇GN · ∇Gφ|
p

|∇GN |2p
dx

)1/p

≤ (p− 1)ǫ−p/(p−1)

∫

G

Nα|φ|pdx+ ǫp
∫

G

Nα+p|∇GN · ∇Gφ|
p

|∇GN |2p
dx

for anyǫ > 0. Therefore
∫

G

Nα+p|∇GN · ∇Gφ|
p

|∇GN |2p
dx ≥ ǫ−p

(

Q+ α− (p− 1)ǫ−p/(p−1)
)

∫

G

Nα|φ|pdx. (3.2)

Note that the functionǫ −→ ǫ−p
(

Q + α − (p − 1)ǫ−p/(p−1)
)

attains the maximum for

ǫp/(p−1) = p
Q+α

, and this maximum is equal to
(

Q+α
p

)p

. Now we obtain the desired in-

equality
∫

G

Nα+p |∇GN · ∇Gφ|
p

|∇GN |2p
dx ≥

(Q+ α

p

)p
∫

G

Nα|φ|pdx.

Next we claim that
(

Q+α
p

)p
is the best constant in (3.1):

CH : = inf
06=φ∈C∞

0 (G)

∫

G
Nα+p |∇GN ·∇Gφ|p

|∇GN |2p dx
∫

G
Nα|φ|pdx

,

=
(Q+ α

p

)p

.

It is clear that

(Q+ α

p

)p
≤

∫

G
Nα+p |∇GN ·∇Gφ|p

|∇GN |2p dx
∫

G
Nα|φ|pdx

(3.3)

holds for allφ ∈ C∞
0 (G). If we pass to the inf in (3.3) we get that

(

Q+α
p

)p
≤ CH . We

only need to show thatCH ≤
(

Q+α
p

)p
and for this we use the following family of radial

functions

φǫ(N) =







N
Q+α

p
+ǫ if N ∈ [0, 1],

N−(Q+α

p
+ǫ) if N > 1,

(3.4)

whereǫ > 0. Notice thatφǫ(N) can be approximated by smooth functions with compact

support inG.

A direct computation shows that

Nα+p |∇GN · ∇Gφǫ|
p

|∇GN |2p
=







(

Q+α
p

+ ǫ
)p
NQ+2α+pǫ if N ∈ [0, 1],

(

Q+α
p

+ ǫ
)p
N−Q−pǫ if N > 1.
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Let us denote byB1 = {x ∈ G : N(x) ≤ 1} the unit ball with respect to the homogeneous

normN . Hence
∫

G

Nα|φǫ|
pdx =

∫

B1

NQ+2α+pǫdx+

∫

G\B1

N−Q−pǫdx.

Note that, for everyǫ > 0, the weightsNQ+2α+pǫ andN−Q−pǫ are integrable at0 and∞,

respectively. This implies that
∫

G
Nα|φǫ|

pdx is finite. Thus we have

(Q+ α

p
+ ǫ

)p
∫

G

Nα|φǫ|
pdx =

(Q+ α

p
+ ǫ

)p
[

∫

B1

NQ+2α+pǫdx+

∫

G\B1

N−Q−pǫdx
]

=

∫

G

Nα+p |∇GN · ∇Gφǫ|
p

|∇GN |2p
dx.

On the other hand
(

Q+α
p

+ ǫ
)p

CH

∫

G

Nα+p |∇GN · ∇Gφǫ|
p

|∇GN |2p
dx ≥

(Q+ α

p
+ ǫ

)p
∫

G

Nα|φǫ|
pdx

=

∫

G

Nα+p |∇GN · ∇Gφǫ|
p

|∇GN |2p
dx.

It is clear that
(

Q+α
p

+ ǫ
)p

≥ CH and lettingǫ −→ 0 we obtain
(

Q+α
p

)p
≥ CH . Therefore

CH =
(

Q+α
p

)p
.

The followingLp-Hardy-type inequality is the weighted extension of Theorem 3.1 in

[21] and plays important roles in the proof of Theorem 3.6 andSection 4.

Theorem 3.2. Let G be a polarizable Carnot group with homogeneous dimensionQ ≥ 3

and letφ ∈ C∞
0 (G), α ∈ R, 1 < p < Q andQ+ α− p > 0. Then the following inequality

is valid :
∫

G

Nα|∇Gφ|
pdx ≥

(Q+ α− p

p

)p
∫

G

Nα |∇GN |p

Np
|φ|pdx. (3.5)

Furthermore, the constant(Q+α−p
p

)p is sharp.

Proof. Let φ ∈ C∞
0 (G) and defineψ = N−γφ whereγ < 0. A direct calculation shows

that

|∇Gφ| = |γNγ−1ψ∇GN +Nγ∇Gψ|. (3.6)

We now use the following convexity inequality

|a+ b|p − |a|p ≥ c(p)|b|p + p|a|p−2a · b, (3.7)

wherea, b ∈ Rn, p ≥ 2 andc(p) > 0 (see [6]). In view of (3.7) we have that
∫

G

Nα|∇Gφ|
pdx ≥ |γ|p

∫

G

Nα+γp−p|∇GN |p|ψ|pdx

+ |γ|p−2γ

∫

G

Nα+γp−p+1|∇GN |p−2∇GN · ∇G(|ψ|p)dx

+ c(p)

∫

G

Nα+pγ |∇Gψ|
pdx.
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Clearly

∫

G

Nα|∇Gφ|
pdx ≥ |γ|p

∫

G

Nα+γp−p|∇GN |p|ψ|pdx

+ |γ|p−2γ

∫

G

Nα+γp−p+1|∇GN |p−2∇GN · ∇G(|ψ|p)dx,

and integration by parts gives

∫

G

Nα|∇Gφ|
pdx ≥ |γ|p

∫

G

Nα+γp−p|∇GN |p|ψ|pdx

− |γ|p−2γ

∫

G

∇G · (Nα+γp−p+1|∇GN |p−2∇GN)|ψ|pdx.

We now chooseγ = p−Q−α
p

; then we get

∫

G

∇G · (Nα+γp−p+1|∇GN |p−2∇GN)|ψ|pdx =

∫

G

∇G · (N1−Q|∇GN |p−2∇GN)|ψ|pdx.

(3.8)

Sinceup is the fundamental solution of sub-p-Laplacian−∆G,p, we then have

∫

G

∇G · (N1−Q|∇GN |p−2∇GN)|ψ|pdx = −c(G, p)|φ(0)|pN (Q+α−p)(0)

= 0

(3.9)

wherec(G, p) is a positive constant (see [3]). Hence we obtain the desiredinequality

∫

G

Nα|∇Gφ|
pdx ≥

(Q+ α− p

p

)p
∫

G

Nα |∇GN |p

Np
|φ|pdx. (3.10)

To show that the constant
(

Q+α−p
p

)p

is sharp, we use the following family of radial func-

tions

φǫ(N) =







N
Q+α−p

p
+ǫ if N ∈ [0, 1],

N−(Q+α−p

p
+ǫ) if N > 1,

and pass to the limit asǫ −→ 0. Note that the Theorem (3.2) also holds for1 < p < 2 and

in this case we use the following inequality:

|a+ b|p − |a|p ≥ c(p)
|b|2

(|a| + |b|)2−p
+ p|a|p−2a · b (3.11)

wherea ∈ Rn, b ∈ Rn andc(p) > 0 (see [6]).

Remark 3.3. We remark that ifp = 2 then we remove the polarizability condition and the

inequality (3.5) holds in any Carnot group (see [23]).
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IMPROVED HARDY TYPE INEQUALITIES. We now prove improved weighted Hardy-

type inequalities and also collect other known improved weighted Hardy-type inequalities

that will be used in Section 4. To motivate our discussion, let us recall the the following

sharp improved Hardy inequality from the Euclidean setting:
∫

Ω

|x|α|∇φ|2dx ≥
(n+ α− 2

2

)2
∫

Ω

|x|α
φ2

|x|2
dx+

1

4

∫

Ω

|x|α
φ2

|x|2(ln R
|x|

)2
dx, (3.12)

whereΩ is abounded domain with smooth boundary,0 ∈ Ω, φ ∈ C∞
0 (Ω), n ≥ 1, α ∈

R, R ≥ e supΩ |x| andn + α − 2 > 0. Furthermore, the constant1
4

is sharp and this

inequality has immediate applications in partial differential equations (see [2], [31], [1]

[19]). Motivated by the above results our first goal is to obtain the analog of (3.12) for

bounded domains in Carnot groups.

Theorem 3.4. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

Ω ⊂ G be a bounded domain with smooth boundary,0 ∈ Ω, R ≥ e supΩN , α ∈ R,

Q ≥ 3,Q+ α− 2 > 0. Then the following inequality holds:
∫

Ω

Nα|∇Gφ|
2dx ≥

(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+

1

4

∫

Ω

Nα |∇GN |2

N2

φ2

(ln R
N

)2
dx

(3.13)

for all compactly supported smooth functionφ ∈ C∞
0 (Ω).

Proof. Let φ ∈ C∞
0 (Ω) and defineψ = N−βφ whereβ < 0. A direct calculation shows

that

|∇Gφ|
2 = β2N2β−2|∇GN |2ψ2 + 2βN2β−1ψ∇GN · ∇Gψ +N2β |∇Gψ|

2. (3.14)

Multiplying both sides of (3.14) by theNα and applying integration by parts overΩ gives
∫

Ω

Nα|∇Gφ|
2dx = β2

∫

Ω

Nα+2β−2|∇GN |2ψ2dx−
β

α + 2β

∫

Ω

∆G(Nα+2β)ψ2dx

+

∫

Ω

Nα+2β |∇Gψ|
2dx.

(3.15)

We can easily show that

−
β

α + 2β
∆G(Nα+2β) = −β(α+ 2β+Q− 2)Nα+2β−2|∇GN |2 −

β

2 −Q
Nα+2β+Q−2∆Gu.

(3.16)

Substituting (3.16) into (3.15) and using the fact thatψ2 = N−2βφ2 yield
∫

Ω

Nα|∇Gφ|
2dx = (−β2 − β(α+Q− 2)

∫

Ω

Nα |∇GN |2

N2
φ2dx

−
β

2 −Q

∫

Ω

(∆Gu)N
α+Q−2φ2dx

+

∫

Ω

Nα+2β |∇Gψ|
2dx.
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The middle integral vanishes sinceu is the fundamental solution of sub-Laplacian∆G,

therefore we have
∫

Ω

Nα|∇Gφ|
2dx =

(

− β2 − β(α +Q− 2)
)

∫

Ω

Nα |∇GN |2

N2
φ2dx+

∫

Ω

Nα+2β |∇Gψ|
2dx.

Note that the quadratic function−β2 −β(α+Q−2) attains maximum forβ = 2−Q−α
2

and

this maximum equal to(Q+α−2
2

)2. Therefore
∫

Ω

Nα|∇Gφ|
2dx =

(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+

∫

Ω

N2−Q|∇Gψ|
2dx. (3.17)

Let us defineϕ(x) = (ln R
N

)−
1
2ψ(x) whereN is the homogeneous norm which is defined

as in (2.4). A direct calculation shows that
∫

Ω

N2−Q|∇Gψ|
2dx =

1

4

∫

Ω

N−Q|∇GN |2(ln(
R

N
)−1ϕ2 +

∫

Ω

N2−Q ln(
R

N
)|∇Gϕ|

2dx

−
1

2(2 −Q)

∫

Ω

∆G(N2−Q)ϕ2dx.

It is clear that the last integral term vanishes. Therefore we have
∫

Ω

N2−Q|∇Gψ|
2dx ≥

1

4

∫

Ω

N−Q|∇GN |2(ln(
R

N
)−1ϕ2

=
1

4

∫

Ω

N−Q|∇GN |2
ψ2

(ln R
N

)2
dx

=
1

4

∫

Ω

Nα−2|∇GN |2
φ2

(ln R
N

)2
dx.

(3.18)

Substituting (3.18) into (3.17) which yields the desired inequality (3.13).

One of the advantages of our approach is that it automatically yields a remainder term

and then using a suitable functional change lead us to obtainan explicit remainder term as

in the Theorem 3.3. On the other hand, there are other techniques that we can use to obtain

explicit remainder term. In our earlier paper [23] we have used weighted Sobolev-Poincare

inequalities and obtained the following improved weightedHardy-type inequalities.

Theorem 3.5. ([23]) LetG be a Carnot group with homogeneous normN = u1/(2−Q), and

let φ ∈ C∞
0 (B̺), α ∈ R,Q ≥ 3 andQ+α−2 > 0. Then the following inequality is valid:

∫

B̺

Nα|∇Gφ|
2dx ≥

(Q+ α− 2

2

)2
∫

B̺

Nα |∇GN |2

N2
φ2dx+

1

C2R2

∫

B̺

Nαφ2dx, (3.19)

whereC is a positive constant andR is the radius of the ballB̺.

Theorem 3.6. ([23]) LetG be a Carnot group with homogeneous normN = u1/(2−Q) and

let φ ∈ C∞
0 (B̺), α ∈ R,Q ≥ 3, Q+ α − 2 > 0 andq > 2. Then the following inequality

is valid:
∫

B̺

Nα|∇Gφ|
2dx ≥

(Q+ α− 2

2

)2
∫

B̺

Nα |∇GN |2

N2
φ2dx+

K

C2R2

(

∫

B̺

Nσφqdx
)2/q

,

(3.20)
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whereC > 0,R is the radius of the ballB̺, σ = (2−Q)(2−q)+αq
2

andK =
(

∫

B̺
N2−Qdx

)
q−2

q

.

Notice that the remainder terms in Theorems 3.4 and 3.5 contain functions of the ho-

mogeneous normN andφ. Motivated by the recent work of Abdellaoui, Colorado and

Peral [1] we have following inequality (which is a weighted version of the inequality (3.4)

in [23]) so that remainder term contains functions ofN and|∇Gφ|.

Theorem 3.7. Let G be a polarizable Carnot group with homogeneous dimensionQ ≥ 3

and letΩ be a bounded domain with smooth boundary which contains the origin, α ∈ R,

Q+ α− 2 > 0, and1 < q < 2. Then there exists a positive constantC = C(Q, q,Ω) such

that the following inequality holds:
∫

Ω

Nα|∇Gφ|
2dx ≥

(Q+ α− 2

2

)2
∫

Ω

Nα |∇GN |2

N2
φ2dx+ C

(

∫

Ω

N
αq
2 |∇Gφ|

qdx
)2/q

(3.21)

for all compactly supported smooth functionφ ∈ C∞
0 (Ω).

Proof. The proof is similar to the proof Theorem in [23] ( see also [24]). We only need to

use the weightedLp-Hardy-type inequality (3.5).

4. SHARP WEIGHTED RELLICH TYPE INEQUALITIES AND THEIR

IMPROVED VERSIONS

Our main goal in this section is to obtain weighted analoguesof the Rellich inequality

(1.1) and (1.2) for general Carnot groups. Furthermore, we shall also obtain their improved

versions for bounded domains. The following is the first result of this section.

Theorem 4.1. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

φ ∈ C∞
0 (G), α ∈ R,Q ≥ 3,Q+ α− 4 > 0. Then the following inequality is valid:

∫

G

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

G

Nα |∇GN |2

N4
φ2dx. (4.1)

Furthermore, the constant(Q+α−4)2(Q−α)2

16
is sharp.

Proof. A straightforward computation shows that

∆GN
α−2 = (Q+ α− 4)(α− 2)Nα−4|∇GN |2 +

α− 2

2 −Q
NQ+α−4∆u. (4.2)

Multiplying both sides of (4.2) byφ2 and integrating over the domainG, we obtain

∫

G

φ2∆GN
α−2dx =

∫

G

Nα−2(2φ∆Gφ+ 2|∇Gφ|
2)dx.

Sinceu is the fundamental solution of∆G andQ+ α− 4 > 0 we obtain
∫

G

φ2∆GN
α−2dx = (Q+ α− 4)(α− 2)

∫

G

Nα−4|∇GN |2φ2dx.
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Therefore

(Q+ α− 4)(α− 2)

∫

G

Nα−4|∇GN |2φ2dx− 2

∫

G

Nα−2φ∆Gφdx = 2

∫

G

Nα−2|∇Gφ|
2dx.

(4.3)

Applying the weighted Hardy inequality (3.5) on the right hand side of (4.3), we get

(Q+ α− 4)(α− 2)

∫

G

Nα−4|∇GN |2φ2dx− 2

∫

G

Nα−2φ∆Gφdx

≥ 2(
Q+ α− 4

2
)2

∫

G

Nα−4|∇GN |2φ2dx.

Now it is clear that,

−

∫

G

Nα−2φ∆Gφdx ≥ (
Q+ α− 4

2
)(
Q− α

2
)

∫

G

Nα−4|∇GN |2φ2dx. (4.4)

Next, we apply the Cauchy-Schwarz inequality to the integrand−
∫

G
Nα−2φ∆φdx and we

obtain

−

∫

G

Nα−2φ∆Gφdx ≤
(

∫

G

Nα−4|∇GN |2φ2dx
)1/2(

∫

G

|∆Gφ|
2

|∇GN |2
Nαdx

)1/2

. (4.5)

Combining (4.5) and (4.4), we obtain the inequality (4.1).

Now we prove that the constantC(Q,α) = (Q+α−4)2(Q−α)2

16
is the best constant for the

Rellich-type inequality (4.1), that is

CR := inf
06=f∈C∞

0 (G)

∫

G
Nα |∆Gf |2

|∇GN |2
dx

∫

G
Nα |∇GN |2

N4 f 2dx
=

(Q+ α− 4)2(Q− α)2

16
.

It is clear that

(Q+ α− 4)2(Q− α)2

16
≤

∫

G
Nα |∆Gf |2

|∇GN |2
dx

∫

G
Nα |∇GN |2

N4 f 2dx
. (4.6)

If we pass to the infimum in (4.6) we get that(Q+α−4)2(Q−α)2

16
≤ CR. We only need to show

thatCR ≤ (Q+α−4)2(Q−α)2

16
. Givenǫ > 0, we define the functionφǫ(N) by

φǫ(N) =







−(Q+α−4
2

+ ǫ)
(

N − 1
)

+ 1 if N ∈ [0, 1],

N−(Q+α−4
2

+ǫ) if N > 1.
(4.7)

Notice thatφǫ(N) can be well approximated by smooth functions with compact support in

G. By direct computation we get

|∆Gφǫ|
2 =







(Q+α−4
2

+ ǫ)2|∇GN |4 (Q−1)2

N2 if N ≤ 1,

(Q+α−4
2

+ ǫ)2(Q−α
2

− ǫ)2N−Q−α−2ǫ|∇GN |4 if N > 1.

Let us denote byB1 = {x ∈ G : N ≤ 1} the unit ball with respect to the homogeneous

normN . Hence
∫

G

Nα |∆Gφǫ|
2

|∇GN |2
dx = A(Q,α, ǫ)

∫

B1

Nα−2|∇GN |2dx+B(Q,α, ǫ)

∫

G\B1

N−Q−2ǫ|∇GN |2dx
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whereA(Q,α, ǫ) = (Q − 1)2(Q+α−4
2

+ ǫ)2 andB(Q,α, ǫ) = (Q+α−4
2

+ ǫ)2(Q−α
2

− ǫ)2.

Note that the integrand
∫

B1
Nα−2|∇GN |2dx is finite because|∇GN | is uniformly bounded

andQ+ α− 4 > 0. Therefore
∫

G

Nα |∆Gφǫ|
2

|∇GN |2
dx = B(Q,α, ǫ)

∫

G\B1

N−Q−2ǫ|∇GN |2dx+O(1). (4.8)

Next,
∫

G

Nα |∇GN |2

N4
φ2

ǫdx =

∫

B1

Nα |∇GN |2

N4
φ2

ǫdx+

∫

G\B1

Nα |∇GN |2

N4
φ2

ǫdx.

It is clear that the first integrand
∫

B1
Nα |∇GN |2

N4 φ2
ǫdx is finite and we get

∫

G

Nα |∇GN |2

N4
φ2

ǫdx =

∫

G\B1

N−Q−2ǫ|∇GN |2dx+O(1). (4.9)

Taking the limit asǫ −→ 0 and noting that
∫

G\B1

N−Q−2ǫ|∇GN |2dx −→ ∞

we get
∫

G
Nα |∆Gφǫ|2

|∇GN |2
dx

∫

G
Nα |∇GN |2

N4 φ2
ǫdx

≤
(Q+ α− 4)2(Q− α)2

16
.

ThereforeCR = (Q+α−4)2(Q−α)2

16
.

Remark 4.2. In the Abelian case, whenG = Rn with the ordinary dilations, one has

G = V1 = Rn so thatQ = n. It is clear that the inequality (4.1) with the homogeneous

normN(x) = |x| andα = 0 reduces the Rellich inequality (1.1).

IMPROVED RELLICH TYPE INEQUALITIES. In this subsection we obtain various

improved versions of the weighted Rellich-type inequality(4.1) for smooth bounded do-

mains. One virtue of our approach is that, one can obtain as many as improved weighted

Rellich-type inequalities as one can construct improved weightedL2-Hardy-type inequali-

ties. The following theorem is the first result in this direction.

Theorem 4.3. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

Ω ⊂ G be a bounded domain with smooth boundary,0 ∈ Ω, Q ≥ 3, 4 − Q < α < Q and

R ≥ e supΩN . Then the following inequality holds:
∫

Ω

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

Ω

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

8

∫

Ω

Nα |∇GN |2

N4

φ2

(ln R
N

)2
dx

(4.10)

for all compactly supported functionsφ ∈ C∞
0 (Ω).
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Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. Letφ ∈ C∞
0 (Ω) and

using the same argument as in Theorem 4.1, we have the following identity:

(Q+ α− 4)(α− 2)

∫

Ω

Nα−4|∇GN |2φ2dx− 2

∫

Ω

Nα−2φ∆Gφdx = 2

∫

Ω

Nα−2|∇Gφ|
2dx.

(4.11)

We now apply improved weighted Hardy-type inequality (3.13) to the right hand side of

(4.11):

(Q+ α− 4)(α− 2)

∫

Ω

Nα−4|∇GN |2φ2dx− 2

∫

Ω

Nα−2φ∆Gφdx

≥ 2
[

(Q+ α− 4

2

)2
∫

Ω

Nα−4|∇GN |2φ2dx+
1

4

∫

Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.

]

Now it is clear that

−

∫

Ω

Nα−2φ∆Gφdx ≥
(Q+ α− 4

2

)(Q− α

2

)

∫

Ω

Nα−4|∇GN |2φ2dx

+
1

4

∫

Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.

(4.12)

On the other hand we have, by the Young’s inequality,

−

∫

B

Nα−2φ∆Gφdx ≤ ǫ

∫

B

Nα−4|∇GN |2φ2dx+
1

4ǫ

∫

B

Nα

|∇GN |2
|∆Gφ|

2dx, (4.13)

whereǫ > 0 and will be chosen later. Substituting (4.13) into (4.12) weobtain
∫

B

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(

− 4ǫ2 + (Q+ α− 4)(Q− α)ǫ
)

∫

B

Nα−4|∇GN |2φ2dx

+ ǫ

∫

Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx.

It is clear that the quadratic function−4ǫ2 + (Q + α − 4)(Q − α)ǫ attains the maximum

for ǫ = (Q+α−4)(Q−α)
8

and this maximum is equal to(Q+α−4)2(Q−α)2

16
. Hence we obtain the

desired inequality:

∫

B

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

B

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

8

∫

Ω

Nα |∇GN |2

N4

φ2

(ln R
N

)2
dx.

Using the same arguments as in Theorem 4.2 and improved Hardy-type inequalities

(3.19) and (3.20) we obtain the following improved Rellich-type inequalities on a metric

ball, respectively.
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Theorem 4.4. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

B̺ ⊂ G be a̺-ball in G, Q ≥ 3, α ∈ R and 4 − Q < α < Q. Then the following

inequality holds:
∫

B̺

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

B̺

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

2c2r2

∫

B̺

Nα−2φ2dx

(4.14)

for all compactly supported smooth functionsφ ∈ C∞
0 (B̺).

Theorem 4.5. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

B̺ ⊂ G be a̺-ball in G, φ ∈ C∞
0 (B̺), Q ≥ 3, α ∈ R, 4 − Q < α < Q andq > 2. Then

the following inequality is valid:
∫

B̺

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

B̺

Nα |∇GN |2

N4
φ2dx

+
(Q+ α− 4)(Q− α)

2c2r2
K

(

∫

B̺

Nσ′

φqdx
)2/q

,

(4.15)

wherec is a positive constant,σ′ = (2−Q)(2−q)+(α−2)q
2

andK =
(

∫

B̺
N2−Qdx

)
q−2

q

.

The following improved Rellich-type inequality holds for bounded domains in polar-

izable Carnot groups.

Theorem 4.6. Let G be a polarizable Carnot group and letΩ ⊂ G be a bounded domain

with smooth boundary,0 ∈ Ω, α ∈ R, Q ≥ 3 and4 − Q < α < Q. Then the following

inequality holds:
∫

Ω

Nα

|∇GN |2
|∆Gφ|

2dx ≥
(Q+ α− 4)2(Q− α)2

16

∫

Ω

Nα |∇GN |2

N4
φ2dx

+
C(Q+ α− 4)(Q− α)

2

(

∫

Ω

|∇Gφ|
qN

(α−2)q
2 dx

)2/q

(4.16)

for all compactly supported smooth functionsφ ∈ C∞
0 (Ω).

Proof. The proof is similar to the proof of Theorem 4.2. We only need to use the improved

Hardy-type inequality (3.21).

WEIGHTED RELLICH TYPE INEQUALITY II. We now turn our attention to an-

other Rellich-type inequality that connects first to secondorder derivatives. The following

theorem is first result in this direction.

Theorem 4.7 (Weighted Rellich-type inequality II). Let G be a Carnot group with homo-

geneous normN = u1/(2−Q) and letφ ∈ C∞
0 (G), Q ≥ 3 and 8−Q

3
< α < Q. Then the

following inequality is valid:
∫

G

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

G

Nα |∇Gφ|
2

N2
dx. (4.17)
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Furthermore, the constantC(Q,α) =
(

Q−α
2

)2
is sharp.

Proof. Our starting point is the identity
∫

G

Nα−2|∇Gφ|
2dx =

(Q+ α− 4)(α− 2)

2

∫

G

Nα−4|∇GN |2φ2dx

−

∫

G

Nα−2φ∆Gφdx

(4.18)

valid for all φ ∈ C∞
0 (G) andQ+ α− 4 > 0 (see (4.3)).

By applying Cauchy’s inequality we obtain

−

∫

G

Nα−2φ∆Gφdx ≤ ǫ

∫

G

Nα−4|∇GN |2φ2dx+
1

4ǫ

∫

G

Nα |∆Gφ|
2

|∇GN |2
dx, (4.19)

whereǫ > 0 and will be chosen later. Combining (4.19) and (4.18), we get
∫

G

Nα−2|∇Gφ|
2dx ≤

((Q+ α− 4)(α− 2)

2
+ ǫ

)

∫

G

Nα−4|∇GN |2φ2dx

+
1

4ǫ

∫

G

Nα |∆Gφ|
2

|∇GN |2
dx.

(4.20)

We only consider the case(Q+α−4)(α−2)
2

+ ǫ > 0 because other cases do not allow us to ob-

tain sharp weighted Rellich-type inequality that connectsfirst to second-order derivatives.

We now apply the Rellich-type inequality (4.1) to the first integral term on the right hand

side of (4.20) and get
∫

G

Nα |∇Gφ|
2

N2
dx ≤

[ 16ǫ

(Q+ α− 4)2(Q− α)2
+

8(α− 2)

(Q+ α− 4)(Q− α)2
+

1

4ǫ

]

∫

G

|∆Gφ|
2

|∇GN |2
dx.

Note that the functionǫ −→ 16ǫ
(Q+α−4)2(Q−α)2

+ 8(α−2)
(Q+α−4)(Q−α)2

+ 1
4ǫ

attains the minimum for

ǫ = (Q+α−4)(Q−α)
8

, and this minimum is equal to 4
(Q−α)2

. Therefore we obtain the desired

inequality:
∫

G

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

G

Nα |∇Gφ|
2

N2
dx. (4.21)

To show that constant
(

Q−α
2

)2
is sharp, we again use the same sequence of functions

(4.7) and we get
∫

G
Nα |∆Gφǫ|2

|∇GN |2
dx

∫

G
Nα |∇Gφǫ|2

N2 dx
−→

(Q− α

2

)2

asǫ −→ 0.

Remark 4.8. Note that one can also apply the weighted Hardy-type inequality (3.5) with

p = 2 to the first integral on the right hand side of (4.20) and reachthe same inequality

(4.21).
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IMPROVED RELLICH TYPE INEQUALITY II. We now present improved versions

of the Rellich-type inequality (4.17) for bounded domains.Their proofs are very similar to

that of Theorem 4.6, except instead of using plain weighted Hardy-type inequality, we use

improved weighted Hardy-type inequalities, (3.13), (3.19), (3.20) and (3.21), respectively.

Theorem 4.9. Let G be a Carnot group with homogeneous normN = u1/(2−Q) and let

Ω ⊂ G be a bounded domain with smooth boundary,0 ∈ Ω, Q ≥ 3, 8−Q
3

< α < Q and

R ≥ e supΩN . Then the following inequality holds:
∫

Ω

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

Ω

Nα |∇Gφ|
2

N2
dx

+ C(Q,α)

∫

Ω

Nα−4|∇GN |2
φ2

(ln R
N

)2
dx

(4.22)

for all compactly supported smooth functionsφ ∈ C∞
0 (Ω). HereC(Q,α) = (Q−α)(Q+3α−8)

16
.

Theorem 4.10. LetG be a Carnot group with homogeneous normN = u1/(2−Q) and letB̺

be a̺-ball in G, φ ∈ C∞
0 (B̺), Q ≥ 3 and 8−Q

3
< α < Q. Then the following inequality

holds:
∫

B̺

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

B̺

Nα |∇Gφ|
2

N2
dx

+
(Q− α)(Q+ 3α− 8)

4C2R2

∫

B̺

Nα φ
2

N2
dx,

(4.23)

whereC > 0 andR is the radius of the ballB̺.

Theorem 4.11. LetG be a Carnot group with homogeneous normN = u1/(2−Q) and letB̺

be a̺-ball in G, φ ∈ C∞
0 (B̺),Q ≥ 3 and 8−Q

3
< α < Q. Then the following inequality is

valid:
∫

B̺

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

B̺

Nα |∇Gφ|
2

N2
dx

+
(Q− α)(Q+ 3α− 8)

4C2R2
K

∫

B̺

Nσ′

φqdx,

(4.24)

whereR is the radius of the ballB̺, C > 0, σ′ = (2−Q)(2−q)+(α−2)q
2

and

K =
(

∫

B̺
N2−Qdx

)
q−2

q

.

Theorem 4.12. LetG be a polarizable Carnot group with homogeneous normN = u1/(2−Q)

and letΩ be a bounded domain with smooth boundary,0 ∈ Ω, Q ≥ 3 and 8−Q
3

< α < Q.

Then the following inequality holds:
∫

Ω

Nα |∆Gφ|
2

|∇GN |2
dx ≥

(Q− α)2

4

∫

Ω

Nα |∇Gφ|
2

N2
dx+ C̃

(

∫

Ω

|∇Gφ|
qN

(α−2)q
2 dx

)2/q

(4.25)

for all compactly supported smooth functionsφ ∈ C∞
0 (Ω). HereC̃ = C(Q−α)(Q+3α−8)

4
and

C > 0.



SHARP RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES 269

5. UNCERTAINTY PRINCIPLE INEQUALITY

In [23] we obtained the following uncertainty principle-type inequality for general

Carnot groups:

(

∫

G

N2|∇GN |2φ2dx
)(

∫

G

|∇Gφ|
2dx

)

≥
(Q− 2

2

)2(
∫

G

|∇GN |2φ2dx
)2

, (5.1)

whereφ ∈ C∞
0 (G). It is clear that this inequality does not recover the Euclidean uncertainty

principle inequality (1.8). As we pointed out before one of the main goal of this paper is

to establish a sharp uncertainty principle inequality for Carnot groups and the following

theorem is the main result of this section.

Theorem 5.1. LetG be a polarizable Carnot group with homogeneous normN = u1/(2−Q)

and letQ ≥ 3 andφ ∈ C∞
0 (G). Then the following inequality is valid:

(

∫

G

N2φ2dx
)(

∫

G

|∇Gφ|
2

|∇GN |2
dx

)

≥
Q2

4

(

∫

G

φ2dx
)2

. (5.2)

Proof. By the volume growth formula (2.8) and integration by parts,we get
∫

G

Qφ2dx = −2

∫

G

( φN

|∇GN |2
∇Gφ · ∇GN

)

dx. (5.3)

Applying Cauchy-Schwarz inequality to the right hand-sideof (5.3) gives the desired in-

equality:
(

∫

G

N2φ2dx
)(

∫

G

|∇Gφ|
2

|∇GN |2
dx

)

≥
Q2

4

(

∫

G

φ2dx
)2

.

It is easy to verify that the equality is attained in Theorem 5.1 by the functionsφ = Ae−βN2

for someA ∈ R, β > 0.

Remark 5.2. In the Abelian case, whenG = Rn with the ordinary dilations, one has

G = V1 = Rn so thatQ = n. It is clear that the inequality (5.2) with the homogeneous

normN(x) = |x| recover the uncertainty principle inequality (1.8).

In connection with uncertainty principle inequality we nowpresent the following Caffarelli-

Kohn-Nirenberg [9]-type inequality for polarizable Carnot groups. It is clear that this in-

equality reduces to the uncertainty principle inequality (5.2) forα = 0 andp = q = 2.

Theorem 5.3. LetG be a polarizable Carnot group with homogeneous normN = u1/(2−Q)

and letQ ≥ 3, α > −Q, p > 1, q = p
p−1

andφ ∈ C∞
0 (G). Then the following inequality is

valid:

(

∫

G

N
q

q−1 |φ|(
p−1
q−1

)qdx
)

q−1
q

(

∫

G

|∇Gφ|
q

|∇GN |q
Nαqdx

)1/q

≥
(Q+ α

p

)

∫

G

Nα|φ|pdx. (5.4)

Proof. The proof is similar to the proof of Theorem 3.1. We omit the details.
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