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ABSTRACT. In this work we prove sharp weighted Rellich-type inequeditand their improved versions for
general Carnot groups. To derive the improved Rellich-tyyggjualities we have established new weighted
Hardy-type inequalities with remainder terms. We also proew sharp forms of the weighted Hardy-
Poincaré and uncertainty principle inequalities for piaizble Carnot groups.
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1. INTRODUCTION

The classical Rellich inequality [26] states that for 5, for all ¢ € C§°(R"™),

[ 186G Pdr > & (”16_ 4 / |¢|(;|2| dz. (1.1)

It is well-known that the constaﬁft?(’}(};‘*)2 in inequality (1.1) is sharp. In a recent paper,
Tertikas and Zographopoulos [28] obtained the followindjiRe-type inequality that con-
nects first to second-order derivatives:

w2 Ve,

T (1.2)

Y

|Ag(x)*da >
Rn

where¢p € C§°(R"), n > 5 and the constanﬁf is sharp. There has been considerable
amount work on the Rellich-type inequalities in Euclidepaces and Riemannian man-
ifolds, e.qg., [14], [5], [28], [24], [20] and the referencHwerein. However, Rellich-type
inequalities have not been established for general Camopg. Our main contribution in
this direction is to find sharp weighted Rellich-type inelifiess and their improved versions
for general Carnot groups.

The Rellich inequality (1.1) is the first generalization adrdy’s inequality

5 IVo(z)|2dx > (”;2) / ol (1.3)
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to the higher order derivatives and they are intimatelytegla For example, the Rellich
inequality (1.1) is an easy consequence of (1.2) and thehtexigHardy inequality:

/ Vo), (n—4 / o), .4

[ 4 |zt

where¢ € Ci°(R"), n > 5 and the constarﬁfl_ﬂt—‘l)2 is sharp.

It is well-known that Hardy and Rellich inequalities as waeltheir improved versions
play important roles in many questions from spectral thgdosymonic analysis and analysis
of linear and nonlinear partial differential equations. #ilksng example where the sharp
Hardy inequality (1.3) plays a major role is the followingdiar heat equation:

{gg = Au+ 5 in R x (0,7), (1.5)

u(z,0) = up(x) >0 in R™.

In their classical paper Baras and Goldstein [4] proved tifiatnitial value problem (1.5)
has no nonnegative solutions except 0 if ¢ > C*(n) = (“52)%. Moreover, all positive
solutions blow up instantaneously in the sense that i the solution of the same problem
with the potentiat/|x|? replaced by, = min{c/|z|?,n}, thenlim,, ., u,(z,t) = oo for
allz € R™andt > 0. If ¢ < C*(n) = (252)?, positive weak solutions do exist.

Note that the above inequalities are strict unlgss identically equal td). Therefore
itis natural to expect some extra term might be added on gjint hand side of the inequal-
ities (1.1), (1.2), (1.3) and (1.4). A remarkable resulthistdirection has been obtained
by Brezis and Vazquez [8]. They have discovered the folhgnsharp improved Hardy
inequalities for a bounded dom&hc R”

) 12de n—2\2 [ |¢(x) " Wn\2/n 20y
[wepir = (“52) [ B e u@ [ dan s

/|V¢ )2dz >< )2 Q‘¢(x>|2dx+c</¢qu>%, (1.7)

|z
where¢ € H}(Q), C = C(,n) > 0, w, and|Q2| denote then-dimensional Lebesgue
measure of the unit balB C R" and the domain2 respectively. Herg: is the first eigen-
value of the Laplace operator in the two dimensional unik dimd it is optimal when is
a ball centered at the ongln In (1.7) we assume thatq < = and the critical Sobolev
exponenty = 2* = n_z is not included. The work of Bre2|s and Vazquez [8] has been
a continuous source of inspiration and a lot of progress leas Imade to find further im-
provement of the inequalities (1.1), (1.2), (1.3), (1.4)6] and (1.7) in the various settings
e.g., [30], [2], [6], [31], [1], [5], [19], [28], [24], [20],[23] and the references therein.

The connection between weighted Hardy and Rellich inetiesJiand the importance
of Hardy’s inequality in analysis and partial differentegjuations motivates us to establish
weighted Hardy-type inequalities and their improved vamnsion Carnot groups. Indeed,
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in our earlier paper, we found some sharp weighted Hardg-tgpqualities and their im-
proved versions for.2-norms of gradients on Carnot groups [23]. In the presenepae
first prove a new (non standard) form of weightettHardy-type inequality with a sharp
constant and then derive new weightettHardy-type inequalities with remainder terms
for bounded domains in Carnot groups. We stress here thagtwezl Hardy-type inequal-
ities and their improved versions are the main tools fortdithing weighted Rellich-type
inequalities and their improved versions, respectively.

We should mention that Hardy-type inequalities have beertdlget of investigation
in Carnot-Carathéodory spaces since the work of Garofatblaanconelli [18], and there
has been a continuously growing literature in this dirattid/e refer to the recent papers
by Danielli, Garofalo and Phuc [13], and Goldstein and Korj#id, and the monograph
by Capogna et al. [11] and the references therein.

It is known that Hardy and Sobolev inequalities are closelgted to the Heisenberg
uncertainty principle in quantum mechanics. The Heisanlb@certainty principle says
that the position and momentum of a particle cannot be détechexactly at the same time
but only with an “uncertainty”. More precisely, the uncéntg principle on the Euclidean
spaceR™ can be stated in the following way:

2

([ aPir@ra)( [ vi@pae) =5 ([ r@ka)” as)

R

forall f € L*(R"). It is well known that equality is attained in the above if amly if

f is a Gaussian function (i.ef (z) = Ael=* for someA € R,a > 0). There exists

large literature devoted to deriving various uncertaintin@ple type inequalities in the
Euclidean and other settings (see [16], [23] and the reta®ntherein). However, much
less is known about sharp uncertainty principle inequeditn Carnot groups. In [23] we
obtained the following uncertainty principle-type inetjtya

(/GN2|VGN\2¢2dx)(/G\VG¢|2dx> > <¥>2</G‘VGN|2¢2CM>2, (1.9)

whereN = +'/(>~9) is the homogeneous norm associated to Folland’s fundairsoita
tion v for the sub-Laplacian\g and@ is the homogeneous dimension®f It is clear that
this inequality is not sharp. In this paper, motivated by suteof Balogh and Tyson [3],
we prove a sharp analog of the uncertainty principle inatuél.8) for polarizable Carnot
groups.

In order to state and prove our theorems, we first recall tsgch@operties of Carnot
groupG and some well-known results that will be used in the sequatthieér information
can be found in [3], [7], [10], [12], [15], [17], [25], [27],99].
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2. PRELIMINARIES

A Carnot group is a connected, simply connected, nilpoteatgroupG whose Lie
algebrag admits a stratification. That is, there exist linear subspag, . . ., V}, of G such
that

g:‘/l@@vk, [‘/17‘/2]:‘/24-17 for Z:17277k_1 and [‘/luvk]zo (21)
where [V}, V;] is the subspace df generated by the element&, Y] with X € V; and
Y € V;. This defines &-step Carnot group and integer> 1 is called the step df.

Via the exponential map, it is possible to induce®ra family of automorphisms of

the group, called dilations,, : R™ — R"(\ > 0) such that

Mz, .. xn) = (AN, ..., N 2y,)

wherel = a; =+ = o, < a1 < -+ < «, are integers aneh = dim(17).

The group law can be written in the following form

r-y=x+y+ P(z,y), z,yeR" (2.2)
whereP : R" x R" — R" has polynomial components atl = --- = P,, = 0. Note
that the inverse~! of an element: € G has the forme™ = —z = (—zy,..., —x,).

Let X1,...,X,, be a family of left invariant vector fields which form an ortimrmal

basis ofl; = R™ at the origin, that isX;(0) = 0,,, ..., X,»(0) = 0,,,. The vector fields
X, have polynomial coefficients and can be assumed to be of the fo

Xi(@) =0+ Y ay(2)d;, X;(0)=0;,j=1,...,m,

i=j+1
where each polynomial;; is homogeneous with respect to the dilations of the groug, th
iS a;j(0x(x)) = A* % a;(x). The horizontal gradient on Carnot gro@pis the vector
valued operator

Ve =(X1,....,Xn)

where X1, ..., X,, are the generators @. The sub-Laplacian is the second-order partial
differential operator oifz given by

Ag=> X7
j=1
The fundamental solution for A is defined to be a weak solution to the equation

wherej denotes the Dirac distribution with singularity at the malielement) of G. In
[15], Folland proved that in any Carnot gro(@j there exists a homogeneous nakfrsuch
that

uw=N*@
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is harmonic inG \ {0}. Furthermore there exists a constant> 0 so thatc,u satisfies (2.3)
in the sense of distributions. The numlggr called the homogeneous dimensionGafis
defined by

k
Q=>_j(dimy)
j=1

and plays an important role in in the analysis of Carnot gsoup

We now set

N(z) := {uw ?f 270, (2.4)
0 if x=0.

We recall that a homogeneous norm @nis a continuous functiolv : G — [0, 00)
smooth away from the origin which satisfies the conditiong 4, (z)) = AN(z), N(z™!) =
N(z)andN(z) = 0iff z = 0.

A Carnot groupG is said to be polarizable if the homogeneous ndvm= />~
satisfies the followingo-sub-Laplace equation,

Ag 0N ::%W@(WgNF),VGN) =0, in G\ {0}. (2.5)

This class of groups were introduced by Balogh and Tyson @] &mit the analogue of
polar coordinates. It is known that Euclidean space, theéfdierg group and the Kaplan’s
H-type group [22] are polarizable Carnot groups (see [13),

In [3], Balogh and Tyson proved that the homogeneous nrm «!/?-9) | associ-

ated to Folland’s solution for the sub-Laplacian\g, enters also in the expression of the
fundamental solution of the sub-ellipgieLaplacian:

Agpu =Y Xi(|XulPXu), 1<p< oo, (2.6)

i=1
on polarizable Carnot groups. More precisely, they proved tor everyl < p < co,p =

Q

(2.7)
—logN, if p=Q.

is p-harmonic inG \ {0}. Furthermore there exists a constanso thatc,u, satisfies

{Ni?, it p+Q.
Up =

—Agp(cpuy) =6

in the sense of distributions. In the setting [dftype groups, explicit formulas for the
fundamental solutions of the sub-elliptid_aplacian has been found by Capogna, Danielli
and Garofalo [10].

The following formula:

N |
VG-<W~VGN> —Q in G\Z (2.8)
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was proved by Balogh and Tyson [3]. Hefe:= {0} U {z € G\ {0} : VgN(z) = 0} has
Haar measure zero andg NV # 0 fora.e.x € G.

The curvey : [a,b] C R — G is called horizontal if its tangents lie W, i.e,/(t) €
span Xy, ..., X,,} for all . Then, the Carnot-Carathéodory distamke (z,y) between
two pointse, y € G is defined to be the infimum of all horizontal Ienggﬁf’s{y’(t), v ()12 dt

over all horizontal curves : [a,b] — G such thaty(a) = = and~(b) = y. Notice that
d.. is a homogeneous distance and satisfies the invariancerfyrope

dee(z- 2,2 y) = dee(,y), forallz,y,z € G,
and is homogeneous of degree one with respect to the dilatjore.
dee(6x(7), 6x(y)) = Mee(z,y), forallz,y, z € G,forall A > 0.

The Carnot-Carathéodory balls are definedy, R) = {z € G|d..(y,z) < R}. By left-
translation and dilation, it is easy to see that the Haar oreasf B(y, R) is proportional
by R%. More precisely

|B(y, R)| = R9|B(y,1)| = R®|B(0,1)|.
We now set
B,:=B(0,R) ={z € G: o(z) < R}
wherep := d..(0, ) is the Carnot-Carathéodory distancerdfom the origin. Note thap

is a homogeneous norm and equivalent to other homogeneausomdz. At this point we
remark that Vg N| is uniformly bounded andv : (G, d..) — R is Lipschitz (see [3]).

We now recall the following integration formula in polar gdmates orz

/G Fa)de = /0 h /S FEu)AL dor (u)dA

which is valid for allf € L'(G). HereS = {N = 1} is the unit sphere with respect to the
homogeneous nornV anddo is a Radon measure dgh(see [17], [3], [25], [7]). Now it
is clear the radial functiop® ( ¢ is any homogeneous norm @) is locally integrable if
a > —Q.

3. SHARPWEIGHTED HARDY TYPE INEQUALITIES

In this section we prove various weighted Hardy-type inditjga and their improved
versions. We begin this section by proving a new form of thégived Hardy-Poincaré-
type inequality with a sharp constant.

Theorem 3.1. LetG be a polarizable Carnot group with homogeneous dimenéion 3
andlety € C°(G), 1 < p < @Q anda > —@Q. Then the following inequality is valid :

a+p|VGN‘VG¢|p > Q+a p/ al|p
/GN v dx_( ; ) [ Nelopdz. (3.1)

Furthermore, the constar@f%)l’ is sharp.
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Proof. Using the volume growth condition formula (2.8) and intégma by parts, we get

‘¢‘P—2¢Na+1

o Ve Vepdr.
G

Q@+ ) /G N|@Pdz = —p

An application of Holder’'s and Young’s inequality yields

p=1)/p N“+p\VGN VG¢|‘” 1/p
(o P < @ p
(Q+a)/gN 6] da:_p(/gN 6] dg;) ([G T dz)

Ne*P|VeN - Vol
<(p—1 e_p/(p_l)/No‘ pdx+ep/
>~ (p ) G |¢| G |V@N|2p

for anye > 0. Therefore

/ NetP|VeN - Vgol?
G Ve N |

dx

dx > e_p(Q +a—(p— 1)6—P/<P—1>) / Ne|p|Pdz.  (3.2)
G

Note that the functior — ¢ (Q +a—(p— 1)e‘p/(p‘1)) attains the maximum for

p
e?/P=) = Fh—, and this maximum is equal té%) . Now we obtain the desired in-

equality
aip|VeN - Vaolt  Q+a p/ a| P
/N N dx_( p ) [ Nelopdz.

Next we claim that(%)p is the best constant in (3.1):

f Na+p\V@NVc¢| dz

CH L= inf Ve
0£peCs©)  [g NelpPpdr
B (Q + a)P
. )
It is clear that
a \V N-V qb\P
(Q+a)p f Ne+p |QhV N|gp d (3 3)
p - Jo Ne|p|pda '

holds for allp € C°(G). If we pass to the inf in (3.3) we get th@?:—a)p < Cy. We
only need to show that'y, < (%)p and for this we use the following family of radial
functions

Q+a
N7» ** if N e€l0,1],
¢e(N) = o (3.4)
N9 i N>,

wheree > 0. Notice thatp.(/V) can be approximated by smooth functions with compact
support inG.

A direct computation shows that

Nt

[VeN - Vgo P | (4% +¢)'Nertre it N e0,1],
Ve N|?P (2 4 )" N-Qr if N> 1.
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Let us denote b, = {x € G : N(x) < 1} the unit ball with respect to the homogeneous
normN. Hence
/ N ¢ |Pdr = | NOT2oFreqy 4 N=Q7Pedy.
G By G\B1
Note that, for every > 0, the weightsN@+22+r¢ and N~9~? are integrable ai and oo,
respectively. This implies thg, N*|¢.[dz is finite. Thus we have

(Q+OK /Na|¢5|pdl'— (Q+a +€)p|: NQ+2a+pEdZL'+
p ]Bl G\Bl

Vel - Vgo |’
— [ newl d
/ Ve N[

N-4-rid]

On the other hand

(42 +e) / yare Vel - Voo
Cu G VeV |

Q—l—a

dzr > ( /Na|¢e|pdm

VN - Vgoe|?

- Naﬂ" de.

/G VeN

It is clear that(% +¢)” > Cy and lettinge — 0 we obtain(%)p > (C'y. Therefore
Cp = (42)". O

p

The following LP-Hardy-type inequality is the weighted extension of Theo®&1 in
[21] and plays important roles in the proof of Theorem 3.6 Sedtion 4.

Theorem 3.2. LetG be a polarizable Carnot group with homogeneous dimenéion 3
andletp € C°(G),a € R, 1 < p < Q and@ + a — p > 0. Then the following inequality

is valid : N
/N“|V@¢|pda?2 (w)p/zv 'VG " s, (3.5)
G p G

Furthermore, the constar@%)l’ is sharp.

Proof. Let ¢ € Ci°(G) and define) = N~7¢ wherey < 0. A direct calculation shows
that
IVeo| = [yN" "' VeN + N'Vgy|. (3.6)

We now use the following convexity inequality
la+ 0" —[af’ > c(p)[b]” + plafP~%a - b, (3.7)

wherea, b € R", p > 2 ande(p) > 0 (see [6]). In view of (3.7) we have that
| Ne1Teopdn = op [ N gaNT s
G G

+ \7\”‘27/ NPV NP2VeN - Ve (|y[F)dz
G

cp)/Naer\VGwpdx.
G
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Clearly

/ N|VeglPdz > |y[P / NPV NP || d
G G
+ |7|p_27/ NOFW=PHIG NP2V N - Ve (|¢]P)de,
G

and integration by parts gives

/ N|VofPdz > 17 / N8|V NP4 P
G G

~ Bl [ Ve (NP TGN YN o .
G
We now choose = 1%; then we get

/ Vg - (NP PH VNP2V N) [¢Pde = / Ve - (N'"C|VeNP2VgN) | [Pda.
¢ ¢ (3.8)
Sinceu,, is the fundamental solution of sub-p-Laplaciai\g ,, we then have

/ Ve - (N9 VNP2V N)|h|[Pde = _C(G’p)‘¢(0>|PN(Q+a—p)(O>
¢ (3.9)

=0

wherec(G, p) is a positive constant (see [3]). Hence we obtain the desiexgliality

— p
/NQ|VG¢|de > (w)p/mMW@ (3.10)
G p G

NP

To show that the constarﬁt%)p is sharp, we use the following family of radial func-
tions

Q+§*p +€)

NI e if N eo,1],
¢€(N) = _( .
N if N>1,

and pass to the limit as— 0. Note that the Theorem (3.2) also holds fox p < 2 and
in this case we use the following inequality:

‘b|2 p—2
=+ plal”"a- b (3.11)

la+ b — |af” = c(p) 7,
(la] + |o[)*

wherea € R", b € R™ andc(p) > 0 (see [6]). O

Remark 3.3. We remark that ip = 2 then we remove the polarizability condition and the
inequality (3.5) holds in any Carnot group (see [23]).
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IMPROVED HARDY TYPE INEQUALITIES. We now prove improved weighted Hardy-
type inequalities and also collect other known improvedghieed Hardy-type inequalities
that will be used in Section 4. To motivate our discussionukerecall the the following
sharp improved Hardy inequality from the Euclidean setting

/|x|a—dx+ /| | dx, (3.12)
|x‘ n )

where(2 is abounded domain with smooth bounddrye 2, ¢ € C°(Q2), n > 1, a €
R, R > esupg |z| andn + o — 2 > 0. Furthermore, the constantis sharp and this
inequality has immediate applications in partial diffearahequations (see [2], [31], [1]
[19]). Motivated by the above results our first goal is to abtde analog of (3.12) for
bounded domains in Carnot groups.

n+a

/ ol VoPda > (
Q

Theorem 3.4. Let G be a Carnot group with homogeneous noNn= u/?-%) and let
2 C G be a bounded domain with smooth bounddry: 2, R > esupg N, a € R,
Q > 3,Q + a— 2> 0. Then the following inequality holds:
Q+a / \VGNP / [VeN|?  ¢?
N& 2 > Nelr= b 2d N
/Q Vel dx o dx + — e (lnﬁ)2dx

N

(3.13)

for all compactly supported smooth functiore C5°(€2).

Proof. Let ¢ € Cg°(Q2) and define) = N=P¢ where3 < 0. A direct calculation shows
that

Veo|* = BN 72| Ve N*9? + 28N* ") VeN - Ve + N*| Ve, (3.14)

Multiplying both sides of (3.14) by th&/* and applying integration by parts ov@rgives

B at2p
—|—26/§;AG(N +2 )¢2dl'

/ NYVgo|’dx = 52 / NoT28=217 6 N[22 da —

@ f (3.15)

+ / N8|V o 2d.
Q

We can easily show that

— B at+26y _ _ _ a+28-2 2 _ L a+28+Q—2
(3.16)
Substituting (3.16) into (3.15) and using the fact that= N —2%%? yield
/Na\ngb\?dx = (—0° —Bla+Q 2 /NQWGN' ¢ dz
Q
- 6 a+Q—2 ;2
50 Q(AGu)N ¢ dx

- / NV gy dr.
Q
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The middle integral vanishes sineeis the fundamental solution of sub-Laplaciang;,
therefore we have

/N“|VG¢|2dx: (=8 =Bla+Q - /NQWG o’ dx +/Na+2ﬁ|v@,¢\2dx.
Q

Note that the quadratic functions? — 3(a + Q — 2) attains maximum fop = Z‘QT‘O‘ and
this maximum equal tQM)? Therefore

/N“|V@¢|2dx— (Q”‘_ /N“WGN|2¢2d +/N2_Q|V@¢|2dx. (3.17)

Let us defingp(z) = (In N)_iw(x) whereN is the homogeneous norm which is defined
as in (2.4). A direct calculation shows that

/N2 QVgy|Pde = 4/N ?VeN|? (m(ﬁ) 1¢2+/N2 an( )| Vep|*dr

1 2-Q\ 2 I
2<2_Q)LAG<N )pdz.

It is clear that the last integral term vanishes. Therefoeehave

1
[N Vesids = 1 [ NOVeNPn(g)
‘ s N

ZE/N‘Q\V N|? v dx 3.18
1 S I B2 (3.18)
1 _ @?
= — [ N°?|VN|? da.
1 /Q Ve N
Substituting (3.18) into (3.17) which yields the desiredqnality (3.13). O

One of the advantages of our approach is that it automatigalds a remainder term
and then using a suitable functional change lead us to oataaxplicit remainder term as
in the Theorem 3.3. On the other hand, there are other tegbsitipat we can use to obtain
explicit remainder term. In our earlier paper [23] we havedigreighted Sobolev-Poincare
inequalities and obtained the following improved weighitetdy-type inequalities.

Theorem 3.5. ([23]) LetG be a Carnot group with homogeneous nakm= «!/?-9) and
letg € C5°(B,), a € R, Q > 3and@ +«a —2 > 0. Then the following inequality is valid:

VN2
« 2 > Q-FO[ a| G 2 a2
/BQN Vo|2dz > <7 N e +02R2 Ne¢2dz, (3.19)

whereC'is a positive constant ang is the radius of the balB,,.

Theorem 3.6. ([23]) LetG be a Carnot group with homogeneous nakm= «'/-%) and
letp € C°(B,),a € R, Q > 3,Q +«a—2 > 0andqg > 2. Then the following inequality
is valid:

92 IVeN|? K 2/q
(e 2 > Q+C)é « G 2 T 1q
No|Veo|2dz > <72 ) BQN ¢ dm+02R2( BQN & dm) ,

N2
(3.20)

B,
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q—2

whereC' > 0, Ris the radius of the balB,, o = 22297 gnq e — <fBg N2‘de> .

Notice that the remainder terms in Theorems 3.4 and 3.5 gofuactions of the ho-
mogeneous nornV and ¢. Motivated by the recent work of Abdellaoui, Colorado and
Peral [1] we have following inequality (which is a weighteglsion of the inequality (3.4)
in [23]) so that remainder term contains functions\ofind |V ¢|.

Theorem 3.7. LetG be a polarizable Carnot group with homogeneous dimengion 3
and let() be a bounded domain with smooth boundary which containsrig;pa € R,
@+ a—2>0,andl < g < 2. Then there exists a positive constéaht= C(Q, ¢, 2) such
that the following inequality holds:

)

/N“|VG¢|2dx> (Q“‘_z /NQWG‘N% da +C /N‘
(3.21)

for all compactly supported smooth functiore C5°(€2).

Proof. The proof is similar to the proof Theorem in [23] ( see also][2¥Ve only need to
use the weighted?-Hardy-type inequality (3.5). O

4. SHARPWEIGHTED RELLICH TYPE INEQUALITIESAND THEIR
IMPROVED VERSIONS

Our main goal in this section is to obtain weighted analogidke Rellich inequality
(1.1) and (1.2) for general Carnot groups. Furthermore,lvedl also obtain their improved
versions for bounded domains. The following is the first hesithis section.

Theorem 4.1. Let G be a Carnot group with homogeneous noNn= u/?-%) and let
»€C(G),a eR,Q >3,Q + a—4>0. Then the following inequality is valid:

/IV N|2|AG¢\2d$ = /NQ|VGN|2¢ de. (4.1

16

Furthermore, the constasf—2-(2—2)" s sharp,

Proof. A straightforward computation shows that

a—2
— N9 IAy, 4.2
0 w (42

Multiplying both sides of (4.2) by? and integrating over the doma we obtain

AgN* 2 =(Q +a—4)(a—2)N“*|VgN|? +

/ $*AG N2 — / N2(26Agé + 2|Veo|?)dz.
G G

Sinceu is the fundamental solution &z and@ + o — 4 > 0 we obtain

/ P* AN 2dr = (Q + a — 4)(a — 2) / N Vg N|*¢*dx.
G G
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Therefore

(Q+a—4)(a—2) / N4 VeN|?¢*dx — 2/ N 2pAgopdr = 2/ N?|Vgo|*dz.
¢ : ¢ (4.3)
Applying the weighted Hardy inequality (3.5) on the rightidsside of (4.3), we get

(Q+a—4)(a—2) [G N4 VeN[2p?dx — 2 /«; N2pAgodx

Q+a—

4
> )Z/NO“4|VGN|2¢2d9:.
G

- 2
Now it is clear that,

_/Na—2¢AG¢de(Q+a_
G

2

4 _
= . ) / No|VeN[2odz.  (4.4)
G
Next, we apply the Cauchy-Schwarz inequality to the intedra [, N *¢A¢dz and we

obtain
_ _ 1/2 |Agol?
_ a—2 < a—4 2 2
/(}N dAcodr < (/(}N IVeN[20 dg:) ( | oD

Combining (4.5) and (4.4), we obtain the inequality (4.1).

(Q+ta—4)*(Q—a)?
16

1/2
N%lx) . (45)

Now we prove that the consta@t @, o) = is the best constant for the

Rellich-type inequality (4.1), that is

Jo N iRde (@ +a-4Q—a)

R ol [ NoITSAE oy 16
It is clear that
(Q+a—472@Q-a) _ JsNgimds @)
16 a ﬁgfvaﬁ%%¥Lf2dx .

If we pass to the infimum in (4.6) we get th +“‘41);(Q‘a)2 < Cr. We only need to show
thatCr < W. Givene > 0, we define the function (V) by

¢E(N){ (et o) (N —-1) +1 if N elo,1], @7

N-(F57 40 if N> 1.

Notice thats.(/N) can be well approximated by smooth functions with compappstt in
G. By direct computation we get

a— —1)2 .
Ago? = (L=t 4 €)?| VN E it N<1,
Grel = (Q+a 4, Q—a N2 A—Q—a—2e 4 :
@( €)*N Ve N| if N >1.

Let us denote b, = {z € G : N < 1} the unit ball with respect to the homogeneous
normN. Hence

Agde
/ N© | G(b 2d — A(Q’ «, e) / Na_2|VGN|2dl'+B(Qa «, E) N_Q_26|V(GN|2dx
Ve V| B, G\B:
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where A(Q, a,e) = (Q — 1)X(L2=* + )2 and B(Q, a, ¢) = (L= + €)2(42 — €)%
Note that the integrandl, N°~?|VgN|?*dx is finite becaus¢Ve N| is unlformly bounded
and@ + o — 4 > 0. Therefore

Agde|?
/UV” O =BQae) [ NOHTeNr+O(1).  (48)
G ‘VGN| G\B1
Next,
/ NQ|VGN|2 _ NQ|VGN|2¢2dx+ NQ|VGN|2¢2CZI
e B, N4 € G\B1 N4 ¢

Itis clear that the first integranf, N efl Vel 52dx is finite and we get

/NQWGN‘ P dx = N=972VeN|2dz + O(1). (4.9)
G\B;

Taking the limit ass — 0 and noting that

/ N=9%|VN|*dr — oo
G\B;

we get
o |Agee|?
Jo N eNTde _ (Q+a—4P(@Q— )
f NaIVGN\2¢2d 16
ThereforeCr = W. O

Remark 4.2. In the Abelian case, whe& = R”™ with the ordinary dilations, one has
G = V) = R" so thatQ) = n. Itis clear that the inequality (4.1) with the homogeneous
norm N (z) = |z| anda = 0 reduces the Rellich inequality (1.1).

IMPROVED RELLICH TYPE INEQUALITIES. In this subsection we obtain various
improved versions of the weighted Rellich-type inequaf#tyl) for smooth bounded do-
mains. One virtue of our approach is that, one can obtain agy ras improved weighted
Rellich-type inequalities as one can construct improveijiasted L2-Hardy-type inequali-
ties. The following theorem is the first result in this diiect

Theorem 4.3. Let G be a Carnot group with homogeneous noNn= u/?-%) and let
2 C G be a bounded domain with smooth boundarg Q, Q > 3,4 - Q < a < @ and
R > esupg N. Then the following inequality holds:
N* (Q+a—4)*(Q —«) / \VGN\
A 2d > N 2
0 |V@N|2| c?| 16 ¢

(Q+a—4)(Q—a / \VGNP ¢
Ne d
" 8 Nt (e

(4.10)

for all compactly supported functionse C3°(€2).



SHARP RELLICH AND UNCERTAINTY PRINCIPLE INEQUALITIES 265

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1. et C§°(£2) and
using the same argument as in Theorem 4.1, we have the falijo@entity:

(Q+a—4)(a—2) / N> VeN|*¢*dx — 2/ N 2pAgpdr = 2/ Ne?|Vgo[ da.

. . . (4.11)
We now apply improved weighted Hardy-type inequality (3.&8the right hand side of
(4.11):

Q+a—4)(a—2) / N |V N|*¢*dz — 2 / N2¢Agpdx

2
22[(QL /NC“ VN [2g2da + - /NC“ Ve N|2( ¢ 5 dz.
Now it is clear that
_/Na—2¢AG¢de (Q+§_4)<Q;a)/Na_4|VGN|2¢2dl'
Q
2 (4.12)
/ N1V N da.
(In )2
On the other hand we have, by the Young’s inequality,
a—2 a—4 2,2 1 N®
— | N “pAgopdr < e | N**|VgN|p dx+ — 2|A@¢| dr, (4.13)
B B B Vel

wheree > 0 and will be chosen later. Substituting (4.13) into (4.12)okéain

NOC
=] Ago’dr > (=4 + (Q + a — 4)(Q — a)e) / N4 VgN*¢*dx
5 [VeN]? B
¢2
(In )
It is clear that the quadratic functionde? + (Q + o — 4)(Q — «)e attains the maximum
for e = (@+e=0@=9) gnd this maximum is equal t@L Hence we obtain the

desired inequality:

dz.

—|—€/Na VN

Ne +a—-4)*Q - «a) N V N2
ol R
B
(Q+a—4) —Oé/ |V<cJV|2 ¢?
Ne dz.
* S NT ()™

O

Using the same arguments as in Theorem 4.2 and improved Higpdyinequalities
(3.19) and (3.20) we obtain the following improved Relligipe inequalities on a metric
ball, respectively.
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Theorem 4.4. Let G be a Carnot group with homogeneous noNn= u/?-%) and let
B, C Gbeap-ballinG, @ > 3, € Rand4 — @ < a < Q. Then the following
inequality holds:

[ ropiacoan > QRO @Al [ oVl gy,
5, [VoN|? T :
| Qta—D0Q—a) [ (4.14)
+ Na_2¢2dl’
2c27r2 B,

for all compactly supported smooth functiong C3°(B,).

Theorem 4.5. Let G be a Carnot group with homogeneous noiNn= u?-%) and let
B, C Gbeapg-balinG, ¢ € C°(B,),Q >3,a€R,4—Q <a < Qandg > 2. Then
the following inequality is valid:

N*® 2 (Q+a—-472Q—a) a|VGN‘ 2
/BQ ‘VgN‘2|AG¢| dx > 16 BQN o°d @19
Q@+ta—-4)(@Q—-a) o ar )\ '
+ s K(/BQN ¢ d:c> ,

q—2

wherec is a positive constant = Z~QC-0+H0=24 gng i — <fBQ NQ‘de) !

The following improved Rellich-type inequality holds foobnded domains in polar-
izable Carnot groups.

Theorem 4.6. Let G be a polarizable Carnot group and I& C G be a bounded domain
with smooth boundary) € Q, a« € R, @ > 3and4 — Q < a < @. Then the following
inequality holds:

NO‘ —i-a— Q— «) V N

(Q+ (4.16)
yiras /|v SN T )

for all compactly supported smooth functhmg C§e(Q

Proof. The proof is similar to the proof of Theorem 4.2. We only needge the improved
Hardy-type inequality (3.21). O

WEIGHTED RELLICH TYPE INEQUALITY IlI. We now turn our attention to an-
other Rellich-type inequality that connects first to secorakr derivatives. The following
theorem is first result in this direction.

Theorem 4.7 (Weighted Rellich-type inequality ll)Let G be a Carnot group with homo-
geneous norV = u/?~@ and let¢ € C(G), @ > 3and ¢ < a < Q. Then the
following inequality is valid:

2 _ 2
/Na||VAG]Q\S[||2 CY /NQ|VG¢| ‘ (417)
G
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Furthermore, the constari(Q, o) = (%)2 is sharp.

Proof. Our starting point is the identity

(Q@+a—4)(a
2

- / N°2¢Acodr
G

2
/ N Vgo|*da = ) / N VN P¢?do
G G

(4.18)

valid for all ¢ € C§°(G) and@ + o« — 4 > 0 (see (4.3)).
By applying Cauchy’s inequality we obtain

|Ago|?
|VeN|?

1
— / N 2pAgpdr < € / N4 VeN]P¢?dr + — / N de, (4.19)
G G de Jg

wheree > 0 and will be chosen later. Combining (4.19) and (4.18), we get

a—2 2 (Q+a—4)(a—2) a—4 2,2
/GN Vol da:§< - +e>/GN Ve N[2¢2da

1 2
4+ — N¢ ‘AG¢‘
46 G |V(GN‘2

(4.20)
dzx.

We only consider the caéw + € > 0 because other cases do not allow us to ob-
tain sharp weighted Rellich-type inequality that conndicss to second-order derivatives.
We now apply the Rellich-type inequality (4.1) to the firsteigral term on the right hand
side of (4.20) and get

/NQIV@aSP [ 16¢ N 8(a —2) i] [Acol®
(Q+a—-42Q—-a) (Q+a—4)(Q—a) ¢ [VeN[>
i 16€ 8(a—2)
Note that the functiom — Ota=D20=ar T @ra-n0=a) T 2 attalns the minimum for
€ = w, and this minimum is equal tm. Therefore we obtain the desired
inequality:
¢I2 —a) / IV«;cbl2
NelBe N . 4.21
/ |V(GN‘2 #.21)

To show that constar(té%)2 is sharp, we again use the same sequence of functions

(4.7) and we get
o |Acpe
f N I\VG?V\LCZ‘T . (Q_a)2
JoNe ey 2

ase — 0. |

Remark 4.8. Note that one can also apply the weighted Hardy-type inégu&l.5) with
p = 2 to the first integral on the right hand side of (4.20) and rethehsame inequality
(4.21).
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IMPROVED RELLICH TYPE INEQUALITY Il. We now present improved versions
of the Rellich-type inequality (4.17) for bounded domaihkeir proofs are very similar to
that of Theorem 4.6, except instead of using plain weightartiftype inequality, we use
improved weighted Hardy-type inequalities, (3.13), (3,19.20) and (3.21), respectively.

Theorem 4.9. Let G be a Carnot group with homogeneous noNn= u/?-%) and let
Q C G be a bounded domain with smooth boundarg ©, @ > 3, %32 < a < Q and
R > esupg N. Then the following inequality holds:

2 _ 2
[ 93 [ TSt
G

) (4.22)

(In %)2
for all compactly supported smooth functians Cg°(2). HereC(Q, o) = @-2)@ o8],

dx

C(Q,a) /Q N4 VgN|?

Theorem 4.10. LetG be a Carnot group with homogeneous nakin= v!/2-?) and letB,
be ap-ballin G, ¢ € C*(B,), Q@ > 3and %2 < a < Q. Then the following inequality
holds:

2 _ 2
Na ‘|VAG]Q\SI||2 a / NalYGTT |VG¢|
¢ (4.23)

+

Q_ Q+3 B «a
( aC2R2a /N

whereC > 0 and R is the radius of the balb,.

Theorem 4.11. LetG be a Carnot group with homogeneous nakin= v'/2-? and letB,
be ap-ballin G, ¢ € C§°(B,), @ > 3 and% < a < Q. Then the following inequality is

valid:

|Ago|? Q—a) / |VG¢\2

NO‘ dx > N®
Ve N|?
(Q (Q+3 8) (4.24)
—a) a— o g
+ oK [ Ve,

whereR is the radius of the balB,, C' > 0, ¢’ = &-@C-0+(=2)4 5pq

q72

= <fBQ N2_de>

Theorem 4.12. LetG be a polarizable Carnot group with homogeneous noérs: /=)
and let2 be a bounded domain with smooth boundarg €2, @ > 3 and% <a<Q.
Then the following inequality holds:
‘AG¢|2 ( — Oé)2 / ‘Vgng ~ / (a—2)q 2/q
@ — [ N*———d IN“T=2 d 4.25
[ gt = S [ v st o [ 9ea v)"" (@.25)

a)(Q+3a—8)
4

for all compactly supported smooth functions C5°(Q). HereC' = (9= and

C>0.
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5. UNCERTAINTY PRINCIPLE INEQUALITY

In [23] we obtained the following uncertainty principlepy inequality for general
Carnot groups:

(/GN2|VGN\2¢2dx)(/(G\VG¢|2dx> > (%)Q(é‘VGNPQﬁdCL’)Q, (5.1)

wherep € C§°(G). Itis clear that this inequality does not recover the Ewesdid uncertainty
principle inequality (1.8). As we pointed out before onelod main goal of this paper is
to establish a sharp uncertainty principle inequality fariit groups and the following
theorem is the main result of this section.

Theorem 5.1. LetG be a polarizable Carnot group with homogeneous ndfre: /(-
and letQ) > 3 and¢ € C§°(G). Then the following inequality is valid:

</GN2¢2dx>< G|\§§§|; > & /¢2dx | 52)

Proof. By the volume growth formula (2.8) and integration by pans,get

/Gngzdx: —2[G <‘Vijj\fv|2V@¢-V@N>dl’. (5.3)

Applying Cauchy-Schwarz inequality to the right hand-sid€5.3) gives the desired in-

equality:
2
</@N2¢2dx>< G||§§]€$I‘2 >t /¢ d:c

Itis easy to verify that the equallity is attained in TheoremtSy the functiong) = Ae~ V"
forsomeAd € R, 3 > 0. O

Remark 5.2. In the Abelian case, whes = R™ with the ordinary dilations, one has
G = V) = R" so thatQ) = n. Itis clear that the inequality (5.2) with the homogeneous
norm N (x) = |x| recover the uncertainty principle inequality (1.8).

In connection with uncertainty principle inequality we npresent the following Caffarelli-
Kohn-Nirenberg [9]-type inequality for polarizable Catrgroups. It is clear that this in-
equality reduces to the uncertainty principle inequal&y2f forae = 0 andp = ¢ = 2.

Theorem 5.3. LetG be a polarizable Carnot group with homogeneous ndfre: /(-

andletQ > 3,a > —Q,p > 1,q = 25 and¢ € Cg°(G). Then the following inequality is
valid:
Veold o 1/q +a o
([ nestoibnan) | |'v§j§'|qN n) " = (S50 [ Nlorar. (5.

Proof. The proof is similar to the proof of Theorem 3.1. We omit théadls. 0J
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