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ABSTRACT. Systems of differential equations with impulses can occur in the mathematical mod-

eling of science and engineering. Using upper and lower solutions, we will develop the generalized

monotone iterative method for impulsive differential systems where the forcing functions are sums

of nondecreasing and nonincreasing functions.
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1. INTRODUCTION

It is well known that the method of upper and lower solutions coupled with the

monotone iterative technique can be used to find the solutions to countless nonlinear

ordinary differential equations [3], [4], [5], [6] as well as partial differential equations,

see [2]. Most nonlinear differential equations cannot be solved analytically. The mono-

tone iterative method offers theoretical as well as constructive existence results in a

closed sector that is generated by upper and lower solutions of the nonlinear problem.

In this paper, we will consider systems of nonlinear differential equations with impulse

effects which we refer to as an impulsive differential system. Impulsive differential sys-

tems can occur in many biological phenomena involving thresholds, bursting rhythm

models in medicine and biology, optimal control models in economics and ecology,

pharmacokinetics and frequency modulated systems, see [1]. These impulses can be

characterized as sudden bursts, spikes, gains or losses, shocks, harvesting, natural dis-

asters, etc. These impulses are sometimes referred to as perturbations or disturbances

and are often instantaneous. We will develop a method to approximate the solution

to nonlinear impulsive differential systems generated by upper and lower solutions.

In our study, the forcing functions are the sums of nondecreasing and nonincreasing

functions. The advantage of using the monotone method on systems of differential
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equations with impulse effects is that we can reduce the given nonlinear system into

a much simpler one involving scalar equations, and we are guaranteed a solution.

2. PRELIMINARY RESULTS

The solution to an impulsive differential system of equations is a set of sufficiently

differentiable functions which simultaneously satisfy all the equations in the system

on some common interval, while concurrently satisfying the jumps generated by the

impulses. To utilize this method to solve such a system, we would first construct a set

of monotone sequences which approximate the set of solutions to the given nonlinear

system. The elements of the monotone sequences are solutions which simultaneously

satisfy all equations of the corresponding linear system or a simpler system. Sec-

ondly, we must show that the sequences converge uniformly and monotonically to the

solutions of the original system.

From [1], a system with impulses can be described in the following process. As-

sume that

(i) a system of differential equations

x′ = F(t, x) (2.1)

where F : Ω × R+ → Rn,Ω ⊂ Rn, Rn is the n-dimensional Euclidean space and

R+ is the nonnegative real line;

(ii) the sets M(t), N(t) ⊂ Ω for each t ∈ R+;

(iii) the operator A(t) : M(t) → N(t) for each t ∈ R+;

Let x(t) = x(t, t0, x0) be any solution of (2.1) starting at (t0, x0). The process begins

with the point Pt = (t, x(t)) which begins its motion from the initial point P10
=

(t0, x0) and moves along the curve {(t, x) : t ≥ t0, x = x(t)} until t1 > t0 at that time

the point Pt meets the set M(t). At t = t1, the operator A(t) transfers the point

Pt1 = (t1, x(t1)) into Pt
+

1
= (t1, x

+
1 ) ∈ N(t1), where x+

1 = A(t1)x(t1). Then the point

Pt continues to move along the curve with x(t) = x(t, t1, x
+
1 ) as the solution of (2.1)

starting at Pt1 = (t1, x
+
1 ) until it hits the set M(t) at the moment t2 > t1. Then, once

again the point Pt2 = (t2, x(t2)) is transferred to the point Pt
+

2
= (t2, x

+
2 ) ∈ N(t2)

where x+
2 = A(t2)x(t2). As before, the point Pt continues along the curve with

x(t) = (x, t2, x
+
2 ) as the solution of (2.1) starting at Pt2 = (t2, x

+
2 ). The evolution

process continues as long as the solution of (2.1) exists. The curves being described by

Pt are integral curves, and the functions that define the integral curves are solutions of

the system. An example of the integral curves described in this process is illustrated

in Figure 1 below.
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Figure 1. Integral Curves

Definition 2.1. A system of differential equations of the form







u′ = F(t, u), t 6= tk

u(t0) = u0, t0 ≥ 0

u(t+k ) = u(tk) + Ik(u(tk))

where F ∈ C[J×RN , RN ], J = [t0, T ], u(t+k ) = limh→0+ u(tk+h) with k = 1, 2, . . . , m,

and where I ∈ RN → RN are operators is called an impulsive differential system.

We can rewrite this system component-wise as follows:







u′

i(t) = Fi(t, u1(t), u2(t), . . . , uN(t)), t 6= tk

ui(t0) = u0i, i = 1, 2, . . . , N

ui(t
+
k ) = ui(tk) + Iki(u1(tk), u2(tk), . . . , uN(tk)), k = 1, 2, . . . , m

In this paper, we will consider a system where the forcing functions are the sums

of nonlinear, nondecreasing and nonincreasing functions in all components of u defined

on a closed set J = [t0, T ]. For this purpose, we will consider the following system of

nonlinear differential equations with impulse conditions:







u′ = f(t, u) + g(t, u), t 6= tk

u(t0) = u0, t0 ≥ 0

u(t+k ) = u(tk) + Ik(u(tk)) + Lk(u(tk))

where f : J × RN → RN are nonlinear, nondecreasing in all components of u and

the g : J × RN → RN are nonlinear, nonincreasing in all components of u and

J = [t0, T ] ⊂ R such that 0 ≤ t0 < t1 < t2 < · · · < tm ≤ T . Also, I : RN → RN

are nonlinear, nondecreasing operators in all components of u and L : RN → RN are

nonlinear, nonincreasing operators in all components of u.
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We can rewrite this system component-wise as follows:
















u′

i(t) = fi(t, u1(t), u2(t), . . . , uN(t)) + gi(t, u1(t), u2(t), . . . , uN(t)),

t 6= tk, i = 1, 2, . . . , N

ui(t0) = u0i

ui(t
+
k ) = ui(tk) + Iki(u1(tk), . . . , uN(tk)) + Lki(u1(tk), . . . , uN(tk)),

k = 1, . . . , m, tk ∈ J

(2.2)

This leads to the possibility of having coupled lower and upper piecewise defined

solutions described in the following definition.

Definition 2.2. The functions α0i(t), β0i(t) ∈ C[J ×RN , RN ] with I, L ∈ C[RN , RN ]

are said to be defined as:

Type 1

Coupled lower piecewise defined solutions of (2.2) if

α′

0i(t) ≤ fi(t, α01(t), α02(t), . . . , α0N(t)) + gi(t, β01(t), β02(t), . . . , β0N (t)), t 6= tk;

α0i(t0) ≤ u0i on J ;

α0i(t
+
k ) ≤ α0i(tk) + Iki(tk, α01(tk), . . . , α0N(tk)) + Lki(tk, β01(tk), . . . , β0N(tk)).

Coupled upper piecewise defined solutions of (2.2) if

β ′

0i(t) ≥ fi(t, β01(t), β02(t), . . . , β0N (t)) + gi(t, α01(t), α02(t), . . . , α0N(t)), t 6= tk;

β0i(t0) ≥ u0i on J ;

β0i(t
+
k ) ≥ β0i(tk) + Iki(tk, β01(tk), . . . , β0N(tk)) + Lki(tk, α01(tk), . . . , α0N(tk)).

Type II

Coupled lower piecewise defined solutions of (2.2) if

α′

0i(t) ≤ fi(t, β01(t), β02(t), . . . , β0N(t)) + gi(t, α01(t), α02(t), . . . , α0N (t)), t 6= tk;

α0i(t0) ≤ u0i on J ;

α0i(t
+
k ) ≤ α0i(tk) + Iki(tk, α01(tk), . . . , α0N(tk)) + Lki(tk, β01(tk), . . . , β0N(tk)).

Coupled upper piecewise defined solutions of (2.2) if

β ′

0i(t) ≥ fi(t, α01(t), α02(t), . . . , α0N (t)) + gi(t, β01(t), β02(t), . . . , β0N(t)), t 6= tk;

β0i(t0) ≥ u0i on J ;

β0i(t
+
k ) ≥ β0i(tk) + Iki(tk, β01(tk), . . . , β0N(tk)) + Lki(tk, α01(tk), . . . , α0N(tk)).

To correspond to the lower and upper solutions described in Definition 2.2, we

can develop sequences using the following iterative schemes with n = 0, 1, . . . , N − 1:

Type (i)

α′

n+1,i(t) = fi(t, αn,1(t), . . . , αn,N(t)) + gi(t, βn,1(t), . . . , βn,N(t)), t 6= tk;

αn+1,i(t0) = u0i on J ;

αn+1,i(t
+
k ) = αn,i(tk) + Iki(tk, αn,1(tk), . . . , αn,N(tk)) + Lki(tk, βn,1(tk), . . . , βn,N(tk)).

and

β ′

n+1,i(t) = fi(t, βn,1(t), . . . , βn,N(t)) + gi(t, αn,1(t), . . . , αn,N(t)), t 6= tk;
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βn+1,i(t0) = u0i on J ;

βn+1,i(t
+
k ) = βn,i(tk) + Iki(tk, βn,1(tk), . . . , βn,N(tk)) + Lki(tk, αn,1(tk), . . . , αn,N(tk)).

Type (ii)

α′

n+1,i(t) = fi(t, βn,1(t), . . . , βn,N(t)) + gi(t, αn,1(t), . . . , αn,N(t)), t 6= tk;

αn+1,i(t0) = u0i on J ;

αn+1,i(t
+
k ) = αn,i(tk) + Iki(tk, αn,1(tk), . . . , αn,N(tk)) + Lki(tk, βn,1(tk), . . . , βn,N(tk)).

and

β ′

n+1,i(t) = fi(t, αn,1(t), . . . , αn,N(t)) + gi(t, βn,1(t), . . . , βn,N(t)), t 6= tk;

βn+1,i(t0) = u0i on J ;

βn+1,i(t
+
k ) = βn,i(tk) + Iki(tk, βn,1(tk), . . . , βn,N(tk)) + Lki(tk, αn,1(tk), . . . , αn,N(tk)).

Notice that the iterations are solutions of simple linear impulsive differential

equations and component-wise each iterate is a scalar equation. This is the main

advantage of the monotone method.

Before we give our main theorem, we will recall some known results from [1].

Let PC denote the class of piecewise left continuous functions from R+ to R with

discontinuities at t = tk, k = 1, 2, . . . , m. We will state the scalar comparison theorem

which will be needed in our main results. We will not prove the comparison theorem

here, but it can be proved by method of induction. For details see [1].

Theorem 2.3. (A1) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · ≤ tm = T .

(A2) p ∈ PC[J, R] and p(t) is left-continuous at tk, k = 1, 2, . . . , m;

(A3) for k = 1, 2, . . . , m and t ≥ t0,

p′(t) ≤ q(t)p(t) + v(t), t 6= tk

and

p(t+k ) ≤ dkp(tk) + bk

where q, v ∈ C[R+, R] are continuous functions and ak ≥ 0, bk are constants.

Then

p(t) ≤ p(t0)
∏

t0<tk<t

ake
R t

t0
q(s)ds

+
∑

t0<tk<t





∏

tk<tj<t

aje
R t

tk
q(s)ds



 bk

+

∫ t

t0

(

∏

s<tk<t

ake
R t

s
q(σ)dσv(s)

)

ds, t ≥ t0

3. MAIN RESULTS

In this section, we will consider the system of nonlinear differential equations

with impulse conditions (2.2). We will develop the generalized monotone method

for the pair of upper and lower solutions of Type I given in Definition 2.2. In our

theorem, we will start with the lower and upper solutions described in Definition 2.2,
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and use Type (i) iterative scheme to develop the sequence. This will result in natural

monotone sequences. In the proof of our theorem, we will consider a special case of

Theorem 2.3, that is, we will let q(t) = 0, v(t) = 0 and ak = 0.

Theorem 3.1. (A1) α0i(t), β0i(t) are lower and upper PC solutions of (2.2) with

α0i(t) ≤ β0i(t), t ∈ (tk, tk+1] ∈ J, t 6= tk;

(A2) fi : J×RN → RN are nondecreasing in every component of u and gi : J×RN →

RN are nonincreasing in every component of u.

(A3) For tk ∈ J, Iki : RN → RN are nondecreasing in every component of u and

Lki : RN → RN are nonincreasing in every component of u

Then there exists natural monotone sequences {αni} and {βni} on (tk, tk+1] ∈ J

such that αni(t) → ρi(t) and βni(t) → ri(t) uniformly on each interval (tk, tk+1] ∈ J

where (ρi, ri) are coupled minimal and maximal solutions respectively of (2.2). That

is (ρi, ri) satisfy the following sequences:






ρ′

i(t) = fi(t, ρ1(t), . . . , ρN(t)) + gi(t, r1(t), . . . , rN(t)), t 6= tk;

ρi(t0) = u0i;

ρi(t
+
k ) = ρi(tk) + Ii(tk, ρ1(tk), . . . , ρN(tk)) + Li(tk, r1(tk), . . . , rN(tk))

(3.1)







r′i(t) = fi(t, r1(t), . . . , rN(t)) + gi(t, ρ1(t), . . . , ρN(t)), t 6= tk;

ri(t0) = u0i;

ri(t
+
k ) = ri(tk) + Ii(tk, r1(tk), . . . , rN(tk)) + Li(tk, ρ1(tk), . . . , ρN(tk))

(3.2)

The iterations (3.1) and (3.2) can be determined using the following Type (i) iterative

schemes:












α′

n+1,i(t) = fi(t, αn,1, . . . , αn,N) + gi(t, βn,1, . . . , βn,N), t 6= tk

αn+1,i(t0) = u0i on J

αn+1,i(t
+
k ) = αn,i(tk) + Iki(tk, αn,1(tk), . . . , αn,N(tk))

+Lki(tk, βn,1(tk), . . . , βn,N(tk))

(3.3)













β ′

n+1,i(t) = fi(t, βn,1, . . . , βn,N) + gi(t, αn,1, . . . , αn,N), t 6= tk

βn+1,i(t0) = u0i on J ;

βn+1,i(t
+
k ) = βn,i(tk) + Iki(tk, βn,1(tk), . . . , βn,N(tk))

+Lki(tk, αn,1(tk), . . . , αn,N(tk)).

(3.4)

Proof. The solutions for (3.3) and (3.4) exist and are unique for i = 1, 2, . . . , N ,

n = 0, 1, . . . N − 1, and k = 1, 2, . . . , m. We will prove that for αki ≤ βki,

αki(t), βki(t) ∈ [α0i(t), β0i(t)],

t ∈ (tk, tk+1] ∈ J,

and

αki(t
+
k ), βki(t

+
k ) ∈ [α0i(t

+
k ), β0i(t

+
k )]
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where

[α0i(t), β0i(t)] = {ui ∈ C[J × RN , RN ] : α0i(t, α1(t), . . . , αN(t))

≤ ui(t) ≤ β0i(t, β1(t), . . . , βN(t))}.

Furthermore, the impulses are

[α0i(t
+
k ), β0i(t

+
k )] = {ui ∈ C[J × RN , RN ] : α0i(t

+
k , α1(t

+
k ), . . . , αN(t+k ))

≤ ui(t
+
k ) ≤ β0i(t

+
k , β1(t

+
k ), . . . , βN(t+k ))}.

Our aim is to show that

α0i ≤ α1i ≤ α2i ≤ · · · ≤ αji ≤ ui ≤ βji ≤ · · · ≤ β2i ≤ β1i ≤ β0i (3.5)

holds component-wise for all t ∈ J .

We claim that α0i ≤ α1i and β0i ≥ β1i. For this purpose, let pi(t) = α0i(t)−α1i(t).

We know from Definition 2.2 that Type I lower solutions are

α′

0i(t) ≤ fi(t, α01(t), α02(t), . . . , α0N(t)) + gi(t, β01(t), β02(t), . . . , β0N(t)), t 6= tk.

We also have for n = 0, Type (i) iterative scheme yields

α′

0+1,i(t) = fi(t, α01(t), . . . , α0N(t)) + gi(t, β01(t), . . . , β0N(t)), t 6= tk;

Thus we have

p′i(t) = α′

0i(t) − α′

1i(t)

≤ fi(t, α01(t), α02(t), . . . , α0N (t)) + gi(t, β01(t), β02(t), . . . , β0N(t))

− fi(t, α01(t), α02(t), . . . , α0N(t)) − gi(t, β01(t), β02(t), . . . , β0N(t)) = 0

This implies that p′i(t) ≤ 0 for t ∈ (tk, tk+1). Also, we have

pi(t0) = α0i(t0) − α1i(t0) ≤ u0i − u0i = 0

and

pi(t
+
k ) = α0i(t

+
k ) − α1i(t

+
k ) ≤ α0i(tk) + Iki(t, α01(tk), α02(tk), . . . , α0N (t))

+ Lki(t, β01(tk), β02(tk), . . . , β0N(tk)) − α0i(tk)

− Iki(t, α01(tk), α02(tk), . . . , α0N (t))

− Lki(t, β01(tk), β02(tk), . . . , β0N(tk)) = 0

It follows that pi(t) = α0i(t) − α1i(t) ≤ 0 on J . This proves that α0i ≤ α1i holds

component-wise for all t ∈ (tk, tk+1] ∈ J . Similarly, we can show β0i ≥ β1i.

Our next step is to show α1i ≤ β1i. For this purpose, we set pi(t) = α1i(t)−β1i(t).

We must use the assumptions (A1) and (A2). That is, we will use the assumptions
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α0i ≤ β0i and the monotone nature of fi and gi. We get

p′i(t) = α′

1i(t) − β ′

1i(t) = fi(t, α01(t), α02(t), . . . , α0N(t))

+ gi(t, β01(t), β02(t), . . . , β0N (t)) − fi(t, β01(t), β02(t), . . . , β0N(t))

− gi(t, α01(t), α02(t), . . . , α0N(t)) ≤ 0

Also, we have

pi(t0) = α1i(t0) − β1i(t0) ≤ u0i − u0i = 0

and by the assumptions (A1) and (A3); that is, by α0i ≤ β0i and the monotone nature

of Iki and Jki, we can conclude that

pi(t
+
k ) = α1i(t

+
k ) − β1i(t

+
k ) ≤ α0i(tk) + Iki(t, α01(tk), α02(tk), . . . , α0N(t))

+ Lki(t, β01(tk), β02(tk), . . . , β0N(tk)) − β0i(tk)

− Iki(t, β01(tk), β02(tk), . . . , β0N(t))

− Lki(t, α01(tk), α02(tk), . . . , α0N (tk)) ≤ 0

We have shown that α1i ≤ β1i holds component-wise for all t ∈ (tk, tk+1] ∈ J . Thus

we have shown that α0i ≤ α1i ≤ β1i ≤ β0i. Hence (3.5) is holds for k = 1.

Now assume that (3.5) holds component-wise for some j > 1, such that

αj−1,i ≤ αj,i ≤ βj,i ≤ βj−1,i. (3.6)

Using induction, we need to show that (3.5) holds for j + 1. So we must prove that

αj,i ≤ αj+1,i ≤ βj+1,i ≤ βj,i

holds component-wise on J . For this purpose, let pi(t) = αj,i(t) − αj+1,i(t) and note

that pi(t0) = αj,i(t0)− αj+1,i(t0) = u0i − u0i = 0. Also, by (3.6), we have αj−1,i ≤ αj,i

and βj,i ≤ βj−1,i. Thus by the monotone nature of fi and gi, we get

p′i(t) = α′

j,i(t) − α′

j+1,i(t) = fi(t, αj−1,1(t), αj−1,2(t), . . . , αj−1,N(t))

+ gi(t, βj−1,1(t), βj−1,2(t), . . . , βj−1,N(t))

− fi(t, αj,1(t), αj,2(t), . . . , αj,N(t))

− gi(t, βj,1(t), βj,2(t), . . . , βj,N(t)) ≤ 0

Furthermore by (3.6) and the monotone nature of Iki and Jki we have

pi(t
+
k ) = αj,i(t

+
k ) − αj+1,i(t

+
k ) ≤ αj−1,i(tk) + Iki(t, αj−1,1(tk), . . . , αj−1,N(t))

+ Lki(t, βj−1,1(tk), . . . , βj−1,N(tk)) − αj,i(tk)

− Iki(t, αj,1(tk), . . . , αj,N(t)) − Lki(t, βj,1(tk), . . . , βj,N(tk)) ≤ 0.

This proves that αj,i ≤ αj+1,i holds component-wise on J .

Now we will show that βj,i ≥ βj+1,i holds component-wise on J . For this purpose,

let pi(t) = βj,i − βj+1,i and note that pi(t0) = βj,i(t0) − βj+1,i(t0) = u0i − u0i = 0.
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Again, by (3.6), αj−1,i ≤ αj,i and βj,i ≤ βj−1,i. Thus by the monotone nature of fi,

gi, Iki and Jki, we get

p′i(t) = β ′

j,i(t) − β ′

j+1,i(t) = fi(t, βj−1,1(t), . . . , βj−1,N(t)) + gi(t, αj−1,1(t), . . . , αj−1,N(t))

− fi(t, βj,1(t), . . . , βj,N(t)) − gi(t, αj,1(t), . . . , αj,N(t)) ≥ 0

and

pi(t
+
k ) = βj,i(t

+
k ) − βj+1,i(t

+
k ) = βj−1,i(tk) + Iki(t, βj−1,1(tk), . . . , βj−1,N(t))

+ Lk,i(t, αj−1,1(tk), . . . , αj−1,N(tk)) − βj,i(tk) − Iki(t, βj,1(tk), . . . , βj,N(t))

− Lki(t, αj,1(tk), . . . , αj,N(tk)) ≥ 0

This proves that βj,i ≥ βj+1,i holds component-wise on J .

To complete the induction process, we must show that αj+1,i ≤ βj+1,i. So we will

consider pi(t) = αj+1,i − βj+1,i and note that pi(t0) = αj+1,i(t0)− βj+1,i(t0) = 0. Also,

by (3.6) we know that αj,i ≤ βj,i and by the monotone nature of fi, gi, Iki and Jki,

we have

p′i(t) = α′

j+1,i − β ′

j+1,i = fi(t, αj,1(t), . . . , αj,N(t)) + gi(t, βj,1(t), . . . , βj,N(t))

− fi(t, βj,1(t), . . . , βj,N(t)) − gi(t, αj,1(t), . . . , αj,N(t)) ≤ 0

and

pi(t
+
k ) = αj+1,i(t

+
k ) − βj+1,i(t

+
k ) = αj,i(tk) + Iki(t, αj,1(tk), . . . , αj,N(t))

+ Lk,i(t, βj,1(tk), . . . , βj,N(tk))

− βj,i(tk) − Iki(t, βj,1(tk), . . . , βj,N(t))

− Lki(t, αj,1(tk), . . . , αj,N(tk)) ≤ 0

Therefore, αj+1,i ≤ βj+1,i. Hence, we have proven by induction that (3.5) holds for

j + 1. Thus the inequalities given in (3.5) hold for all j = 0, 1, 2, . . .

Furthermore, the sequences {αn,i} and {βn,i} can be shown to be equicontinuous

and uniformly bounded. Thus by Ascoli-Arzela’s Theorem, the subsequences {αnj ,i}

and {βnj ,i} converge to ρi and ri respectively on J . Since the sequences {αn,i} and

{βn,i} are monotone, the sequences converge uniformly and monotonically to ρi and

ri respectively on J . Therefore ρi and ri satisfy equations (3.1) and (3.2).

Finally, we claim that ρi and ri are coupled minimal and maximal solutions of equation

(2.2). Suppose that ui are any solutions of (2.2), such that α0i ≤ ui ≤ β0i on J , then

we can prove that

αj,i ≤ ui ≤ βj,i
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utilizing a similar process used to prove (3.5). Once we have shown αki ≤ ui ≤ βki,

taking the limit as k → ∞ gives

lim
ki→∞

αki = ρi and lim
ki→∞

βki = ri.

Hence ρi ≤ ui ≤ ri on J .

4. CONCLUSION

Our results prove that we can approximate a nonlinear impulsive differential

system using the generalized monotone iterative method. In particular, we have

shown that we can approximate the solution when the forcing functions and impulses

are the sums of nondecreasing and nonincreasing functions. We showed that we

obtain natural sequences when starting with natural lower and upper solutions of

Type I when utilizing the iterative schemes Type (i).
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