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ABSTRACT. In this work, by reviewing the integration by parts method, we present the develop-
ment of a theory of Laplace transforms in the context of the It6—Doob type of stochastic calculus.

The resulting table of transforms has been initiated.

1. INTRODUCTION

The usage of the Laplace transform [2, 4] plays a very significant role in solving
linear deterministic equations. In this work, we attempt to develop a theory of Laplace
transform for a suitable class of stochastic process in the framework of It6—Doob type
of stochastic calculus. It is obvious that approach provides an algebraic approach
for: (a) finding It6-Doob type stochastic integrals and (b) solving the stochastic
linear differential equations of the It6—Doob type. In fact, by employing the Laplace
transform approach, a few well known differential equations (Langevin equation [3,
5,6, 7, 8, 9] and Chandrasekhar equation [1, 3, 5]) are solved in a closed form.

2. METHOD OF INTEGRATION BY PARTS

In the following, we present a procedure to compute an [to—Doob integral of the

following type:
I(t,w(t)):/f(t,w(t))dw(t), (2.1)

where f € C[J x R, R], and where it is continuously differentiable in both variables

(t,x) as many times as desired.
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PROCEDURE.

Step 1. By applying the It6-Doob differential formula [5] to
Vit w(t) = w(t) f(t w(t)), (2.2)

and using product and chain rules, we get the following expression for the Ito—Doob
differential of V (¢, w(t))

dV(t,w(t)) = d(w(t) f(t, w(t)))
= w(t) fit, w(t)) dt + f(t, w(t)) dw(t) + w(t) fu(t, w(t)) dw(t)

3 [2Ault w(0)) ) s, (D) (1)

2
+ f(t,w(t)) dw(t) +w(t) fu(t, w(t)) dw(t). (2.3)

= {w(t)ft(t,w(t)) + Fult,w(®) + 0(0) funlt, (D)) dt

Step 2. Now, by applying the stochastic integral formula to (2.3), we obtain
Vi) et [ 16 uw@)du® + [ wfult o) d)
[ 0@t w) + ot w®) + Ju o)
From this, and the definition of V (£, w(t)) in (2.2), we have the following expression
W)t w) =t [ 76 w@)dw® + [ wo)fults o) do)
[ o0 00) + £t w(0) + GO funltswte)] de 20

2

Step 3. By solving the second term in the right-hand side of (2.4), we obtain an
expression for the integral in the RHS of (2.1):

/f(taw(t))dw(t) = w(t)f(t,w(t)) — e — /w(t)fw(tw(t))dw(t)

2

This expression is analogous to the expression obtained in the “usual” method of

—/[wmﬁmwu»+nﬁww»+1w@ﬁw@w@ﬂdt<zm

integration by parts learned in a deterministic calculus course.

Step 4. Now, by substituting the RHS expression in (2.5) into the RHS of (2.1), we

have the following

I(t,w(t)) = ¢+ w(t) f(t, w(t)) —/w(t)fw(t,w(t))dw(t)

= [ w0t wlo) + ) + 0Ot 00| . (209
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Step 5. Again, by repeating the above Steps 1-4 with regard to the first integral in
(2.6) and by defining as

V(b w(t) = G0 (0) fult, w(t), 2.7

the expressions analogous to expressions in (2.3), (2.4) and (2.5), are as follows:

AV (£ w(t)) = d (%wz(t) Fult, w(t)))

= S0P0) ol w(8)) A+ (1) ot (1)) (1) + S22(0) a1, (1)) (1)
3 Pl 100+ 200 1,00 + 5100 et 0(0)] ()

0 b w00 i+ Lt 0(0) + 200 (1 (0)

WO ot 0(0)]

Fw(t) ot w(t)) duo (1) + G0 (0) a1, (1)) (), (23)

S0 Ofultw(®) = e+ [ wOfult.wle) do(®) + 5 [ 00)funt.w@) dutt)

b3 [ [0t + fu(t.0(0) + 2000 funt,000)
30O fawnlt, ()] 29)
and
/w@m@w@mmw=%ﬁ@m@mm—q—§/w%ﬁw@wwﬂwﬂ
~ 5 [ [0l + fult.0(0) + 2000 fun 000
500 ama(t, 0(0)] (210)
respectively.

Step 6. Again, we repeat the procedure as described in Step 4, meaning that we are
now substituting the RHS expression in (2.10) for the first integral term in the RHS
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of (2.6). This gives us
It (1) = e+ £t wlt)wlt) — (O fult,w(t)
+5 [ @O unttw®) dut) + 5 [ a0 fnlt, w(0)
alt0(0) + 2000 1,000 + 500 et 00

_ / {w(t)ft(t,w(t))jt fw(t,w(t))+%w(t)fww(t,w(t))] a. (211)

Step 7. We continue this integration procedure (Steps 1-4) (the integration with
respect w term in the RHS in (2.11)), until either the integral term is repeated or

terminated. This completes the procedure of computing the integral (2.1).

Example 2.1. Find: I(t) = [ t*w®(t) dw(s).
Here, f(t,w(t)) = t4w5( ). We set V(t, w(t)) = t*wb(t), and by imitating Step 1,

we have
dV (t,w(t)) = d (t'w’(t))
= 4305 (t) dt + 6t*w®(t) dw(t) + 15t*w*(t) (dw(t))?. (2.12)

After integration, we obtain
c+ t'wl(t) = /4t3 6t )dt+/6t4w5(t)dw(t)+/15t4w4(t)dt
and hence I(t) is given by:
4,5 Ly 6 2 [ 6 5 [ 4 4
t*w°(t) dw(t) = c + 615 w’(t) — 3 t°w®(t) dt — 5 t*w*(t) dt. (2.13)

b
Example 2.2. Find [ g(¢) dw(t), where g is a continuously differentiable function on

la,b]. Here f(t,w(t))a: g(t). We set V(t,w(t)) = g(t)w(t), and imitate Step 1, we

have
dV (t,w(t)) = d(g(t)w(t)) = ¢'(H)w(t) + g(t) dw(?). (2.14)

After integration, we get

which implies

/g(t) dw(t) = g(b)w(b) — g(a)w(a) —/9'(t)w(t) dt. (2.15)
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3. THE LAPLACE TRANSFORM

In this section, we present the concept of the Laplace transform. Also, its usage
to solve the higher order linear nonhomogeneous differential equations with constant

coefficients are outlined.

Definition 3.1. Let f be a real valued function of two variables (¢, w(t)) defined for
all real numbers ¢ > 0 and w(¢) is the Wiener process. The Laplace transform of f

in the sense of Cauchy—Riemann integral, is defined by:

F(s)=L(f)(s) = /e‘“f(t,w(t))dt = Tlgrolo /e‘“f(t,w(t))dt , (3.1)

for all values of s for which this improper integral exists. It is denoted by F(s) =
L(f)(s). Moreover, the Laplace transform of f in the sense of It6-Doob integral,
denoted by F*(s) = LY(f)(s), is defined by

Fo(s) = £(f)(s) = / e f(t w(t)) du(t) = lim / e f (tw () du(t) | | (32)

for all values of s for which this improper integral exists.

Example 3.2. Find the Laplace transform of f(t,w(t)) = ¢ in the sense of the
[t6—Doob integral, for ¢ # 0.

Solution Process. Applying the Ito-Doob differential formula to ce™*w(t), we ob-
tain
d (ce *w(t)) = —cse”*"w(t) dt + ce*'dw(t).

Now using the Ito—Doob improper integrals in Definition 3.1, we have
T T

: —st T _ o : —st : —st

¢ lim [~ w(t)|, = —cs Jim /e w(t)dt| + ¢ lim /e dw(t)
0 0

This together with the properties of Wiener process, we get

T T

¢ lim /e‘“dw(t) = cs lim /e‘“w(t) dt
T—o0 T—o0

0 0
Hence

LY(c)(s) = sL(cw)(s).
Thus for s > 0 and ¢ # 0,
LY(c)(s) = sL(cw)(s) if and only if L(w)(s) = % (3.3)

Example 3.3. Find the Laplace transform of f(¢,w(t)) = w(t) in the sense of the
[to—-Doob integral.
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Solution Process. Again, applying the Ito-Doob differential formula to e~*tw?(¢),

we obtain
d (e*w?(t)) = —se”*"w?(t) dt + 2e~*"w(t) dw(t) + e *dt.

Now using [t6-Doob improper integral in Definition 3.1, we have

T T
lim [e_“uﬂ(t)‘OT = —s lim /e_“wz(t) dt —|—2Tlim /e‘“w(t) dw(t)

T—o0 T—o00
0 0

T
+ lim / e *tdt
T—oo
0
By following the argument used in Example 3.2, we arrive at

T T T

2Tlim /e_Stw(t) dw(t)| = szlim /e‘“wz(t) dt —Tlim /e‘Stdt ,
0 0 0
and hence

2L (w)(s) = 5L (w?) (s) — %

Thus for s > 0,

% = % ([, (w?) (s) — 5_12) , if and only if, £ (w?)) (s) = 2£w(:})(s> 3_12
(3.4)

To use the Laplace transform, we need to know under what condition(s) the
Laplace transform is defined. For this purpose, we will present the following to define

a class of functions.

Definition 3.4. Let L[f] be a class of smooth functions (random) that satisfy the

following exponential growth condition
[t w(t))] < KeMHAe® s > M, (3.5)

for some M >0, A >0 and K > 0.

From Definition 3.1 and the properties of both deterministic and the Ito-Doob
type integrals [2, 4, 5], it is clear that the Laplace transform obeys the following

property.
Theorem 3.5. Let fi, fo € L[f], let ¢; and ¢y be arbitrary given constants. Then,

L(cifi +cafa) (s) =L (f1) (s) + 2L (f2) (5), (3.6)

and

LY (erfr + eaf2) () = alL (f1) (5) + LY (f2) (s). (3.7)
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-2
Example 3.6. Find the Laplace transform of f(¢,w(t)) = e<a_7>t+ow(t) in the sense
of the Ito6—Doob integral for ¢ # 0 and o,a € R.

— (s—a—l—%)t—l—ow(t)

Y

Solution Process. Applying the It6—Doob differential formula to e
we obtain

d (6—(s—a+”2—2)t+aw(t)) _ (S —a+ 0_2) e—(s—a—i—é)t-ﬁ-aw(t)dt

2
1

+ Ue—(s—a+7)t+crw(t)dw(t) + 5026_(S_a+7)t+0w(t)dt.
Now using the strong law of large numbers and the It6-Doob improper integral
in Definition 3.1, we have
T

02
= lim U/e_SH(a_T)HM(t)dw(t)

0

T

lim |:€_ (s—a—l— %)t—l—ow(t)
T—o0

0

T—o0

T
0_2
— (s —a) lim / o~ (st Jrrouin) gy |
0

which yields
(s —a)L <e<a_02>t+aw(t)) (s)—1=L" (Ue<a_02>t+aw(t)) (s).

Thus for s > (a — "2—2>,

oLV (6(a—§)t+ow(t)) ()

_ 1 + (3.8)
"~ (s—a) (s —a) '
Remark 3.7. From Example 3.6, we observe that for s > (a + ”2—2>
w (pat+ow(t) w (at+ow(t)
L (eat—i-aw(t)) (S) — l+oL (6 — ) (8) _ 1 - + oL (6 02) (8)7
(s—a-%) (s—a—%) (s—a—9%)
(3.9)

and o = 0, (3.8) or (3.9) reduces to the deterministic version of the Laplace transform

L(e™) = (3.10)

(s —a)

as a special case.

Example 3.8. Find the Laplace transform of f(t,w(t)) = cos(at + ocw(t)) in the
sense of the It6—Doob integral for o # 0 and ¢ € R.
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Solution Process. The Ito-Doob differential of e~ sin(at + cw(t)) is

2
+ ae”* cos(at + ow(t)) dt

d (e~*'sin(at + ow(t))) = — (S + 102> e **sin(at + ow(t)) dt

+ oe~* cos(at + ow(t)) dw(t),

which implies

lim (e™*"sin(al + ow(T))) — e * sin(a0 + ocw(0))

T—o0
T

T
(s + -0 ) Clllm /e sin(at + ow(t)) dt + aTlim e " cos(at + ow(t)) dt
0

0

T
+o lim e * cos(at + ow(t)) dw(t)

0

and hence

(s + 1<72) L(sin(at + ow(t)))(s) — aL(cos(at + ow(t)))(s)

2 (3.11)
= o L"(cos(at + ow(t)))(s)
which is equivalent to
C(sin(at + ow()))(s) = al(cos(at + ow(t)))(s) + aL¥(cos(at + Uw(t)))(s). (3.12)

o+ 17
Example 3.9. Find the Laplace transform of f(t,w(t)) = sin(at+ow(t)) in the sense
of the It6-Doob integral for ¢ # 0 and ¢ € R.

Solution Process. By following the prior procedure we have
d (e™* cos(at + ow(t)))

1
_ (s + 502> e "t cos(at + ow(t)) dt — ae " sin(at + ow(t)) dt

— oe *sin(at + ow(t)) dw(t).

This implies
oLY(sin(at + ow(t)))(s) =1 — (s + %02> L(cos(at + ow(t)))(s)

— aL(sin(at + ow(t)))(s) (3.13)
which is equivalent to
1 —aLl(sin(at + ow(t)))(s) — o L*(sin(at + Uw(t)))(s).

L(cos(at + ow(t)))(s) = (s + l0'2)

(3.14)
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Remark 3.10. (i) From (3.11) and (3.13), we can easily obtain
L(cos(at + ow(t)))(s)
(s 4 30?) —acL®(cos(at + ow(t)))(s) — o (s + 20%) L (sin(at + ow(t)))(s)
(s + 102)” 4 a2

Y

(3.15)
and

L(sin(at + ow(t)))(s)
_a- ac L (sin(at + ow(t)))(s) + o (s + 20?) L (cos(at + ow(t)))(s) (3.16)
(s + 02)" + a? '

(ii) For a = 0, (3.15) and (3.16) reduce to

L(cos(ow())(s) = Uﬁéinf;‘;(tm(s)

, (3.17)

and

aL"(cos(at + ow(t)))(s) '
o+ 1)

L(sin(ow(t)))(s) = (3.18)

(iii) Furthermore, for o = 0, (3.15) and (3.16) reduce to the deterministic version
of the Laplace transform as special cases:
s

L(cos(at))(s) = T (3.19)
and
L(sin(at))(s) = ﬁ“az (3.20)

Now we will present a known result [2, 4] concerning the Laplace transforms of a

derivative of a process.

Theorem 3.11 (Laplace Transform of Derivative). Let us suppose that f has n — 1
continuous derivatives on [0,00), and for eachi, 0 <i <n—1, let f¥ € L[f].

Further assume that ) is piecewise continuous in every subinterval 0 < t < b.
Then f™ € L[f] and

L(f™) () = s"L(s) = "1 f(0) =" 2f(0) = ... = f"7D(0). (3.21)

In the following, we present a result concerning the Laplace transforms of an
indefinite integral of the It6—Doob type.

Theorem 3.12 (Laplace Transform of Indefinite Integral). Let us assume that f €
L[f]. Let I be It6-Doob indefinite integrals of f. Then I € L[f],

L(I)(s)=L /f(u,w(u)) dw(u) | (s) = M (3.22)

S
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Proof. From the smoothness (for example piecewise continuity) of function f and the
properties of indefinite integral of the [t6-Doob indefinite integral we have I € L[f].
Moreover, to prove (3.22), we compute the It6-Doob differential of eI (t) as

d(e™I(t)) = —se "' I(t) dt + e~ f(t,wi(t)) dw(t) (3.23)
which implies
T T
71im [e™1(t) |§] = —sjllm /e_“l t)dt| + hm /e‘“f(t,w(t)) dw(t)
0 0
Hence,
17 w
£ = + [ et wo)aun | = S
0
This completes the proof of the theorem. O

a— é)t-ﬁ-aw ()

Example 3.13. Find the Laplace transform of (bw(t) +ct)e< in the sense

of the It6—Doob integral for o, a, b and ¢ € R.

o2
Solution Process. We apply It6-Doob differential formula to (bw(t)+ct)e<a_7>t+aw(t),

and we obtain

! <(bw(t> + ctyel%) Mww)
2 2 L
= (a — %) (bw(t) + ct)e<“_7>t+”w(t)dt + Ce(“—7>t+0w(t)dt

-2
+ [o(bw(t) + ct) + Be(® )70 gy )
+ L olobw®) + ct) + 8] + bole(t= T )0
50[(0( w(t) + ct) + b] + bole
which implies
t

(bu(t) + ct)elo )0 / la(bw(u) + cu) + ¢ + bole(*=T) O gy
0

+ / [o(bw(u) + cu) + b]e(a_é)tww(t)dw(u).

We note that all of the terms in the above expression are continuous functions and
belong to the class L[f]| defined in Definition 3.4. By applying the Laplace transform
and Theorem 3.12, we get

8 (<bw(t> + ct)e(“_é)twm) (s)
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o <b“’(t> + ct)e<“_%2)t+gw(t)) () (c+bo)L <e<a_§)t+m@) ()

+
+a£w ( w(t) + ct)s< )t“w(t)) (s) X bL" <e(a“:)t+"w<t>) (s)‘

By simplifying the above expression, we have

(s —a)C ((bw(t) 4 ct)e<a_§)t+gw(t)) (s) = (c+ bo) L (e(a—é)mw@) (s)
e ((bw(t) n ct)e<“_§)t+”w(t)) () + bL" < (o= )eboute >) (5).
From this, o # 0, and Example 3.6
2 ((bult) + e)e =T ()

(s —a)oL <(bw(t) + atyelaT)reout ’) (s) — o(c + bo) L <e(“—§)t+aw<t>) (s)
—(s —a)bL (J“‘éﬁm(“) (s)+b

= (5= ) o () + el 70 ) 5) g (b)) )
—o(c+bo)L (e(a—‘f)tW(“) ().

(3.24)

This is equivalent to

oL <( () + ctyel® )t-i-aw(t)) (s) — bL <e<a—"22>t+aw(t)> (s)
oL (( w(t) + ct)el® >t+"w“>) () ,  oletbol <e<““’5>t+"w“>) (s)‘

= — +

(s —a) (s —a) (s —a)
(3.25)
Remark 3.14. (i) For 0 =0 =¢, b =1 and a, (3.24) reduces to:
(s —a)C (w(t)e™) (s) = L™ (™) (s) if and only if
al (w(t)e) (s) | £ () (s). (3.26)

L (w(t)e™) (s) =

S S

(ii) For b =0, a,0 # 0 and ¢ = 1, (3.24) reduces to:

)
é)tww(t ) +L ( (o= )How(t)) (s)
(s —a)

L <te(“—§)t+ow(t)> o gL ( (o=

(3.27)
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if and only if

’ i (3.28)
(iii) for o, a, b and ¢ € R,
oL ((bw(t) + ct)e™ D) (s) — bL (1) (s)
_ a2 L2 ((bw(t) 4 ct)em ™) (s) B b o(c+bo)L (e7®) (s) (3.29)
(s—a=7%) (s—a—7%) (s—a=%)

(iv) for b=0=a, 0 # 0 and ¢ = 1, (3.29) reduces to
L (te™M) (s) = aﬁw((te_"“;_(:))) () + £ ((effi(tg)(s) if and only if (3.30)
’ (te"w(t)) () aL® (te7®) (s) . L ((1 + %) eUW(t)) (s)‘ (331)

S S

Definition 3.15. A real valued function kz, = & is called a characteristic function
with respect to a set [0, 00), if:

0, ift<O 0, ift<ec
ke, (1) = k(t) = , k(t—c)= (3.32)
1, ift>0 1, ift>c

for any ¢ € R.

Theorem 3.16. If L (g)(s) exists, 0 < ¢ and g(t) =0 for —c <t < 0. Then,

L(g(t = c;w(t — )kt — ¢))(s) = e L(g)(s). (3.33)
Proof. From Definition 3.1, the conclusion of the theorem remains valid. O
] 3, ifo<t<1
Example 3.17. Given g(t,w(t)) = Find L(g)(s).
w(t), ift>1.

Solution Process. First, we rewrite g(t,w(t)) in terms of a unit step function as

follows:
g(t,w(t)) =3 —=3r(t—1)+ (wt —1+rk(t—1))k(t—1).
This is in the form of g(t — 1, w(t — 1)). Hence, we can now apply Theorem3.16, and

we have
Lo, (b w(t)(s) = = 267 4+ e Llw(®)(5)
33 L))
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Now we will introduce the concept of a convolution integral of two functions.
Moreover, we will obtain an expression for the Laplace transform for the convolution

integral of two functions.

Definition 3.18. Let f and g be piecewise continuous functions defined on t > 0.
The Cauchy-Riemann and the It6—Doob convolution integrals of f and g are defined
by:

(P49 = [ gt~ wfw) duta). (3.34)
0
Remark 3.19. From (3.34), we observe that:

(f*g)(t) = / gt — u) f(u) duw(u)

0
t

= [t =2 dw(z) = g+ D)0 (3.35)

This shows that the convolution integral defined in (3.34) satisfies the commutative

law.

Theorem 3.20 (Laplace Transform of Convolution Integral). Let us assume that
frg € LIf]. Then (f * g) € L{f],

t

L(f*g)(s)=L /g(t —u,w(t —u)) f(u,wu))dw(u) | (s) = L(f)(s).LY(g)(s)
" (3.36)

Proof. We can easily verify the accuracy of the conclusion. From Definition 3.4 one
can conclude that (f * g) € L[f], and from Definitions 3.1 and 3.18 we have

£t e o)) = [ | [ ot = wwle = w) fwww)du()| d

t

= //e_“g(t —u,w(t —u)) f(u,w(u)) dw(u)dt (by Fubini’s theorem)

= //e_“g(t —u,w(t —u))k(t —u)f(u,w(u)) dtdw(u)

(by the definition of k(t — u))
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[e.e]

= [ i) (. wla) du(w)

0
00

— L(g)(s) / e f (u, w(u)) do ()

= L(g)(s)L(f)(s).

This completes the proof of the theorem. O
t

Example 3.21. Solve the given equation: g(t) = w(t) + [ sin(t — u)g(u) du.
0

Solution Process. Let L(g)(s). The L(sint)(s) = H% Now applying Theo-

rem 3.20, we have,

L(g)(s) = L(f * g)(s) = L(w(t)) + L(g)(s)L(f)(s) =
By solving for £(g)(s), we obtain
(1+s)LY(1)(s) _ (1+5%) LY(1)(s) (1 N i) L(1)(s)

L£(1)(s) n L(g)(s)
s 241

L(9)(s) = - = (1+5)=—

s3 52 s
The inverse Laplace transform of this is given by
1 u
Ew
glt) = £ [(1+ )%} ~ [ar-u) | [aww | a
0 0

t

= /(1 + (t — w)w(u) du.

0

The computation of the Laplace transforms of

a) sin(at + aw(t))e_<a+0222>t +ow(t)
b) cos(at + ow(t))e” T 4 gu(t)
c) (at + ow(t)) cos(bt + ocw(t))
d) (at + ow(t)) sin(bt + cw(t))

are left as exercises.

4. APPLICATIONS OF LAPLACE TRANSFORM

The Laplace transform will be used to solve the initial value problems (IVP). The
Laplace transform transforms a linear differential equation with constant coefficients
into an algebraic equation. The techniques for solving the algebraic equations are
easier than the method of solving the initial value problems and the higher order

linear nonhomogeneous differential equations with constant coefficients.
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TABLE 1. A Short Table of Laplace Transforms

fw(@) L)) fltw(?)) L2(f(1))(s)
c £,5>0 c L(cw)(s) = &;)(S)
oLV (eattow(t)) (g
et ﬁ’ s> a eat—l—ow(t) L (o.eat—l—ow(t)) (S) _ 1+ LE ( — )( )
8_(1_50'
sin at o sin ow(t) L(sin(ow(t)))(s) = Uﬁw(cosifj;w(t)))(s)
2
s 1 %02£(Cosow(t))(s)
cos at e cos ow(t) L(cosow(t))(s) =1 .
__oLY(sinow(t))(s)
nLY(wn=1)(s n(n— w=2)(s
P R0 w() L) ()= 2N e e
al(w(t)e®)(s w(eat)(s
et S0 wer £ (w(b)e) (s) = 00 | )0
oLV (teow(t) ) (g eow(t) ) (g
terv® L (te0) (s) = co(t ° )(s) +£( 02)()
(>-%) (>-%)
tsinat (3224:152)2
t cos at (:22;?22)2
e~ sin bt m
e~ % cos bt 7(8@4;;%2

Example 4.1. Use the Laplace transform to solve the given initial value problem:
dy' + ydt = odw(t), y(0)=0, ¢'(0)=1, for o #0.

Solution Process. We note that the It6—Doob differential equation is equivalent to
the following integral equation

t t

y(0) =y~ [y duto [ duta)

0 0

Now, by applying the Laplace transform to both sides and using Theorem 3.12,

we obtain
L) =2 | e |y0) - / y(u) du+ o / (1)
=L (e (0)) — L /y(u)du +oL /dw(u)
1 L(y@) | oL (1)(s)

Moreover, from Theorem 3.11, we have: £ (y'(t)) = sL(y(t)) — y(0). From this

and using the initial conditions, the above expression reduces to:

i) - L L0 | L))

S S S
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Now, we solve for L(y(t)), and get

Liy(t) = — (HM)

14 82 s
1 48 al"(1)(s)
1482 1482 s '

By applying the inverse Laplace transform to both sides and using Theorem 3.20, we

have

v = £ <1i82 1 jSQ Uﬁwil)(S))

e () e (e N

t
=sint+o / cos(t — u)w(u) du.
0

Thus, the solution of the initial value problem is given by

t

y(t) =sint+ o / cos(t — u)w(u) du.

Example 4.2. [Langevin equation [6, 7]] Use the Laplace transform to solve the IVP:
dy' + py'dt = o dw(t), y(0)=1yo, v'(0)=1y, foroc#0and > 0.

Solution Process. We note that the Ito-Doob differential equation is equivalent to

ﬂ/ du+<f/dw(u).

Now, by applying the Laplace transform to both sides and using Theorem 3.12, we

the following integral equation

obtain

Ly)=L|e ﬁ/ du+0/dw(u)

t

=L (e*y'(0)) — BL /y(u) du | + oL /dw(u)
0 0
_ % PLL) | oL(D)(s)
s s s
Moreover, from Theorem 3.11, we have: £ (y'(t)) = sL(y(t)) — y(0). From this and
using the initial conditions, the above expression reduces to:
v _ SBLW(0) — B oL (1))

S S S

sL(y(t) = yo =
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Now, we solve for L(y(t)), and have

__w (Bt oLA)(s)
 Bs+s2 PBs+s? s+ s?
o Yo al"(1)(s)

~ s(B+ ) + s + s(B+s)

_uo |1 1 Yo 1 oL¥(1)(s)

_ﬂ{g+ﬁ+s}+?+ﬂ+s s

L(y(t))

By applying the inverse Laplace transform to both sides, we get

s PB+s

yQ%:EJ<@[1 1 ]+y0+ 1 azwn)

164 s fB+s s

= Yo+ % (1—e) + a/e_ﬁ(t_“)w(u) du.

0

Thus the solution of the initial value problem is given by

t

y(t) = yo + % (1—e")+ U/e‘ﬁ(t_“)w(u) du.

0

From this solution process, we can determine the mean, covariance and the variance

of the solution process. In fact, the mean of y(t) is

Ely(®)] = E [yo] +

The covariance and the variance of the solution process can be determined in a similar

manner.

Example 4.3. [Chandrasekhar Equation [1]] Use the Laplace transform to solve the
IVP:

dy' + (By' + v*y) dt = odw(t), y(0=yo, y'(0)=uo, for o # 0and 3> 0.

Solution Process. We note that the It6—Doob differential equation is equivalent to

the following integral equation

t

y'(t) =9'(0) — ﬂ/y/(u) du — 1/*

0

t

y@ym+a/ﬁwwy

0

o —
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Now, by applying the Laplace transform to both sides and using Theorem 3.12, we

obtain

Ly')=L (e“ {y’(O) —ﬁjy(u) du—lﬂ/t (u) dU+<f/tdw(U)D
=L (e~*y'(0)) — 8L (/y ) VAL (/ty(u) du) + oL (jdw(u))

0 0 0

W BLWM) L) oL (1))

S S S S

Moreover, from Theorem 3.11, we have: £ (v/(t)) = sL(y(t)) — y(0), and by following

the argument used in Example 4.2, we have

SL(y(1)) — o = 20 B(sL(y(t)) — y(U))S— 2L>y(t) + o L£(1)(s)

_ v = (Bs +v*) Ly(t)) + By(0) + oL (1)(s)

S

After various algebraic manipulation and simplifications, we get

v+ By(0) + o L(1)(s) sy(0)
Ly(®) = V2 + Bs + s2 V2 + Bs + s2

() n (%5 + 8) Yo
T3+ o oy

N s alL"(1)(s)
(s+30)" + 57525

By applying the inverse of the Laplace transform to both sides, we obtain

P vo + 30y(0) (33 +s) o
y(t) - /C <(s _I_ lﬁ)2 + (41/2_52) + (S + 16)2 _I_ (41,2_132)
2 4 2 4

N s aL™(1)
(s+1p)" + &2 s
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and hence
(45 [0 4 sin 40t 4y cos 3]
o ¢ oos $b(t — u) — 2 sin $b(t — )] e B V() du,
if > = (4% — 3?) > 0,
A G o) ]
y(0) = 40 Iy [ = Bt —we ) w(u) du,

if (402 — (%) =0,
(2v0+Byo) [67%([’%”4-67%([}%”] Yo [ei%wib)t_ei%(ﬂb)t]
1b + 2
. {F%wmuw+{$w+muw] 5%—%w—wu—m_f—%w+wu—m]

+o fo 2 - b du,

it 52 = (52 — 402) > 0.

\
Depending on the nature magnitudes of v? and 5% and sign of (402 — (3?), the repre-
sentation of the solution process of Chandrasekhar’s equation is derived. From this
solution process, one can determine the mean, covariance and variance of the solution

process.
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