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ABSTRACT. We are concerned with the existence of even number of positive solutions for the

3nth order three-point boundary value problem

(−1)
n
y(3n) = f(y(t), y(3)(t), y(6)(t), . . . , y(3(n−1))(t)), t ∈ [t1, t3],

satisfying the boundary conditions

α3i−2,1y
(3i−3)(t1) + α3i−2,2y

(3i−2)(t1) + α3i−2,3y
(3i−1)(t1) = 0,

α3i−1,1y
(3i−3)(t2) + α3i−1,2y

(3i−2)(t2) + α3i−1,3y
(3i−1)(t2) = 0,

α3i,1y
(3i−3)(t3) + α3i,2y

(3i−2)(t3) + α3i,3y
(3i−1)(t3) = 0,

for 1 ≤ i ≤ n, where n ≥ 1, t1 < t2 < t3 and f : R
n → R

+ is continuous. We establish the existence

of at least two and then 2m positive solutions for an arbitrary positive integer m, by using the Avery

and Henderson functional fixed point theorem.

AMS (MOS) Subject Classification. 39A 10, 34B 05

1. INTRODUCTION

The general theory of differential equations is emerging as an important area of

investigation due to its powerful and versatile applications to almost all areas of sci-

ence, engineering and technology. Much interest has been developed since last decade

regarding the study of existence of positive solutions to the third order boundary

value problems as they are arising in a variety of applied mathematics and physics

problems, such as fluid flow problems in which surface tension forces are important.

The study of the existence of positive solutions for higher order boundary value prob-

lems have been studied by Eloe and Henderson [5], Anderson [2], Anderson and Davis

[3], Li [14], Guo, Sun and Zhao [11], Greaf and Yang [10], Shahed [19].
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In this paper, we consider the 3nth order differential equation

(−1)n
y(3n) = f(y(t), y(3)(t), y(6)(t), . . . , y(3(n−1))(t)), t ∈ [t1, t3], (1.1)

satisfying the general three-point boundary conditions

α3i−2,1y
(3i−3)(t1) + α3i−2,2y

(3i−2)(t1) + α3i−2,3y
(3i−1)(t1) = 0,

α3i−1,1y
(3i−3)(t2) + α3i−1,2y

(3i−2)(t2) + α3i−1,3y
(3i−1)(t2) = 0,

α3i,1y
(3i−3)(t3) + α3i,2y

(3i−2)(t3) + α3i,3y
(3i−1)(t3) = 0,

(1.2)

for n ≥ 1, and 1 ≤ i ≤ n, t1 < t2 < t3. Our interest here is to establish even number

of positive solutions for the boundary value problem (1.1)–(1.2) by using the Avery

and Henderson functional fixed point theorem.

For convenience we adopt the following notation:

βj = α3i−3+j,1tj+α3i−3+j,2, γj = α3i−3+j,1t
2
j +2α3i−3+j,2tj+2α3i−3+j,3, lj = α3i−3+j,1s

2−

2βjs+ γj and define

mkj =
α3i−3+k,1γj − α3i−3+j,1γk

2(α3i−3+k,1βj − α3i−3+j,1βk)
,

Mkj =
β3i−3+k,1γj − βjγk

(α3i−3+k,1βj − α3i−3+j,1βk)

for k, j = 1, 2, 3 and also let m = max {m12, m13, m23},

M = min
{

m23 +
√

m2
23 −M23, m13 +

√

m2
13 −M13

}

and

di = [α3i−2,1(β2γ3 − β3γ2) − β1(α3i−1,1γ3 − α3i,1γ2) + γ1(α3i−1,1β3 − α3i,1β2)].

We assume the following conditions throughout this paper:

(A1) f : R
n → R

+ is continuous;

(A2) α3i−2,1 > 0, α3i−1,1 > 0 and α3i,1 > 0 for 1 ≤ i ≤ n are real constants, such that
α3i−2,2

α3i−2,1
<

α3i−1,2

α3i−1,1
<

α3i,2

α3i,1
.

(A3) m ≤ t1 ≤ t2 ≤ t3 ≤M , 2α3i−1,3α3i−1,1 > α2
3i−1,2,

2α3i−2,3α3i−2,1 < α2
3i−2,2, 2α3i,3α3i,3 > α2

3i,2.

(A4) m2
23 > M23, m

2
12 < M12, m

2
13 > M13 and di > 0.

The rest of the paper is organized as follows. In Section 2, we construct the

Green’s function for the homogeneous boundary value problem corresponding to

(1.1)–(1.2) and estimate the bounds for the Green’s function. In Section 3, we estab-

lish a criteria for the existence of at least two positive solutions of the boundary value

problem (1.1)–(1.2) by using the Avery-Henderson functional fixed point theorem.

We also establish the existence of 2m positive solutions for any arbitrary positive

integer m .
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2. THE GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous boundary

value problem corresponding to (1.1)–(1.2) and estimate the bounds of the Greens

function.

Let Gi(t, s) be the Green’s function for the homogeneous problem

−y′′′ = 0, t ∈ [t1, t3] (2.1)

satisfying the general three point boundary conditions (1.2). First we need few results

on the related third order homogeneous boundary value problem (2.1) and (1.2).

Lemma 2.1. The homogeneous boundary value problem (2.1) and (1.2) has only the

trivial solution if and only if di = [α3i−2,1(β2γ3 − β3γ2) − β1(α3i−1,1γ3 − α3i,1γ2) +

γ1(α3i−1,1β3 − α3i,1β2)] 6= 0 for 1 ≤ i ≤ n

Proof. On application of boundary conditions (1.2) to the general solution of (2.1),

it can be established.

Lemma 2.2. For 1 ≤ i ≤ n, the Green’s function Gi(t, s) for the homogeneous

boundary value problem (2.1) and (1.2) is given by

Gi(t, s) =







































Gi1(t, s), t1 < s < t ≤ t2 < t3

Gi2(t, s), t1 ≤ t < s < t2 < t3

Gi3(t, s), t1 ≤ t < t2 < s < t3

Gi4(t, s), t1 < t2 < s < t ≤ t3

Gi5(t, s), t1 < t2 ≤ t < s < t3

Gi6(t, s), t1 ≤ s < t2 < t < t3

(2.2)

where

Gi1(t, s) =
1

2di

[−(β2γ3 − β3γ2) + t(α3i−1,1γ3 − α3i,1γ2)

− t2(α3i−1,1β3 − α3i,1β2)] × l1,

Gi2(t, s) =
1

2di

[−(β1γ3 − β3γ1) + t(α3i−2,1γ3 − α3i,1γ1)

− t2(α3i−2,1β3 − α3i,1β1)] × l2

+
1

2di

[(β1γ2 − β2γ1) − t(α3i−2,1γ2 − α3i−1,1γ1)

+ t2(α3i−2,1β2 − α3i−1,1β1] × l3,

Gi3(t, s) =
1

2di

[(β1γ2 − β2γ1) − t(α3i−2,1γ2 − α3i−1,1γ1)

+ t2(α3i−2,1β2 − α3i−1,1β1)] × l3,
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Gi4(t, s) =
1

2di

[−(β2γ3 − β3γ2) + t(α3i−1,2,1γ3 − α3i,1γ2)

− t2(α3i−1,1β3 − α3i,1β2)] × l1

+
1

2di

[(β1γ3 − β3γ1) − t(α3i−2,1γ3 − α3i,1γ1)

+ t2(α3i−2,1β3 − α3i,1β1] × l2,

Gi5(t, s) =
1

2di

[(β1γ2 − β2γ1) − t(α3i−2,1γ2 − α3i−1,1γ1)

+ t2(α3i−2,1β2 − α3i−1,1β1)] × l3,

Gi6(t, s) =
1

2di

[−(β2γ3 − β3γ2) + t(α3i−1,1γ3 − α3i,1γ2)

− t2(α3i−1,1β3 − α3i,1β2)] × l1.

Proof. Gi(t, s) is constructed by using standard methods [18].

Lemma 2.3. Assume the conditions (A1)–(A4) are satisfied. Then, for 1 ≤ i ≤ n,

the Green’s function Gi(t, s) of the boundary value problem (2.1) and (1.2) satisfies

Gi(t, s) > 0, for (t, s) ∈ [t1, t3] × [t1, t3].

Proof. For (t, s) ∈ [t1, t3]×[t1, t3], Gi(t, s) stated as in (2.2), if we consider sequentially,

from (A2)–(A4),

Gi(t, s) > 0, for (t, s) ∈ [t1, t3] × [t1, t3]. (2.3)

Lemma 2.4. Assume the conditions (A1)–(A4) are satisfied. Then, for 1 ≤ i ≤ n,

the Green’s function Gi(t, s) given by (2.2) satisfies that

Gi(t, s) ≤ max
{

Gi(t1, s), Gi(s, s), Gi(t3, s)
}

.

Proof. This can be proved by proceeding sequentially with the branches of Gi(t, s) in

(2.2).

Case 1. For t1 < s < t < t2 < t3.

Gi(t, s) = Gi1(t, s) =
1

2di

[−(β2γ3 − β3γ2) + t(α3i−1,1γ3 − α3i,1γ2)

− t2(α3i−1,1β3 − α3i,1β2] × l1

which is decreasing in t from (A2)–(A4). Therefore Gi1(t, s) ≤ Gi1(s, s) ≤ Gi1(t1, s).

Hence Gi(t, s) ≤ Gi(t1, s).

Case 2. For t1 ≤ t < t2 < s < t3.

Gi(t, s) = Gi3(t, s) =
1

2di

[(β1γ2 − β2γ1) − t(α3i−2,1γ2 − α3i−1,1γ1)

+ t2(α3i−2,1β2 − α3i−1,1β1)] × l3
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which is increasing in t from (A2)–(A4). Therefore Gi3(t, s) ≤ Gi3(s, s) ≤ Gi3(t3, s).

Hence Gi(t, s) ≤ Gi(t3, s).

Case 3. For t1 ≤ t < s < t2 < t3.

Gi(t, s) = Gi2(t, s)

=
1

2di

[−(β1γ3 − β3γ1) + t(α3i−2,1γ3 − α3i,1γ1)

− t2(α3i−2,1β3 − α3i,1β1)] × l2

+
1

2di

[(β1γ2 − β2γ1) − t(α3i−2,1γ2 − α3i−1,1γ1)

+ t2(α3i−2,1β2 − α3i−1,1β1] × l3

which is increasing in t by (A2)–(A4) and case 2. Therefore Gi2(t, s) ≤ Gi2(s, s).

Hence Gi(t, s) ≤ Gi(s, s).

Case 4. For t1 < t < t2 < s < t < t3.

Gi(t, s) = Gi4(t, s)

=
1

2di

[−(β2γ3 − β3γ2) + t(α3i−1,1γ3 − α3i,1γ2)

− t2(α3i−1,1β3 − α3i,1β2)] × l1

+
1

2di

[(β1γ3 − β3γ1) − t(α3i−2,1γ3 − α3i,1γ1)

+ t2(α3i−2,1β3 − α3i,1β1)] × l2

which is decreasing in t from case 1 and case 2. Therefore Gi4(t, s) ≤ Gi4(s, s). Hence

Gi(t, s) ≤ Gi(s, s).

Similarly we can prove when the Green’s functionGi(t, s) =Gi5(t, s) andGi(t, s) =

Gi6(t, s) as in case 2 and case 1 respectively, where Gi5(t, s), Gi6(t, s) are given as in

(2.2). From all above cases

Gi(t, s) ≤ max{Gi(t1, s), Gi(s, s), Gi(t3, s)}.

Lemma 2.5. Assume that the conditions (A1)–(A4) holds. For 1 ≤ i ≤ n, and fixed

s ∈ [t1, t3], the Green’s function Gi(t, s) in (2.2) satisfies

min
t∈[t2,t3]

Gi(t, s) ≥ mi‖Gi(., s)‖,

where

mi = min

{

Gi1(t3, s)

Gi1(t2, s)
,
Gi4(t3, s)

Gi4(t2, s)
,
Gi5(t2, s)

Gi5(t3, s)

}

and ‖ · ‖ is defined by ‖x‖ = max{x(t) : t ∈ [t1, t3]}.
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Proof. For s ∈ [t1, t2], Gi(t, s) = Gi1(t, s) which is decreasing in t by (A2)–(A4).

Therefore
Gi(t, s)

Gi(s, s)
=
Gi1(t, s)

Gi1(s, s)
≥
Gi1(t3, s)

Gi1(t2, s)
.

For s ∈ [t2, t3] and t1 < t2 ≤ t < s < t3. Gi(t, s) = Gi5(t, s) which is increasing in t

on [t1, t3] by (A2)–(A4). Therefore

Gi(t, s)

Gi(s, s)
=
Gi5(t, s)

Gi5(s, s)
≤
Gi5(t2, s)

Gi5(t3, s)
.

For s ∈ [t2, t3] and t1 < t2 < s < t < t3. Gi(t, s) = Gi4(t, s) which is decreasing in t

on [t1, t3] by (A2)–(A4). Therefore

Gi(t, s)

Gi(s, s)
=
Gi4(t, s)

Gi4(s, s)
≥

Gi4(t, s)

Gi4(t2, s)
≥
Gi4(t3, s)

Gi4(t2, s)
.

Therefore from Lemma 2.4 and by all the above cases we have

min
t∈[t2,t3]

Gi(t, s) ≥ mi‖G(., s)‖,

where

mi = min

{

Gi1(t3, s)

Gi1(t2, s)
,
Gi4(t3, s)

Gi4(t2, s)
,
Gi5(t2, s)

Gi5(t3, s)

}

.

Lemma 2.6. Assume the conditions (A1)–(A4) are satisfied and Gi(t, s) as in (2.2).

Let us define H1(t, s) = G1(t, s)and recursively define

Hj(t, s) =

∫ t3

t1

Hj−1(t, r)Gj(r, s)dr

for 2 ≤ j ≤ n, then Hn(t, s) is the Green’s function for the homogeneous problem

corresponding to (1.1)–(1.2).

Lemma 2.7. Assume the conditions (A1)–(A4) holds. If we define

K =
n−1
∏

j=1

Kj, L =
n−1
∏

j=1

mjLj ,

then the Green’s function Hn(t, s) in Lemma 2.6 satisfies

0 ≤ Hn(t, s) ≤ K‖Gn(s, s)‖, (t, s) ∈ [t1, t3] × [t1, t3] (2.4)

and

Hn(t, s) ≥ mnL‖Gn(s, s)‖, (t, s) ∈ [t2, t3] × [t1, t3] (2.5)

where mn is given as in Lemma 2.5,

Kj =

∫ t3

t1

‖Gj(s, s)‖ds > 0, for 1 ≤ j ≤ n,

and

Lj =

∫ t3

t2

‖Gj(s, s)‖ds > 0, for 1 ≤ j ≤ n.



EVEN NUMBER OF POSITIVE SOLUTIONS 399

Proof. By using Lemma 2.5 and induction on n, we can easily establish the Proof.

Let C = {v|v : [t1, t3] → R is continuous function}. For each 1 ≤ j ≤ n − 1,

define the operator Tj : C → C by

(Tjv)(t) =

∫ t3

t1

Hj(t, s)v(s)ds, t ∈ [t1, t3].

By the construction of Tj , and the properties of Hj(t, s), it is clear that

(−1)j(Tjv)
(3j)(t) = v(t), t ∈ [t1, t3],

α3i−2,1Tjv
(3i−3)(t1) + α3i−2,2Tjv

(3i−2)(t1) + α3i−2,3Tjv
(3i−1)(t1) = 0,

α3i−1,1Tjv
(3i−3)(t2) + α3i−1,2Tjv

(3i−2)(t2) + α3i−1,3Tjv
(3i−1)(t2) = 0,

α3i,1Tjv
(3i−3)(t3) + α3i,2Tjv

(3i−2)(t3) + α3i,3Tjv
(3i−1)(t3) = 0.

Hence, we see that the boundary value problem (1.1)–(1.2) has a solution if and only

if the following boundary value problem has a solution

v(3)(t) + f(Tn−1v(t), Tn−2v(t), . . . , T1v(t), v(t)) = 0, t ∈ [t1, t3] (2.6)

α3i−2,1v
(3i−3)(t1) + α3i−2,2v

(3i−2)(t1) + α3i−2,3v
(3i−1)(t1) = 0,

α3i−1,1v
(3i−3)(t2) + α3i−1,2v

(3i−2)(t2) + α3i−1,3v
(3i−1)(t2) = 0,

α3i,1v
(3i−3)(t3) + α3i,2v

(3i−2)(t3) + α3i,3v
(3i−1)(t3) = 0.

. (2.7)

Indeed, if y is a solution of the boundary value problem (1.1)–(1.2), then v(t) =

y3(n−1)(t) is a solution of the boundary value problem (2.6)–(2.7). Conversely, if v

is a solution of the boundary value problem (2.6)–(2.7), then y(t) = Tn−1v(t) is a

solution of the boundary value problem (1.1)–(1.2).

In fact, y(t) represented as

y(t) =

∫ t3

t1

Hn(t, s)v(s)ds,

where

v(s) =

∫ t3

t1

G(s, τ)f(Tn−1v(τ), Tn−2v(τ), . . . , T1v(τ), v(τ))dτ.

is a solution of the boundary value problem (1.1)–(1.2).

3. MULTIPLE POSITIVE SOLUTIONS

In this section, we establish the existence of at least two positive solutions of the

boundary value problem (1.1)–(1.2) using Avery-Henderson functional fixed point

theorem.

Let B be a real Banach space. Every cone P ⊂ B induces an ordering in B given

by

x ≤ y if and only if y − x ∈ P.
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We say

x < y whenever x ≤ y and x 6= y.

A functional ψ is said to be an increasing functional on a cone P of a real Banach

space B provided ψ(x) ≤ ψ(y) for all x, y ∈ P with x ≤ y.

Let ψ be a nonnegative continuous functional on a cone P of the real Banach

space B. Then for a positive real number c′ we define the set

P (ψ, c′) = {y ∈ P : ψ(y) < c′}.

In obtaining multiple positive solutions of the boundary value problem (1.1)–

(1.2), the following Avery and Henderson’s functional fixed point theorem will be the

fundamental tool.

Theorem 3.1. Let P be a cone in a real Banach space B. Suppose α and γ are

increasing nonnegative continuous functionals on P and θ is nonnegative continuous

functional on P with θ(0) = 0 such that for some positive numbers c′ and k,

γ(y) ≤ θ(y) ≤ α(y) and ‖y‖ ≤ kγ(y) for all y ∈ P (γ, c′).

Suppose there exists positive numbers a′ and b′ with a′ < b′ < c′ such that

θ(λy) ≤ λθ(y), 0 ≤ λ ≤ 1 and y ∈ ∂P (θ, b′).

Further, let T : P (γ, c′) → P is completely continuous operator such that (B1)γ(Ty) >

c′ for all y ∈ ∂P (γ, c′), (B2)θ(Ty) < b′ for all y ∈ ∂P (θ, b′), (B3)P (α, a′) 6= ∅ and

α(Ty) > a′ for all y ∈ ∂P (α, a′) with θ(Ty) > b′. Then, T has at least two fixed

points y1, y2 ∈ P (γ, c′) such that

θ(y1) < b′, with α(y1) > a′,

and

γ(y2) < c′ with θ(y2) > b′.

Let B = {v|v ∈ C[t1, t3] be the Banach space equipped with the norm

‖v‖ = max
t∈[t1,t3]

|v(t)|.

Define the cone P ⊂ B by

P =
{

v ∈ B : v(t) ≥ 0, and min
t∈[t2,t3]

v(t) ≥M‖v‖
}

,

where M =
mjL

K
and mj , L,K are as in Lemma 2.7.
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Define the nonnegative continuous increasing functionals γ, θ and α on the cone

P by

γ(v) = min
t∈[t2,t3]

|v(t)|,

θ(v) = max
t∈[t1,t3]

|v(t)|,

α(v) = max
t∈[t2,t3]

|v(t)|.

We observe that for any v ∈ P ,

γ(v) = θ(v) ≤ max
t∈[t2.t3]

|v(t)| = α(v), (3.1)

‖v‖ ≤
1

M
min

t∈[t2,t3]
|v(t)| ≤

1

M
max

t∈[t1,t3]
|v(t)| ≤

1

M
θ(v) =

1

M
γ(v), (3.2)

and also

‖v‖ ≤ min
t∈[t2,t3]

v(t) ≤ max
t∈[t2,t3]

v(t) =
1

M
α(v).

Let

G(t, s) = min{G1(t, s), G2(t, s), . . . , Gn(t, s)},

and

L = max
{

∫ t3

t2

G1(s, s)ds,

∫ t3

t2

G2(s, s)ds, . . . ,

∫ t3

t2

Gj(s, s)ds
}

.

We are now ready to present the main result of this section.

Theorem 3.2. Suppose there exist 0 < a′ < b′ < c′ such that f satisfies the following

conditions:

(D1) f(un−1, un−2, . . . , u1, u0) >
c′

L
for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[mjc

′(Πn−1
i=1 Li)Lj,

c′(Πn−1

i=1
Ki)Kj

M
] × [c′, c′

M
],

(D2) f(un−1, un−2, . . . , u1, u0) <
b′

K
for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[mjb

′(Πn−1
i=1 Li)Lj,

b′(Πn−1

i=1
Ki)Kj

M
] × [0, b′

M
],

(D3) f(un−1, un−2, . . . , u1, u0) >
a′

L
for all (|un−1|, |un−2|, . . . , |u1|, |u0|) in

Π1
j=n−1[mja

′(Πn−1
i=1 Li)Lj,

a′(Πn−1

i=1
Ki)Kj

M
] × [Ma′, a′].

Then the boundary value problem (1.1)–(1.2) has at least two positive solutions.

Proof. Define the completely continuous operator T : P → B by

Tv(t) =

∫ t3

t1

G(t, s)f(Tn−1v(s), Tn−2v(s), . . . , T1v(s), v(s))ds. (3.3)

It is obvious that a fixed point of T is the solution of the boundary value problem

(2.6)–(2.7). We seek two fixed points v1, v2 ∈ P of T . First, we show that T : P → P .
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Let v ∈ P . Clearly, Tv(t) ≥ 0 for t ∈ [t1, t3], we have

min
t∈[t2,t3]

Tv(t) = min
t∈[t2,t3]

∫ t3

t1

G(t, s)f(Tn−1v, Tn−2v, . . . , T1v, v)ds

≥M

∫ t3

t2

G(s, s)f(Tn−1v, Tn−2v, . . . , T1v, v)ds

= M‖Tv‖.

Thus, T : P → P .

Next, it is obvious that θ(0) = 0. Further, for any v ∈ P , by (3.1)–(3.2),

respectively, we have

γ(v) = θ(v) ≤ α(v)quad and ‖v‖ ≤ γ(v).

Also, for any 0 ≤ λ ≤ 1 and v ∈ P , we have

θ(λv) = max
t∈[t1,t3]

|λv(t)| = λ max
t∈[t1,t3]

|v(t)| = λθ(v).

It remains to verify conditions (B1)–(B3) of Theorem 3.1. To show that condition

(B1) holds, let v ∈ ∂P (γ, c′), so

γ(v) = min
t∈[t2,t3]

|v(t)|.

For t ∈ [t2, t3] it is clear from (3.2) that

c′ = min
t∈[t2,t3]

|v(t)| ≤ |v(t)| ≤ ‖v‖ ≤
1

M
α(v) ≤

1

M
c′.

For 1 ≤ j ≤ n− 1 and t ∈ [t2, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≤
c′

M

∫ t3

t1

Hj(t, s)ds

≤
c′K

M

∫ t3

t1

‖Gj(s, s)‖ds

=
c′KKj

M
.

For 1 ≤ j ≤ n− 1 and t ∈ [t1, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≥ c′
∫ t3

t2

Hj(t, s)ds

≥ c′mjL

∫ t3

t2

‖Gj(s, s)‖ds

= c′mjLLj .
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We may now use condition (D1) to obtain

γ(Tv) = min
t∈[t2,t3]

∫ t3

t1

G(t, s)f(Tn−1v, Tn−2v, . . . , T1v, v)ds

>
c′

L

∫ t3

t2

G(s, s)ds > c′.

Therefore, we have shown that γ(Tv) > c′ for all v ∈ ∂P (γ, c′).

Next, we shall verify condition (B2) holds, let v ∈ ∂P (θ, b′), so

θ(v) = max
t∈[t1,t3]

|v(t)|.

For t ∈ [t1, t3], it is clear from (3.2) that

b′ = max
t∈[t1,t3]

|v(t)| ≤ ‖v‖ ≤
b′

M
.

For 1 ≤ j ≤ n− 1 and t ∈ [t1, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≤
b′

M

∫ t3

t1

Hj(t, s)ds

≤
b′K

M

∫ t3

t1

‖Gj(s, s)‖ds

=
b′KKj

M
.

For 1 ≤ j ≤ n− 1 and t ∈ [t2, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≥ b′
∫ t3

t2

Hj(t, s)ds

≥ b′mjL

∫ t3

t2

‖Gj(s, s)‖ds

= b′mjLLj .

We may now use condition (D2) to obtain

θ(Tv) = max
t∈[t1,t3]

∫ t3

t1

G(t, s)f(Tn−1v, Tn−2v, . . . , T1v, v)ds

<
b′

K

∫ t3

t1

G(s, s)ds

< b′.

Therefore, we have shown that θ(Tv) < b′ for all v ∈ ∂P (θ, b′).
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Finally, we show that (B3) holds. Clearly, a′

2
∈ P (α, a′) 6= ∅. Now, let v ∈

∂P (α, a′), so

α(v) = max
t∈[t2,t3]

|v(t)|.

For t ∈ [t2, t3], it is clear from (3.2) that

a′ = max
t∈[t2,t3]

|v(t)| ≤ |v(t)| ≤ ‖v‖ ≤
a′

M
.

For 1 ≤ j ≤ n− 1 and t ∈ [t2, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≤
a′

M

∫ t3

t1

Hj(t, s)ds

≤
a′K

M

∫ t3

t1

‖Gj(s, s)‖ds

=
a′KKj

M
.

For 1 ≤ j ≤ n− 1 and t ∈ [t2, t3],

Tjv(t) =

∫ t3

t1

Hj(t, s)v(s)ds

≥ a′
∫ t3

t2

Hj(t, s)ds

≥ a′mjL

∫ t3

t2

‖Gj(s, s)‖ds

= a′mjLLj .

We may now use condition (D3) to obtain

α(Tv) = max
t∈[t2,t3]

∫ t3

t1

G(t, s)f(Tn−1v, Tn−2v, . . . , T1v, v)ds

>
a′

L

∫ t3

t2

G(s, s)ds

> a′.

Therefore, we have shown that α(Tv) > a′ for all v ∈ ∂P (α, a′).

We have proved that all the conditions of Theorem 3.1 are satisfied and so there

exist at least two positive solutions v1, v2 ∈ P (γ, c′) for the boundary value prob-

lem (2.6)–(2.7). Therefore the boundary value problem (1.1)–(1.2) has at least two

positive solutions y1, y2 of the form

yi(t) = Tn−1vi(t) =

∫ t3

t1

Gn−1(t, s)vi(s)ds, i = 1, 2.

This completes the proof of the theorem.
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Now we prove the existence of at least 2m positive solutions for the boundary

value problem (1.1)–(1.2) by using induction on m.

Theorem 3.3. Let m be an arbitrary positive integer. Assume that there exist num-

bers ai(1 ≤ i ≤ m+ 1) and bj(1 ≤ j ≤ m) with

0 < a1 < b1 < a2 < b2 < · · · < am < bm < am+1

such that

f(un−1, un−2, . . . , u1, u0) >
ai

L
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjai(Π

n−1
i=1 Li)Lj ,

ai(Π
n−1
i=1 Ki)Kj

M
] × [Mai, ai], 1 ≤ i ≤ m+ 1,











(3.4)

f(un−1, un−2, . . . , u1, u0) <
bl

K
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjbl(Π

n−1
i=1 Li)Lj ,

bl(Π
n−1

i=1
Ki)Kj

M
] × [0, bl

M
], 1 ≤ l ≤ m.

}

(3.5)

Then the boundary value problem (1.1)–(1.2) has at least 2m positive solutions in

P am+1
.

Proof. We use induction on m. First, for m = 1, we know from (3.4) and (3.5)

that T : P a2
→ Pa2

, then, it follows from Avery and Hendersons functional fixed

point theorem that the boundary value problem (1.1)–(1.2) has at least two positive

solutions in P a2
. Next, we assume that this conclusion holds for m = k. In order to

prove that this conclusion holds for m = k + 1, we suppose that there exist numbers

ai(1 ≤ i ≤ k + 2) and bj(1 ≤ j ≤ k + 1)

with

0 < a1 < b1 < a2 < b2 < · · · < ak+1 < bk+1 < ak+2

such that

f(un−1, un−2, . . . , u1, u0) >
ai

L
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjai(Π

n−1
i=1 Li)Lj ,

ai(Π
n−1

i=1
Ki)Kj

M
] × [Mai, ai], 1 ≤ i ≤ k + 2,

}

(3.6)

f(un−1, un−2, . . . , u1, u0) <
bl

K
for all (|un−1|, |un−2|, . . . , |u1|, |u0|)

in Π1
j=n−1[mjbl(Π

n−1
i=1 Li)Lj ,

bl(Π
n−1

i=1
Ki)Kj

M
] × [0, bl

M
], 1 ≤ l ≤ k + 1.

}

(3.7)

By assumption, the boundary value problem (1.1)–(1.2) has at least 2k positive

solutions ui (i = 1, 2, . . . , 2k) in P ak+1
. At the same time, it follows from Theorem 3.2,

and (3.6) and (3.7) that the boundary value problem (1.1)–(1.2) has at least two

positive solutions u, v in P ak+2
such that,

θ(u) < bk+1, with α(u) > ak+1,

and

γ(v) < ak+2 with θ(v) > bk+1.
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Obviously, u and v are different from ui (i = 1, 2, . . . , 2k). Therefore, the boundary

value problem (1.1)–(1.2) has at least 2k + 2 positive solutions in P ak+2
which shows

that this conclusion also holds for m = k + 1.
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