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ABSTRACT. A few fundamental results regarding the of calculus of determinant functions of
associated with n x n matrix functions are developed. Furthermore, stochastic versions of Liouville—
Jacobi [8,9,11,17], Abel-Liouville [1,2,17]. Lagrange formula [4,8,11,15-17], Green’s formula [4, 8]
and many fundamental results are established for the Ito-Doob type higher order and system of

linear stochastic differential equations [6,10,12-14].

1. INTRODUCTION

To the best of our understanding and research, the study of determinant functions
associated with n x n matrix functions is not well exposed in literature. However,
determinant functions [4,5,7,8,11] are used both in the study of higher order or

systems of ordinary differential equations.

This work attempts to outline certain basic results concerning a determinant func-
tion associated with an n x n matrix function. Furthermore, by deriving formulas
for first and second derivatives of determinant function, the Generalized Mean-Value
Theorem and Taylor’s Formula for determinant functions are also systematically es-
tablished.

Finally, by employing the Taylor’s formula for determinant functions, Liouville-
Jacobi [8,9,11,17], the Abel-Liouville [1,2,4,8,17] type deterministic results are
extended to the [to-Doob type higher order and system of linear stochastic differential
equations. These results play a very significant role in understanding the fundamental

properties of these equations [6,10,12-14].

Received September 10, 2007 1083-2564 $15.00 ©Dynamic Publishers, Inc.



410 A. G. LADDE AND G. S. LADDE

2. DETERMINANT FUNCTION

It is very well-known [4,5,7,8,11] that the determinant function associated with
an nxn matrix function plays a significant role in the study of finding the complete set
of solutions to higher order or linear system of differential equations. Moreover, these
results provide an insight into the fundamental properties of solutions of differential

equations.

In this section, by reviewing the definition of determinant function associated
with an n x n matrix, a few nontraditional and basic results concerning the deter-
minant function associated matrix functions are presented. These results play a very
important role in motivating one to study the fundamental properties of solutions
of higher order or systems of [to-Doob type stochastic differential equations in a

systematic and unified way [12].

Definition 2.1 ( [3]). For n > 1, let A = (a;j)nxn be an n x n matrix. Let C =
(Cij)nxn, where Cj; is the cofactor of a;;. The determinant of the matrix A is defined
by:

(1) for any i = 1,2,...,n,
det(A) = ZaijC’U = Z aij(—l)iﬂ det(A,J)
j=1 j=1

This is called the expansion of “det(A)” by the i-th row of the matrix A;
(2) forany j =1,2,...,n,

n n

det(A) = Z aijCij = Z aij(—l)iﬂ det(Aw)

i=1 i=1

This is called the expansion of “det(A)” by the j-th column of the matrix A.

Observation 2.2. The following conclusions are based on the Principle of Mathe-
matical Induction (PMI) and Definition 2.1.

1. The value of the determinant of any n X n matrix A is independent of a row
or a column expansion of matrix A. Thus given an arbitrary n X n matrix
A = (aj)nxn, its determinant is uniquely determined by either any one of the
rows or columns expansions. This is due to the fact that for either each ¢ or
each j, det(A) in Definition 2.1 (1) or (2) is a finite sum of a well-defined scalar
multiple of values of determinants det(A;;) of (n—1) x (n— 1) sub-matrices A,;.

2. From conclusion 1, we can infer that the determinant of n xn matrix is a function
defined on a collection of n x n matrices with values in a set of real/complex
numbers.

3. We note that det(A) of any n x n matrix A has n! = n(n —1)---3.2.1 terms.

Each term is the product of n distinct entries of the matrix. Moreover, it is
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the n-th degree homogeneous polynomial function of n? entries of the matrix of

independent variables. It is denoted by
det(A) = W(an,...,aln,...,aﬂ,...,am,...,anl,...,am).

4. We note that the size of any (7, 7)-th sub-matrix A;; of any n x n matrix A =
(@ij)nxn is (n—1)x (n—1). In this case, the (¢, j)-th minor M;; is the determinant
det(A;;) of the (n — 1) x (n — 1) sub-matrix A;; of matrix A corresponding
to the ¢-th row and the j-th column of matrix A. M;; is independent of all
the entries of the i-th row and j-th column of matrix A. Moreover, C;; =
(—1)"* M;; can be considered either a function of (n—1) row A;(15),..., Ai—1(i—
17), A1 (i+17), ..., Ap(nj), or (n—1) column A'(:1),..., A7 (ij—1), ATT1(ij+
1),...,A™(in) vectors. This is due to the fact that A;(1j),...,A;—1(i — 17),
AP+ 17), ..., Ap(ng) and A (il), ..., A71(ij — 1), AT (i +1),..., A"(in)
are row and column vectors of the sub-matrix A;; = (aw)m-1)xm-1) for k # i
and ¢ # j, respectively. For any k # i, i,k = 1,2,...,n, det(A4;;) can be
computed by using the k-th row Ay expansion of the original matrix A, that is,
the k-th row vector Ay(ij) of the sub-matrix A;; obtained from A after deleting
the i-th row and the j-th column of matrix A. In short, Ay and A(ij) are
n and (n — 1)-dimensional k-th row vectors of matrix A and sub-matrix A,;,
respectively. For k #d and ¢ # j, i, k =1,2,...,n, ay is the entry at the k-th
row and the /-th column of matrix A, and it is the component of the row vector
A (1j) of the sub-matrix A;;. Hence, by using the definition of the determinant
of (n—1) x (n — 1), My(ij) is determined by this k-th row expansion. For
simplicity, for k # ¢ and [ # j, My(ij) is referred as the (k,¢)-th minor of
sub-matrix A;; corresponding to the k-th row and the ¢-th column entry ay, of
the original matrix in the context of (k,¢)-th entry ay, of the sub-matrix A;; of
matrix A. However, its exact representation is not essential to our discussion. We
just need to know an information about My, (ij) and its corresponding cofactor

Cre(i7). From Definition 2.1, for any £ =1,2,...,i—1,i+1,...,n, we have

M;; = det(Ay) = Y anCil(ij) = A(if)CF (i) = Cr(if) AL (if)
[y
where Mjy,(ij) is the (k,[)-th minor of sub-matrix A;; corresponding to the k-
th row and the [-th column entry aj, of the original matrix in the context of
the entry ay, of sub-matrix A;; of matrix A, for any k # 7 and | # j, i,k =
1,2,3,...,n.

5. M;;’s and C;’s differ by a constant factor (—1)"*7. Therefore both M;;’s and
C;;'s are independent of all the entries of i-th row and j-th column of matrix A.
Of course, both det(A4;;) and C;; depend on the remaining entries (n — 1) In
fact, the i-th row expansion of det(A) depends on all rows, and M;;/C;; depends
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on all rows of A except the i-th row. The j-th column expansion of det(A)
depends on all columns, and M;;/C;; depends on all columns of A except the
j-th column. An analogous statement can be made with regard to My, (ij)’s
as defined in Conclusion 4. In fact, the k-th row expansion of det(A4;;) = M;;,
corresponding to the k-th row of the original matrix A, depends on all rows of
matrix A except the i-th row, and My(ij)/Cre(ij) depends on all rows except
i-th and k-th rows. The [-column expansion of det(A;;) = M;;, corresponding
to the [-column of the original matrix A, depends on all columns except the j-th
column of A, and My(ij)/Cr(i7) depends on all columns of A except the j-th
and the (-th columns of matrix A. We further note that My (ij) and Ce(ij)
defined in Conclusion 4 are independent of i-th row, k-th row, j-th column and

/-th column of matrix A.

. In addition, we note that

det(A) :W(au,...,aln,...,aﬂ,...,am,...,anl,...,a,m)

is a real/complex number valued function of n? variables. Furthermore, det(A)
can be considered to be the function of n n-dimensional row vectors Aq, As, ...,
A;, ..., Ay, or n-dimensional column vectors A', A%, ..., A7 ... A" In this

setup, it is represented by
det(A) = W(Ay, ..., A4j,...,A)=W(A' ... A ... A").

Moreover, any ¢ = 1,2, ..., n, and from Definition 2.1, det(A) can be considered
to be the product of two matrices A; and CI (AT and C;) that are i-th row
of matrix A and j-th column of its adjoint matrix C7 corresponding to A. In
conclusion, det(A) = A;CT = C;AT. From the definition of the determinant of

any n x n matrix A and Conclusion 4, we have another representation of det(A):
det(A Z ai;(—1)" Cy(ig) A (i7)

where Ay (ij) is the k-th row of matrix A obtained by deleting the i-th row and

j-th column vectors of matrix A for any ¢,k =1,2,...,n and k # 1.

. In summary, for any positive integer n > 1, det(A) has the following row repre-

sentation

W(AL, Ag, .. Aiy . Ay) = det(A Zaw i = = AT

— Zam +]Ck ZJ)AZ(Z.]>

for any 7 and k, ¢, k = 1,2,...,n and k # i. Moreover, the Cj;’s are independent
of the i-th row and j-th column of matrix A, and the Cf (ij)’s are independent
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of the i-th row, k-th row, and j-th row and [-th column of matrix A. A similar
comment can be made regarding the column representations for det(A).

8. In the case of n = 1, A = (a;;)1x1, the cofactor Cj; of a;; is defined to be 1.
Hence det(A) = (—=1)tayC1y = ay;.

If matrix size is large, the computation of the determinant of the n x n matrix A
by Definition 2.1 is not efficient. However, the concept of the determinant possesses
several properties that are useful to increase the efficiency of the computational pro-

cedure. For easy reference, we state the following.

Theorem 2.3 ( [3]). Let A = (a;j)nxn be an n X n matriz.

Py. det(AT) = det(A), where AT is the transpose of A.

Py. det(A’) = —det(A), where A’ is obtained from A by interchanging two adja-
cent rows (or columns) of the matriz. In fact, this property remains valid for
interchanging any two rows (or columns).

Ps. If A has two identical rows (or columns), then det(A) = 0.

Py. det(A") = cdet(A), where A’ is obtained from A by multiplying a row (or
column) by a scalar ¢ quantity.

Ps. det(A) = det(A’) 4+ det(A”), where each entry of the i-th row (or j-th column)
of the matriz A is a sum (aj; +aj;), and when A" and A" have the same entries
as A, except in their either i-th row (or j-th column), in which they have entries

a;; and ag;, respectively, j =1,2,...,n (ori=1,2,...,n).

Pg. det(A’) = det(A), where A’ is obtained from A by adding a scalar multiple of

a k-th row to an i-th row (or an l-th column to a j-th column with | # j) with

k # 1.
the product of its diagonal entries.

Observation 2.4. Let A(t) = (a;j(t))mxn be an m x n differentiable matrix valued
function defined on J, and let At be an increment in ¢. The differential of the m x n
matrix A(t) is defined by: dA(t) = (da;;(t)dt)mxn = A(t)dt = dt(ai;j(t))mxn, Where
At = dt. We note that the operation of differential is linear [4,7,11]. In fact,

(i) d(A(t) + B(t)) = dA(t) + dB(t) (Addition Rule).
(ii) d((cA)(t)) = c(t)dA(t) + A(t)dc(t), where c is scalar function (Product Rule for

scalar multiplication).
(ili) d(A(t)B(t)) = dA(t)B(t) + A(t)dB(t) (Product Rule).

The following result provides expressions for the first derivative and differential

of the determinant function associated with an n x n differentiable matrix function.
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Lemma 2.5. Let A be an n x n differentiable matriz function defined on J, and
let det(A) = W(Ay, ..., A,..., A,) = W(AL ... A¥ ... A") be the determinant
function defined in Definition 2.1. Then,

dt dt

& d
= WIA,. ., —A,....,A, 2.1
; ( 1 ’dt ks ’ ) ( )

idet(A) d WAy, .. Ay, ... Ay) = Z@%A?
i=1

and

k
£~ THA
=Y W(Ay, ... dA;,..., Ay). (2.2)
k=1

Proof. Based on Definition 2.1 and Observation 2.2, we have

(9?1- (Ay,..., A ..., Ay) = C; and %C’i =0, forany i, 1<i<n. (2.3)

This occurs because the co-factor vector C; is independent of the i-th row vector
A; of the matrix A and because W (A;,..., A;, ..., A,) is independent of any row
expansion of A. Hence,

dAT

—dt
¢ ar’

aA W (A .. Ay Ay

— ZC,-—A;!
i
p ) Y dt ) )

This establishes the validity of (2.1). The validity of (2.2) follows from the above

argument and the concept of the differential. O

The following result provides expressions for the second derivative and differential
of the determinant function associated with an n x n differentiable matrix function.
It is useful in studying linear systems of differential equations [4,5,7,8,10-12].

Lemma 2.6. Let A be an n X n twice differentiable matriz function defined on J,
and letdet(A) = W (Ay, ..., Ay, ..., A,) = W(AL, ... A¥ ... A") be the determinant
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function defined in Definition 2.1. Then,

d? d?
—det(A) = e

dt?

R - d d .

= 3Gl + 303 G O
i=1 i=1 k#i
n pe

:EW(AM...,ﬁAi,...,An)
+iiw AL da A, (2.5)

Y ’dt (2 ’dt Y ) n

i=1 k#i
d?det(A) = d*W (A, ..., Ay, ..., A,)

—ZC’ d2AT+ZZdAk ~CiaAf

i=1 k#i

W (Aw. .. A Ay)

:Zw(Al,...,dzAi,...,An)

—|—iiW(A1,,dAl,,dAk,,An) (26)

i=1 ki

Proof. Based on the argument used in the proof of Lemma 2.5, Observation 2.2, and

(2.1), we obtain expressions as

e e
9 det(A) =
et(d) = o

2
o d
SICTEER LT 1)

W (Ar,. .oy Apy. Ay

and

d . d, 8

— U = —A— Z’,f ., :1,2,..., y 2

dto ;dt k@AkC or any i, k n (2.8)
where,

2_C;s , forany k #1
a%@ [ Ge),., (2.9)
k 0, for k=1

9 9 (1) Cu(if), forl#j
———Ch(ij) =0, 87@3' = . .
kl 0, for I = j.
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We substitute the expression in (2.9) into (2.8) and then into (2.7); we derive the

following formula:

d2 2
o det(A) = dtW(Al,...,Ak,...,An)
7 T
_cht2A +sztAk aAdetA“ (2.10)

for any k # 4, 4, k = 1,2,...,n. By recalling the representation of C; as
Ci = (=)™ A (i5)CE(i5))1sn, forany k=1,2,...i —1,i+1,...,n, (2.11)
and using (2.11), we have
0 d \" " d
—CT [ Ay ) = (=D)™Y  —A(ij)CL(ij : 2.12
ot () (( 3 A <zy>) (212)
1x

ki

n

From (2.1), (2.12), and the definition of the determinant and its variants, we
obtain

d2 T T
gz detld) = o <Z di 8A ) chﬁA +sztAk Cthl
= zn:0~d—2AT+Z L (—1)”]’20 (ij)iAT(ij)
AR AT R T
i=1 j=1 k#i
n d2
= Ay —A ... A
;W( 1, adt2 ) ) n)
+iiw A iA- iA A
17"'7dt Z7"'7dt ky«--ydn .

i=1 ki

(2.13)

This completes the proof of (2.5), and the proof of (2.6) can be constructed

analogously. O

In the following, we present a Generalzed Mean-Value Theorem for differential
calculus and the Taylor Polynomial Theorem of degree 2 for a determinant func-
tion. These results play a very important role in the study of stochastic differential

equations of It6-Doob type [12].

Theorem 2.7 (Generalized Mean-Value Theorem). Let A and X be n X n ma-
trices. Let det(A) = W(A) = W (A, ..., A ..., A,) and det(X) = W(X) =
W (Xy,..., X, ..., X,) be the determinant of A and X, respectively. Let L be an
n X n matriz function defined on the interval [0,1] by L(t) = A+ t(X — A) fort in
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[0,1]. Then,
det(X) — det(4) = 3" (X, — A) CT(A) + / (X — 4) [CT (L) — €T (4)] at,

i=1

(2.14)
where C;(L(t)) and C;(A) are the i-th rows of cofactor matrices C(L(t)) and C(A) of

corresponding matrices L(t) and A, respectively.

Proof. From Observation 2.2, we note that a determinant of an n X n matrix is
the n-th degree homogeneous polynomial function of n? entries of the matrix as
the independent variables. We know that every polynomial function in several in-
dependent variables is continuously differentiable. Hence, the determinant of any
n X n matrix is continuously differentiable with respects to its independent variables.
L(t) = A+t(X —A) (aline segment joining A and X) for ¢ in [0, 1] is also continuously
differentiable on [0, 1]. We define a function h defined on [0, 1] into R as follows:

h(t) = det(L(t)) = W(L(t)) = W (L()1, ..., Li(t), ..., L(t)).

h is a composite function of continuously differentiable functions, namely, “det” and

L. Now, Lemma 2.5 is applicable to det(L(t)), and hence we have

W(t) = 4 det(L(t)) = Z %Liof

dt
=3 (% A)CEL), by GL= (X~ A))

Now, we integrate the above expression both sides from t = 0 to ¢t = 1. This is

possible because the expression is a continuous function on the interval [0, 1]. Hence,

/1 B (#)dt = /1 [zn: (X, — A) q.T(L(t))] it

i=1

h(1) — h(0) = / [Z (X, — A) of@@))] dt

=Y - [ e
Along with the definition of the function h, one gets:
h(1) = det(L(1)) = det(X) (by L(1) = A+ 1(X — A) = X),
h(0) = det(L(0)) = det(A) (by L(0) = A4+ 0(X — A) = A).

Hence

n

h(1) — h(0) = det(X) — det(A) = Y (X; — 4)) / 1 CT(L(t)) dt. (2.15)

i=1
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By adding and subtracting (X; — A;) CT(A) to (2.15), the right-hand side of (2.14)
follows immediately. This completes the proof. O

Theorem 2.8 (Taylor’s Formula). Let us assume that all the hypotheses of Theo-
rem 2.7 are satisfied. Let N be an n x n matriz function defined on [0, 1] x [0, 1] by
N(t,s) = A+ st(X — A) for (t,s) in [0,1] x [0,1]. Then,

det(X) = det(A) + Xn: (X; — A) CE(A)

i=1

'ZZ (X; — A ai CT(A) (X, — Ap)"

.zlk;éz

+ZZX A;) / [/Olt[oik(X—A)}ds(Xk—Ak)T dt,  (2.16)

i=1 k#i
where
0

T d T _ Ntk
a—AkC( (t,s ))_a—AkC (4) = 0%(X = A),

0% (X — A) is independent of the i-th and k-th row of the matriz (X — A), and it is
bounded by the magnitude of (X — A).

Proof. From (2.14), we have

det(X) = det(A) + zn: (X; — A;) CE(A)

P [ eHLe) - cr)e 2an

Moreover, under the hypotheses of the theorem and by following the argument used
in Theorem 2.7, CI(L(t)) — CI(A) in (2.17) can be represented by

CT(L(t)) Z/ [a—Ach s))ds]t(Xk—Ak), (2.18)

ki

where N is an n xn matrix function defined on [0, 1] x [0, 1] by N(¢,s) = A+st(X —A)
for (¢, s) in [0,1] x [0,1]. We substitute the expression in (2.18) into (2.17) and we
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have

det(X) = det(A) + i (X; — Ay) CF(A)

=1

P [

k=1

dt

Z/ [8—Ak Ci(N 3))ds] F(Xp — AT

= det(A) + i (X — 4,) C(A)

+ZZX A) / [AI[%CT( 0 s))ds]t(Xk—Ak)T}dt.

i=1 k#i

(2.19)

Again by adding and subtracting

.ZZ (X; — A) &4 CT(A) (X, — Ap)”

.zlk;éz

in the right hand side of (2.19) and noting the fact
0
QIZZ (X; — A) aA CT(A) (X — Ap)"

=i
-3 (X A) / Uol {aiAkC’T(A)]t(Xk—Ak)T]dsdt,

1=1 k#i

we finally get:

det(X) = det(4) + Y (X; — A;) CT(A) + % DN (X - A ai CT(A) (X, — Ap)T
i=1 Ci=1 ki

+ZZX A;) / {/1[Oik(X—A)}t(Xk—Ak)T}dsdt,

1=1 k#i 0

where

d T 9 T _ Nk
o CT (N (t,8)) = 52 CF (4) = 0°(X — 4).

O

3. APPLICATIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

In this section, we present a few fundamental results that play a very important
role in the study of both the computational and conceptual aspects of solutions of
linear systems of stochastic differential equations. Let us consider the following system

of linear homogeneous system of stochastic differential equations of It6-Doob type:

dr = A(t)z dt + B(t)x dw(t). (3.1)
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Its corresponding nonhomogeneous case and initial value problems are
dy = [A(t)y + p(t)] dt + [B(t)y + q(t)] dw(t) (32)

and
de = A(t)xdt + B(t)z dw(t), x(ty) = xo, (3.3)

respectively.

Here dx stands for the stochastic differential the of It6-Doob type. A and B are
nxn continuous matrix functions defined on an interval J = [a, b](J C R); p and ¢ are
n-dimensional continuous vector functions defined on an interval J = [a,b](J C R).
w is a scalar normalized Wiener process. Initial data/conditions (o, z¢) € J X R™;
xg is an R"-valued random vector defined on a complete probability space (Q2,F, P)
independent of w(t) for all ¢ in J and E [||:L’0H2] < 00. Moreover, we remark that

under these conditions, the initial value problem has a unique solutions [6,13].

Now we present a stochastic version of Abel-Jacobi-Liouville [4,8,9,11,17]. This
result provides an alternative analytic test for the complete set of solutions of both
the time-invariant and time-varying linear homogeneous systems of the It6-Doob type
stochastic differential equations. This test is easy to verify and computationally

attractive.

Theorem 3.1 (Stochastic Version of Abel-Jacobi-Liouville [8,9,17]). Let
x1(t), za(t), ..., xk(t), ..., x,(t) be any n solutions process of (3.1) on J. Let

O, w(t)) = B(t) = [a1(t), 22(t), ..., 2x(t), ..., Tn(t)]
= [D1(t), ..., Di(t),..., Pu(t)]"

be the n x n matriz function defined on J, where ®;(t) = [xi1, Tio, - -, Tiky -+ -, Timn] 1S

the i-th row of matriz process ®(t). Let

L(B() = 5 303 (ualt)bue(t) — buche).

i=1 ki

tr(A(t)) = Z a(t),

and

Then,

ddet(®(t)) = [tr(A(t)) + L(B(t))] det(®(t)) dt + tr(B(t)) det(®(t)) dw(t),  (3.4)
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and
exp {— / [tr(A<s>>+L(B(s))—%@r(f;(s))f ds
S (3.5)
—/ tr(B(s)) dw(s)] det(®(t)) = C (constant).

to
Moreover, det(®(t)) # 0 (a general fundamental matriz solution process of

(3.1)) if and only if C # 0.

Proof. Due to the nature of (3.1) and definition of ®(¢), it is obvious that ®(t) satisfies
(3.1), that is

j=1 j=1

= A(t)®(t) dt + BO(t) dw(t). (3.6)
Applying Theorem 2.8 to det(P(t)), we have
d det (P Z dd,( + 5 Z Z dd,( aT% CT(®(t)) (ddy ()"

i=1 k#i

= Z W (D1 (t),...,dD(t),..., Pn(t)) (by Observation 2.2)

'ZZW (P1(2), ..., dPi(t), ..., dPk(D),. .., Pu(t)). (3.7)

'zlk;éz

Now, we compute the expressions for the terms in the right-hand side of (3.7). For
each 7, 1 < i < n, we first rewrite W (®1(t),...,dD;(t),..., P,(1)):

xll e l’lk .« .. xln
W((I)l(t)7"'7dq)i(t>7’”7q)n(t)) =l|dzy -+ dvy - drgy
xnl o .. xnk o .. xnn
xll ... xlk PRI xln
B Zl[aij (O)xju(t)dt - _Zl[@ij(t)%‘k(t)dt
- J= J=
+bi (t)xjdw (t)] +bi () zjpdw(t)]
l’nl .« e xnk; . e l’nn
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Now, by applying the property of Theorem 2.3: Fy of the determinant, we have
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WA(@y(t),...,dDy(t), ..., Pu(t))
T11 L1k Tin
= |a;(t)x;1 (t)dt + by (t)xadw(t) a;i(t) i (t)dt + b (1) zidw(t)
Tnl Tnk LTnn
This, together with Theorem 2.3, P, and Ps, one gets
W (Dy(t),...,dD;(t),..., P,(t)) = ayu(t) det(P(t))dt + by (t) det(D(t)) dw(t),
for each i, 1 <1i < n. Hence the expression for the first term in (3.7) is
Z W (®q(t),...,dD;(t),...,P,(t) = Z [a;; (t) dt + b;;(t) dw(t)] det(P(t))
i=1 i=1
= tr(A(t)) det(P(t)) dt + tr(B(t)) det(P(t)) dw(t).
(3.8)
Now, foreachi, k, k #i,i,k =1,2,...,n, werewrite W (®q(t),...,d®;(t),...,ddo.(t),...
D, (1)):
T11 T1e L1k Lin
dzy dxse dxy, dzp,
W (Py(t),...,dP;(t),...,dPo.(t),...,0,(t) =
dxrl d.f(,’?«g dxrk dxrn
Tnl Tne Tnk Tnn
11 L1 Tk Tin
pCHCECE PCROEACT
+b;;(t )l’]gd’w(tﬂ +bi;(t ):E]kdw(t)}
Zl[arj(t)l“jé(t)dt Z [ (t)a.(t)dt
j= j=1
+brj(t)xjgdw(t)} +b,;(t )xjkdw(t)}
Tnl Tni Tnk Tnn

First, by the repeated application of the property in Theorem 2.3: Py of the

determinant and by then repeatedly applying the property in Theorem 2.3: Ps5, we

have
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W (D, (1), ...

x11

T11

Tnl Y

T11

Tn1

T11

Ld;(1), .. .,

a;(t ).CL’Z@( )dt

Ay () e (t)dt

+b(t) xredw(t)
Tne

L1

a;(t ).CL’Z@( )dt

ari ()i (t)dt
+bm'( )l’igdw( )

Y

Qi () e (t)dt
+by-(t) Tredw ()

Ay (t) g (t)dt
+b- () T rpdw(t)

Tne

L1

i ()20 (t)dt

+b;-(t) T edw(t)

a;(t ):Ew( )dt

Tne

Tnk

L1k

ay;(t )xlk( )dt

Ay () (2t
+b-(t) T dw(t)

Tnk

Tk

a;(t )xlk( )dt

ayi () (t)dt

+b-(t) i dw(t)

Tk

i () (t)dt
+b;-(t) e dw(t)

oy (t) o (t)dt
+by- (t) T dw(t)

Tnk

Tk

i ()T, () dt
+b- (t) T dw(t)

i () (t)dt
+b, (V) i dw ()

Tnk

-.’Z’nn
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T1in

T1in

xTL?’L

Tin

Tin
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Z11

T11

T11

T11

T1e
bii(t)ziedw(t)
bty

Tne

T1e
bii(t).x'zz.dw(t)

byi () zi0dw(t)

L1e
bir(t)‘x;/;dw(t)
b))

o

L1e
bir (t);l?;gdﬂ)(t)
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L1k
bii(t)xipdw(t)
b2t

Lnk

L1k
bii (t)-x;k.dw(t)
bty

Lk

L1k
bir(t)%;;;dw(t)

by (t) T dw ()

L1k
b (t)xpdw(t)

Lin

T1in

Tin

Tin
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By applying Theorem 2.3: P, and using the fact that the F [(dw(t))?] = dt, the

above repression reduces to:
W (Pi(t),...,dP;(t),...,dPo.(t),...,0,(1) =
Tip o T -0 Tk o--- Tin
Tig -+ Tik
bii ()b, (t)dt

Lpg Trk

xnl o .. xnz o .. xnk o .. :'UTL']’L

:'Ull oo xlf .-.x‘lk . xln

o« .. o« .. x’ié “ .. x’ik o« .. “ ..
Flooe e ] b ()b (Dt

Tig T Tik

xnl oo xnz . xnk oo xnn (3.9>
':(:11 oo xle oo xlk . xln

LTrg -+ Trk

e b e

xnl oo xng oo xnk o . xnn

xll DR xlé .. "Ijlkf .. :L’ln

Lpg Trk

e e e e e e ] b (B) b (t)

l’nl o e l’né . e xnk . e xnn
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By observing the fact that the second and third terms in (3.9) are the determi-
nants with the i-th and r-th rows being identical, and by applying the property of
the determinant (Theorem 2.3 Ps), (3.9) reduces to:

W(D1(1),...,d0i(t),...,dD, (1), ..., () =

xll P T P xlk P xln
Ty - Tik
bii ()b, (t)dt
LTrg - Trk
x’ﬂl o .. ':C’I’LZ . e xnk DY x’I’LTL (3.10)
T11 X1y T1ik xln
x‘rg “ .. :'UTk “ .. ...
Fleee e ] b (Db (b)dE
Tiyg - Tik
xnl o« .. xne o« .. l’nk o« .. l’nn

This, along with the property of the determinant (Theorem 2.3: P,) and the
notation of the determinant of ®(t), yields

W (D1 (t), ..., dDBi(1),...,d0.(1),..., 5. (t))

= b;; (1) by (1) det(P(t)) dt — by (1)byi(t) det(P(t)) dt
= (bii(t)byr (1) — bir (£)byi(t)) det(D(2)) dt (3.11)
for each iur, r # i, i,7 = 1,2,...,n and hence the expression for the second term in

(3.7) is

21 ZZW (D (2 AP (t), ..., dDy(t), ..., Pu(t))

i=1 k#i

= S ST Bl () — (1)) det((1))

i=1 ki
= L(B) det(d(t)) dt. (3.12)

We substitute the expressions for the first and second terms in (3.8) and (3.12)
into (3.7) and obtain equation (3.4)

ddet(®(t)) = [tr(A(t)) + L(B(t))] det(®(t)) dt + tr(B(t)) det(®(t)) duw(?).
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This establishes the linear first order scalar homogeneous It6-Doob type stochastic
differential equation (3.4). One can obtain an expression for a general solution of
(3.4) by:

det((1) = exp | / (1x(4() + LB(9) - (B ) s+ / () du(s)| ©

where C' is an arbitrary constant. The above equation is equivalent to the expression
n (3.5). For t = to, if det (P (o)) is known, then det (P (¢y)) = C. Thus C is
determined by the initial data (to,det (®g)). Thus, the particular solution of (3.4)

can be determined for any given value of ® at t = . O

Remark 3.2. For some t* € J, det (® (¢*)) = 0 if and only if det(®(¢)) = 0. This is
equivalent to the statement that the set of solutions of (3.1) in Theorem 3.1 do not

form a complete set of independent solutions of (3.1).

In the following, we present a very significant byproduct of Theorem 3.1.

Theorem 3.3. Let ® be a fundamental matriz solution process of (3.1). Then, ®
is invertible, and its inverse ®~! satisfies the following matriz stochastic differential

equations of It6-Doob type:
do(t) = @7 (t) [-A(t) + B*(t)] dt — @71 (¢) B(t) dw(t). (3.13)

Moreover,
d(@ )" = [—AT(t) + (BT(t))ﬂ (@) " dt — BY(t) (071 (1)) " dw(t).  (3.14)

Proof. From Theorem 3.1, we conclude that det(®(¢)) # 0. This implies that the
fundamental matrix solution process of (3.1) ® is invertible. Its inverse is denoted by
R

In order to establish (3.13), we compute the It6-Doob differential of both sides

of the processes in ®®~! = I, and we obtain
d(®P7") =doP~' + Pdd ™ + dPdP~! = dI =0,
and hence
AP~ + &P~ + dPdP~! = 0
Along with (3.6), this yields

dd1(t) = =01 (t)dD(t) P~ ( ) — &L )dD(t)dD (t)
= (t)A(t) dt — &L () B(t) dw(t)
L) [A)D() dt + B(t)®(t) dw(t)] dd(¢). (3.15)
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By using the unknown but explicit nature of d®~1(¢) in (3.15) and the nature of the
It6-Doob differential calculus, (3.15) can be simplified:

dd1(t) = = () A(t) dt — & (t)B(t) dw(t)
— 7N (t) [A()®(t) dt + B(t)®(t) dw(t)] [- () B(t) dw(t)]
= —d 7 () A(t)dt — 7V (t)B(t) dw(t) + ®~(t) B%dt
=" [—A(t) + B*(t)] dt — @' (t) B(t) dw(2).
This concludes the derivation of equation (3.13). The proof of the expression in (3.14)

follows from the properties of transposition and inverse of matrices. O

Observation 3.4. We note that (®~!)" (¢) is the fundamental matrix solution of an

Ito-Doob type linear system of stochastic differential equations:
dy = [—AT(t) + (BT())"| ydt = B (Wydw(t), y(to) =x0.  (3.16)

This statement is proved later in this section. The system in (3.16) is called the

adjoint to the system in (3.1). System (3.16) is equivalent to the following system:
dy =y [—A(t) + B2(t)} dt —yB(t) dw(t), y(to) = :Eg. (3.17)

We note that y in (3.17) is a row vector, and y in (3.16) is a column vector. In light of
this notational understand, ®~'(¢) is a fundamental matrix solution of (3.17). This
can be justified by (3.13).

As a byproduct of Theorems 3.1 and 3.3, we now present a few algebraic properties
of the normalized fundamental solution process of (3.1). These algebraic properties
are stochastic versions of the deterministic results [4,7,8,11]. Moreover, a method of

solving linear nonhomogeneous stochastic differential equation (3.2) is outlined.

Lemma 3.5. Let @ (t,w(t),to) = P (t,t0) and ¥ (t,w(t),ty) = VY (t,t9) be normalized
fundamental matriz solution processes of (3.1) and (3.17) at t = ty, respectively. Let
®y (t,t1) be a normalized fundamental matriz solution of (3.1) att = t,. Then for

all ty, t1, s, and t in I:

(a) v (t, to) P (t, to) = Ian = (t(], t) P (t, to) s fOT’ to < t7 (318)
where I, in an n X n identity matrixz, and

U (t,to) = D7 (t,10) = @ (to, 1), forto <t (3.19)
) Di(tt1) =P (tto) Py (to,t1), forto <t (3.20)
(c) P(t,tg) = D(t,s)P(s,t), forty<t; (3.21)
(d)  @(t,s) =P (t,t0) U (s,t0) = (L, t0) P (to,s), forto <t (3.22)
) 0sD(t,s) = ®(t,s) [~A(s) + B*(s)] ds — ®(t, s)B(s) dw(s), (3.23)



DETERMINANT FUNCTIONS 429

where 0s®(t, s) is the It6-Doob stochastic partial differential of ®(t, s) with respect to
s for fixed t.

Proof. To prove (a), we use the It6-Doob stochastic differential and we compute

d (W (t,to) D (t,t0)) =do (t,t0) (¢, t0) + U (¢, t0) dP (t,t0) + AWV (t,t0) dP (¢, 10)
= (W (t,t0) [-A(t) + B*(t)] dt — W (t,t0) B(t) dw(t)] @ (¢, to)
+ U (t, 1) [A(t)D (t,to) dt + B(t)P (t, to) dw(t)]
+ (=V (¢, to) B(t)dw(t)) (B(t)®(t)dw(t) = 0.
This establishes the fact that W (¢,t) ® (¢,t9) = C, where C is an arbitrary constant
random matrix. This concludes the fact that if the Ito-Doob differential of a stochastic
process is zero on an interval J for t > ¢,. Hence, the matrix process W (¢, t9) @ (t,to) is

a constant random matrix on J. Moreover, since VU (¢, %) and ® (¢, ty) are normalized

solution processes (3.1) and (3.17) at ¢t = ¢y, respectively, then,
\I] (t, to) (I) (t, to) - C - \Il (to, to) (I) (to, to) == Ian. (324)

This shows that W (¢,ty) is the algebraic inverse of ® (¢, ty), and it is denoted by
® (to,t). This statement is equivalent to the other notations in (3.18). In view of

these notations and (3.24), we have
\J (t, t()) P (t, to) = [nxn = (to, t) P (t, to) s for to S t.

This completes the proof of (3.19).
To prove (b), we consider Y(t) = &1 (¢,t9) ®; (¢,¢;) and compute from it the
[t6-Doob differential of Y(¢). In fact, by using (3.6) and (3.13), we have
dY(t) = d® ' (t,t) ®y (t 1)+ @7 (t 1) dPy (¢, ) + dD (¢, t0) dDy (t,11)
= [D7'(t) [-A®R) + B*(t)] dt — @ (t) B(t)dw(t)] @1 (¢, t1)
+ @71 (8, 1) [ (t)Py (t,t1) dt + B(t)Py (¢, t1) dw(t)]
OTH(t) B (1) P (1, 1) dt
= 0.
This implies that Y(t) = C = &1 (¢,ty) ®1 (¢,¢1), where C' is a nonsingular matrix.
Moreover, C' = @& (tg, to) ®; (tg, t1) = Py (to,t1). From this discussion, we conclude

that (I)l (to, tl) = (I)_l (t, to) (I)l (t, tl), which leads to, (I)l (t, t1> = (t, to) (I)l (to, tl)
This completes the proof of (3.20).

To prove (c), we note that ® (¢,ty) and ®(t, s) are fundamental solutions of (3.1).
The proof of (3.21) follows from the proof of (3.20). Furthermore, the proof of (3.22)
is a direct consequence of (3.19) and (3.21).
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For the proof of (e), we apply the It6-Doob differential to both sides of the

expression in (3.22) with respect to s for fixed (¢,ty), and we obtain
Os®(t,s) = @ (t,t0) [V (s, t0) [—A(s) + B*(s)] ds — ¥ (s, t0) B(s)dw(s)]
= [=D (t,t0) U (s,t0) A(s) + @ (¢, t0) U (s, to) B>(s)] ds
— D (t,tg) ¥ (s,t0) B(s) dw(s)

= [—®(t,s)A(s) + ©(t, s)B*(s)] ds — ®(t, s)B(s) dw(s)

= ®(t, s) [~A(s) + B*(s)] ds — (¢, s) B(s) dw(s).
This completes the proof of the lemma. O
Theorem 3.6 (Stochastic Version of Lagrange Formula [4,8,11,17]). Let ® be the

fundamental matriz solution process of (3.1). Then the solutions of (3.2) are given

by:
t

y(t) = &(t) {CJr/ ®~(s) [p(s) — B(s)a(s)] d8+/ ®~(s)q(s) dw(s)| . (3.25)

to to

Proof. Let
y(t) = e(t)=(1) (3.26)
be a solution of (3.2), where z is an unknown process that depends on both (¢, w(t)).
The goal is to find an unknown process. We apply the [t6-Doob stochastic differential
to y(t)®~1(t) and obtain
dz(t) = do ' (t)y(t) = dd )y (t) + © () dy(t) + dD~'(t) dy(t). (3.27)
From (3.2), (3.13) and (3.27), we get
dz(t) = @‘1(t) dy(t) + d® (t)y(t) + dO () dy(t)
O [IA( )y + p(t)] dt + [B(t)y + q(t)] dw(t)]
[q> Yt) [—A) + B2(t)] dt — @7 (1) B(t)dw(t)] y(t)
+ [ 1t)B ()} [B(t)y +q(t )] w(t)
= [ (AR + 2 (t)p(t)] dt + [T (1) B(t)y + D7 (t)q(t)] dw(?)

+ [T (1) A(t)y () ©~H() B (t)y(1)] dt — (1) B(t)y(t) dw(t)
[ ©~H(t) B (t)y — @7 (1) B(t)q(t)] dt
(O [p(t) — B(g(®)] dt + @7 (t)q(t) dw(t). (3.28)

From (3.28) and (3.26), we have
y(t) = @(t)=(1)

— a(1) [c+ [ @ 0b6) - Beads+ [ 7 Gats)dus

to to
where ¢ = z (o) is an arbitrary constant random variable, since z is an unknown pro-

cess. The method of finding a solution process is called the Method of Variation of
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Parameters. The solution representation of (3.2) in (3.25) is called the Stochastic

Version of Lagrange-type Variation of Constants Formula [15,16]. O

In the following, we present a relationship between the solution processes of linear

non-homogeneous systems differential equations (3.2) and
dz = [z (=A(t) + B*(t)) — r(t)] dt — [2B(t) + s(t)] dw(t), =z (o), (3.29)

where A, B, p, ¢ and w are as defined in (3.2), and r and s are continuous column vec-
tor functions. This is a non-homogeneous stochastic system of differential equations

corresponding to an adjoint system of differential equations (3.17).

Lemma 3.7 (Stochastic Version of Green’s Formula [4,8]). Let y(t) and z(t) be
solution processes of (3.2) and (3.29). Then, fort,ty € J,

)(t) — = (1) y 10
— [ bl = B -~ () + 5B ) — s ds g
+ [ B - syl au)
forallt >ty andt € I, ty € J.

Proof. We compute the Ito6-Doob differential of z(¢)y(t) as:

d(z()y(t)) = dz(t)y(t) + =(t)dy(t) + dzdy
= [2(t) (=A() + BX(1)) — r(O)] y(t) dt — [2() B(t) + s(t)] y(t) dw(t)

- s ( )] dw(t)

= [—2(t) (A(t)y(t) + () B*(1)) y(t) — r()y(t)] dt
+ 20 A@)y () + 2(O)pO)] di + [2(1) B{)y(t) + 2(1)g(1)] dw(?)
— [z B@)y(t) + s(t)y(t)] dw(t

(3.31)
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This implies that
2(t)y(t) — z (o) y (to)

= /t [2(u) [p(u) = Bu)q(w)] = [r(u) + s(u)Bu)ly(u) — s(u)g(u)]du g 59

0

n / [2(u)g(u) — s(w)y ()] du(u).

0
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