ON THE ASYMPTOTICS OF THE DIFFERENCE EQUATION $x_n = \frac{x_{n-3} - (x_n + x_{n-1})^3}{1 + x_n x_{n-1} + x_n x_{n-2} + x_{n-1} x_{n-2}}$

VU VAN KHUONG¹ AND TRAN HONG THAI²

¹Department of Mathematics, Hung Yen University of Technology and Education Hung Yen Province, Vietnam *E-mail:* vuvankhuong@gmail.com

 $^2 \rm Department$ of Mathematics, Hung Yen University of Technology and Education Hung Yen Province, Vietnam $$E\text{-mail:}$ hongthai78@gmail.com}$

ABSTRACT. The aim of this paper is to show the existence of a solution of the difference equation in the title converging to zero as $n \to \infty$, and to determine its asymptotic behaviour.

AMS (MOS) Subject Classification. 99Z00.

1. INTRODUCTION

In recent investigations of dynamical systems rational difference equations of higher order are of main importance, c.f. Kulenovíc and G. Ladas [4] and the references therein. A special example is the equation:

$$x_n = \frac{x_{n-3}}{1 + x_{n-1}x_{n-2}} \tag{1}$$

 $n \in \mathbb{N}$, about which in Ref. [5] it was shown that every solution converges as $n \to \infty$ to a 3-periodic solution $(\ldots, p, q, r, p, q, r, \ldots)$ with pqr = 0. In Ref. [3] L. Berg investigated the difference equation (1). This paper showed that there is a existence of a solution of equation (1) converging to zero as $n \to \infty$ and the author determined its asymptotic behaviour.

2. ASYMTOTIC OF THE DIFFERENCE EQUATION

By the similar method of Ref. [3] we shall consider the difference equation:

$$x_n = \frac{x_{n-3} - (x_n + x_{n-1})^3}{1 + x_n x_{n-1} + x_n x_{n-2} + x_{n-1} x_{n-2}}, \quad n = 0, 1, 2, 3...$$
(2)

In order to find the asymptotic behaviour of a solution of equation (2) tending to zero as $n \to \infty$ we proceed as recommended in Ref. [2], i.e. we assume first that

such a solution exists for a continuous argument n = t, and that it is continuously differentiable.

Writing $x_n = x(t)$, approximating $x_{n-1} = x(t-1)$, $x_{n-2} = x(t-2)$, $x_{n-3} = x(t-3)$, according to Taylor we have up to smaller terms:

$$x(t-1) = x - x', \ x(t-2) = x - 2x', \ x(t-3) = x - 3x'$$

or more exactly

$$x(t-3) = x - 3x' + \frac{9}{2}x''$$

we approximate equation (2) by the differential equation:

$$x + x^{2}(x - x') + x(x - x')(x - 2x') + x^{2}(x - 2x') + x^{3} + (x - x')^{3} + 3x^{2}(x - x') + 3x(x - x')^{2} = x - 3x' + \frac{9}{2}x''$$

After neglecting $8xx'^2 - x'^3$ from this equation, it turns into the equation

$$11x^3 - 18x^2x' = -3x' + \frac{9}{2}x'' \tag{3}$$

from which we first find approximating $x' = -\frac{11}{3}x^3$, and from this $x'' = -11x^2x'$ as well as $x = \sqrt{\frac{3}{22t}}$. From (3) we obtain $11x^3 - 18x^2x' = -3x' - \frac{99}{2}x^2x'$ which can be integrated by

$$x = \sqrt{\frac{3}{22t + 63\ln x}}$$

disregarding the constant of integration. Obviously, a solution x tending to zero satisfies $x \sim \sqrt{\frac{3}{22t}}$ as before, so that by iteration we have

$$x = \sqrt{\frac{3}{22t}} \left(1 + \frac{63\ln t}{88t} \right) \tag{4}$$

up to smaller terms as $n \to \infty$. This result encourages us to expect a solution of equation (2) of the form

$$x = \frac{1}{\sqrt{n}} \left(a + \frac{b \ln n}{n} + \frac{c \ln^2 n + d \ln n + e}{n^2} \right) \tag{5}$$

up to smaller terms as $n \to \infty$. Replacing this as an ansatz into equation (2), we find by means of the DERIVE system in accordance with equation (4)

$$a = \frac{\sqrt{66}}{22}, \ b = \frac{63\sqrt{66}}{1936}, \ c = \frac{11907\sqrt{66}}{340736}, \ d = -\frac{3969\sqrt{66}}{85184}, \ e = 0$$
 (6)

In the terminology of Ref. [1] equation (5) with the coefficients (6) represents an asymptotic solution of equation (2). However, we shall show that it represents in fact the asymptotic behaviour of a real solution of equation (2). For this reason we use the following Theorem 2 of Stevíc, which is a generalization of Theorem 1 in Ref. [2] to equation of order $k \ge 1$ see also S. Stevíc [7]:

Theorem 2.1. Let $f : \mathbb{R}^k_+ \to \mathbb{R}_+$ be a continuous and nondecreasing function in each argument, and let $\{y_n\}$ and $\{z_n\}$ be sequences with $y_n < z_n$ for $n \ge n_0$ and such that

$$y_{n-k} \le f(y_n, y_{n-1}, \dots, y_{n-k+1}), \ f(z_n, z_{n-1}, \dots, z_{n-k+1}) \le z_{n-k}, \ for \ n \ge n_0 + k - 1.$$
(7)

Then the difference equation

$$x_{n-k} = f(x_n, x_{n-1}, \dots, x_{n-k+1})$$
(8)

has a solution x_n such that

$$y_n \le x_n \le z_n \text{ for } n \ge n_0 \tag{9}$$

Based on Theorem 1.1 we prove Theorem 1.2.

Theorem 2.2. Equation (2) possesses a solution with the finite asymptotic expansion (5) as $n \to \infty$ and the coefficients (6).

Proof. By means of abbreviation

$$F(x_n, x_{n-1}, x_{n-2}, x_{n-3}) = f(x_n, x_{n-1}, x_{n-2}) - x_{n-3}$$

with $f(x_n, x_{n-1}, x_{n-2}) = x_n(1+x_nx_{n-1}+x_{n-1}x_{n-2}+x_nx_{n-2})+(x_n+x_{n-1})^3$. Difference equation (8) turns into

$$F(x_n, x_{n-1}, x_{n-2}, x_{n-3}) = 0 (10)$$

and the inequalities (7) turn into

$$F(z_n, z_{n-1}, z_{n-2}, z_{n-3}) \le 0 \le F(y_n, y_{n-1}, y_{n-2}, y_{n-3})$$
(11)

These inequalities together with equation (10) can be interpreted as a certain intermediate value property of the function $F(x_n, x_{n-1}, x_{n-2}, x_{n-3})$. Then the premisses concerning the arguments of f are satisfied. Inserting the ansatz (5) into

$$F(x_n, x_{n-1}, x_{n-2}, x_{n-3}) = x_n(1 + x_n x_{n-1} + x_{n-1} x_{n-2} + x_n x_{n-2}) + (x_n + x_{n-1})^3 - x_{n-3}$$

we obtain again by means of the DERIVE system as $n \to \infty$

$$F \sim \frac{a}{2} \left(22a^2 - 3 \right) \frac{1}{\sqrt{n^3}}$$

and taking into account successively the coefficients (7)

$$F \sim 12 \left(b - \frac{63\sqrt{66}}{1936} \right) \frac{1}{\sqrt{n^5}}$$

$$F \sim -12 \left(c - \frac{11907\sqrt{66}}{340736} \right) \frac{\ln^2 n}{\sqrt{n^7}}$$

$$F \sim -12 \left(d + \frac{3969\sqrt{66}}{85184} \right) \frac{\ln n}{\sqrt{n^7}}$$
(12)

$$F \sim -12(e+0)\frac{1}{\sqrt{n^7}}$$

as well as

$$F \sim \frac{35721\sqrt{66}}{7496192} \frac{\ln^3 n}{\sqrt{n^9}}$$

Choosing

$$y_n = x_n - \frac{p}{n^{\frac{5}{2}}}, \ z_n = x_n + \frac{p}{n^{\frac{5}{2}}}$$

with some constant p > 0, we see from (12) with e - p respectively e + p instead of e that the inequalities (11) are satisfied for sufficiently large n. Hence, using the coefficients (6) and considering that p > 0 can be chosen arbitrarily. The proof is complete.

3. ACKNOWLEDGMENTS

The authors would like to thank the referee for his help and many suggestions for improvement of the manuscript.

REFERENCES

- [1] L. Berg, Asymptotische Darstellungen und Entwicklungen, Dt. Verlag Wiss, Berlin, 1968.
- [2] L. Berg, On the asymptotics of nonlinear difference equations, Zeitschrift for Analysis and Ihre Anwendungen 21 (2002), 1061–1074.
- [3] L. Berg, On the asymptotics of the difference equations $x_{n-3} = x_n(1 + x_{n-1}x_{n-2})$, J. Differ. Equations Appl. Vol.14, No. 1 January 2008, 105–108.
- [4] M. R. S. Kulenović and G. Ladas, Dynamics of second order rational difference equations, London, FL. Chapman and Hall/ CRC, 2002.
- [5] D. Simsek, C. Cinar, R. Karatas and I. Yalcinkaya, On the recursive sequence $x_{n+1} = \frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$, International Juornal of Pure and Applied Mathematics, **28** (2006), 117–124.
- [6] S. Stević, On positive solutions of a (k + 1)th order difference equations, Applied Mathematics Letter, 19 (2006), 427–431.
- [7] S. Stević, On monotone solutions of some classes of difference equations, *Discrete Dyn. Nat. Soc.*, Article ID 538909, 2006.

[8] S. Stević, On the difference equation $x_n = \frac{x_{n-k}}{1 + x_{n-1}x_{n-2}\dots x_{n-k+1}}$, 2007.

446