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ON THE ASYMPTOTICS OF THE DIFFERENCE EQUATION
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ABSTRACT. The aim of this paper is to show the existence of a solution of the difference equation

in the title converging to zero as n → ∞, and to determine its asymptotic behaviour.
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1. INTRODUCTION

In recent investigations of dynamical systems rational difference equations of

higher order are of main importance, c.f. Kulenov́ıc and G. Ladas [4] and the references

therein. A special example is the equation:

xn =
xn−3

1 + xn−1xn−2

(1)

n ∈ N, about which in Ref. [5] it was shown that every solution converges as n → ∞
to a 3-periodic solution (. . . , p, q, r, p, q, r, . . . ) with pqr = 0. In Ref. [3] L. Berg

investigated the difference equation (1). This paper showed that there is a existence

of a solution of equation (1) converging to zero as n → ∞ and the author determined

its asymptotic behaviour.

2. ASYMTOTIC OF THE DIFFERENCE EQUATION

By the similar method of Ref. [3] we shall consider the difference equation:

xn =
xn−3 − (xn + xn−1)

3

1 + xnxn−1 + xnxn−2 + xn−1xn−2

, n = 0, 1, 2, 3 . . . (2)

In order to find the asymptotic behaviour of a solution of equation (2) tending to

zero as n → ∞ we proceed as recomended in Ref. [2], i.e. we assume first that
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such a solution exists for a continuous argument n = t, and that it is continuously

differentiable.

Writing xn = x(t), approximating xn−1 = x(t − 1), xn−2 = x(t − 2), xn−3 =

x(t − 3), according to Taylor we have up to smaller terms:

x(t − 1) = x − x′, x(t − 2) = x − 2x′, x(t − 3) = x − 3x′

or more exactly

x(t − 3) = x − 3x′ +
9

2
x′′

we approximate equation (2) by the differential equation:

x + x2(x − x′) + x(x − x′)(x − 2x′) + x2(x − 2x′) + x3 + (x − x′)3 + 3x2(x − x′)

+ 3x(x − x′)2 = x − 3x′ +
9

2
x′′

After neglecting 8xx′2 − x′3 from this equation, it turns into the equation

11x3 − 18x2x′ = −3x′ +
9

2
x′′ (3)

from which we first find approximating x′ = −11

3
x3, and from this x” = −11x2x′ as

well as x =
√

3

22t
. From (3) we obtain 11x3 − 18x2x′ = −3x′ − 99

2
x2x′ which can be

integrated by

x =

√

3

22t + 63 lnx

disregarding the constant of integration. Obviously, a solution x tending to zero

satisfies x ∼
√

3

22t
as before, so that by iteration we have

x =

√

3

22t

(

1 +
63

88

ln t

t

)

(4)

up to smaller terms as n → ∞. This result encourages us to expect a solution of

equation (2) of the form

x =
1√
n

(

a +
b ln n

n
+

c ln2 n + d lnn + e

n2

)

(5)

up to smaller terms as n → ∞. Replacing this as an ansatz into equation (2), we find

by means of the DERIVE system in accordance with equation (4)

a =

√
66

22
, b =

63
√

66

1936
, c =

11907
√

66

340736
, d = −3969

√
66

85184
, e = 0 (6)

In the terminology of Ref. [1] equation (5) with the coefficients (6) represents an

asymptotic solution of equation (2). However, we shall show that it represents in fact

the asymptotic behaviour of a real solution of equation (2). For this reason we use

the following Theorem 2 of Stev́ıc, which is a generalization of Theorem 1 in Ref. [2]

to equation of order k ≥ 1 see also S. Stev́ıc [7]:
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Theorem 2.1. Let f : R
k

+ → R+ be a continuous and nondecreasing function in each

argument, and let {yn} and {zn} be sequences with yn < zn for n ≥ n0 and such that

yn−k ≤ f(yn, yn−1, . . . , yn−k+1), f(zn, zn−1, . . . , zn−k+1) ≤ zn−k, for n ≥ n0 + k − 1.

(7)

Then the difference equation

xn−k = f(xn, xn−1, . . . , xn−k+1) (8)

has a solution xn such that

yn ≤ xn ≤ zn for n ≥ n0 (9)

Based on Theorem 1.1 we prove Theorem 1.2.

Theorem 2.2. Equation (2) possesses a solution with the finite asymptotic expansion

(5) as n → ∞ and the coefficients (6).

Proof. By means of abbreviation

F (xn, xn−1, xn−2, xn−3) = f(xn, xn−1, xn−2) − xn−3

with f(xn, xn−1, xn−2) = xn(1+xnxn−1+xn−1xn−2+xnxn−2)+(xn+xn−1)
3. Difference

equation (8) turns into

F (xn, xn−1, xn−2, xn−3) = 0 (10)

and the inequalities (7) turn into

F (zn, zn−1, zn−2, zn−3) ≤ 0 ≤ F (yn, yn−1, yn−2, yn−3) (11)

These inequalities together with equation (10) can be interpreted as a certain inter-

mediate value property of the function F (xn, xn−1, xn−2, xn−3). Then the premisses

concerning the arguments of f are satisfied. Inserting the ansatz (5) into

F (xn, xn−1, xn−2, xn−3) = xn(1 + xnxn−1 + xn−1xn−2 + xnxn−2) + (xn + xn−1)
3 − xn−3

we obtain again by means of the DERIVE systerm as n → ∞

F ∼ a

2

(

22a2 − 3
) 1√

n3

and taking into account successively the coefficients (7)

F ∼ 12
(

b − 63
√

66

1936

) 1√
n5

F ∼ −12
(

c − 11907
√

66

340736

) ln2 n√
n7

(12)

F ∼ −12
(

d +
3969

√
66

85184

) ln n√
n7
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F ∼ −12(e + 0)
1√
n7

as well as

F ∼ 35721
√

66

7496192

ln3 n√
n9

Choosing

yn = xn − p

n
5

2

, zn = xn +
p

n
5

2

with some constant p > 0, we see from (12) with e − p respectively e + p instead

of e that the inequalities (11) are satisfied for sufficiently large n. Hence, using the

coefficients (6) and considering that p > 0 can be chosen arbitrarily. The proof is

complete.
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