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ABSTRACT. We establish conditions for the existence of at least two positive periodic solutions

of the following functional differential equation of the form

x′(t) = a(t)x(t) − f(t, x(h(t))).

Applications to some ecological models are given.
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1. INTRODUCTION

In this article, we investigate the existence of two positive periodic solutions of a

first order functional differential equation of the form

x′(t) = a(t)x(t) − f(t, x(h(t))), (1.1)

where a, h ∈ C(R,R+) and a(t + T ) = a(t), h(t+ T ) = h(t), T > 0 is a real number,

f : R× R+ → R+, f(t+ T, x) = f(t, x), R = (−∞,∞) and R+ = [0,∞).

Periodicity plays an important role in the problems associated with real world

applications in particular ecosystem dynamics. There has been considerable contri-

butions in recent years on the existence of periodic solutions of functional differential

equations having periodic causal functions. Many authors have used fixed point theo-

rems on cone expansion and cone compression method, upper-lower solution method,

iterative technique method and continuation theorem of coincidence degree principle

for the existence of at least one or two positive periodic solutions of (1.1). For instance

one may see [2, 8, 9, 18, 19, 27, 28, 31, 32, 33]. On the other hand Leggett-Williams

multiple fixed point theorem [11] has been used in [1, 20, 21, 22, 23] for the existence

of three positive or nonnegative periodic solutions of the equation of the form

x′(t) = −a(t)x(t) + f(t, x(h(t))), (1.2)
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where a, h and f are as defined earlier. If h(t) = t − τ(t) and τ ∈ C(R,R+) with

τ(t) ≤ t, then (1.1) and (1.2) take the form

x′(t) = a(t)x(t) − f(t, x(t− τ(t))) (1.3)

and

x′(t) = −a(t)x(t) + f(t, x(t− τ(t))). (1.4)

As the existence of positive periodic solutions of (1.1) is regarded, one can find

from the arguments in the succeeding sections that some similar results can be derived

for (1.2). We note that the results obtained in [1, 20, 21, 22, 30] can be applied

to (1.1). One may observe from the sufficient conditions assumed in the papers

[1, 20, 21, 22, 23], that the function f is needed to be unimodal, that is, the function

f first increases and then it decreases eventually. This is because of the choice of a

constant c4 needed in the use of a theorem of Leggett-Williams [11] for the existence of

three fixed points of an operator which is equivalent to the existence of three positive

periodic solutions of (1.1) or (1.2). The above choices of functions exclude many

important class of growth functions arising in various mathematical models, such as:

(a) The logistic equation of multiplicative type with several delays ([10])

x′(t) = x(t)[a(t) −

n∏
i=1

bi(t)x(t− τi(t))], (1.5)

where a, bi, τi ∈ C(R,R+) are T -periodic functions.

(b) The generalized Richards single species growth model ([10])

x′(t) = x(t)[a(t) − (
x(t− τ(t))

E(t)
)θ], (1.6)

where a, E, τ ∈ C(R,R+) are T -periodic functions and θ > 0 is a constant.

(c) The generalized Michaelis-Menton type single species growth model ([10, 24])

x′(t) = x(t)[a(t) −

n∑
i=1

bi(t)x(t− τi(t))

1 + ci(t)x(t− τi(t))
], (1.7)

where a, bi, ci and τi ∈ C(R,R+) are T -periodic functions.

In this article, we have made an attempt to study the existence of two positive T -

periodic solutions of the Eq.(1.1). Then we shall apply our result to find out sufficient

conditions for the existence of two positive T -periodic solutions of the models (1.5)–

(1.7). To prove our results, we shall use Leggett-Williams multiple fixed point theorem

([11], see Theorem 3.5). The following open problem was proposed by Kuang [10]

(open problem 9.2):

Obtain a sufficient condition for the existence of positive periodic solutions of the

following equation:
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x′(t) = x(t)[a(t) − b(t)x(t) − c(t)x(t− τ(t)) − d(t)x′(t− σ(t))]. (1.8)

Liu et al. [15] gave a partial answer to the above problem by using fixed point theorem

for strict set-contractions. They proved that (1.8) has at least one positive T -periodic

solution. Freedman and Wu [7] studied the existence and global attractivity of a

positive periodic solution of (1.8) when d(t) ≡ 0. In this paper, we have used Leggett-

Williams multiple fixed point theorem [11] to show that (1.8) has at least two positive

T -periodic solutions (see Example 4.1) when d(t) ≡ 0.

It is well known that the Leggett-Williams multiple fixed point theorem [11] has

been used by many authors for the existence of multiple periodic solutions of boundary

value problems. Once the problem is transformed to an equivalent integral operator,

then it is easy to study the existence of fixed points of the operator by using different

fixed point theorems which is equivalent to the existence of periodic solutions of the

problem. In this paper, we have used the same technique to find the existence of

periodic solutions of (1.1). The results of this paper can be extended to

x′(t) = a(t)x(t) − f(t, x(h1(t)), . . . , x(hn(t))), (1.9)

where hi(t) ≥ 0, i = 1, . . . , n, f ∈ C(R × Rn+
, R+) is periodic with respect to the

first variable, hi(t+ T ) = hi(t), 1 ≤ i ≤ n.

This work has been divided into four sections. Section 1 is Introduction. Some

preliminary results are given in Section 2. Section 3 deals with the main results of this

paper. Applications of the obtained results to the mathematical models (1.5)–(1.8)

are given in Section 4.

2. PRELIMINARIES

The following concept from Leggett-Williams multiple fixed point theorem [11]

is needed. Let X be a Banach space and K be a cone in X. For a > 0, define

Ka = {x ∈ K; ‖x‖ < a}. A mapping ψ is said to be a nonnegative continuous

functional on K if ψ : K → [0,∞) is continuous and

ψ(µx+ (1 − µ)y) ≥ µψ(x) + (1 − µ)ψ(y), x, y ∈ K,µ ∈ [0, 1].

Let b, c > 0 be constants with K and X as defined above. Define

K(ψ, b, c) = {x ∈ K;ψ(x) ≥ b, ‖x‖ ≤ c}.

Theorem 2.1 (Leggett-Williams multiple fixed point Theorem,(Theorem 3.5,[11])).

Let c3 > 0 be a constant. Assume that A : Kc3 → K is completely continuous, there

exists a concave nonnegative functional ψ with ψ(x) ≤ ‖x‖, x ∈ K and numbers c1

and c2 with 0 < c1 < c2 < c3 satisfying the following conditions:

(i) {x ∈ K(ψ, c2, c3);ψ(x) > c2} 6= φ and ψ(Ax) > c2 if x ∈ K(ψ, c2, c3);
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(ii) ‖Ax‖ < c1 if x ∈ Kc1;

and

(iii) ψ(Ax) > c2
c3
‖Ax‖ for each x ∈ Kc3 with ‖Ax‖ > c3.

Then A has at least two fixed points x1, x2 in Kc3. Furthermore, ‖x1‖ ≤ c1 < ‖x2‖ <

c3.

Theorem 2.2 (Leggett-Williams multiple fixed point theorem,(Theorem 3.3, [11])).

Let X = (X, ‖.‖) be a Banach space and K ⊂ X a cone, and c4 > 0 a constant.

Suppose there exists a concave nonnegative continuous function ψ on K with ψ(u) ≤ u

for u ∈ Kc4 and let A : Kc4 → Kc4 be a continuous compact map. Assume that there

are numbers c1, c2 and c3 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {u ∈ K(ψ, c2, c3);ψ(u) > c2} 6= φ and ψ(Au) > c2 for all u ∈ K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ Kc1;

(iii)ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.

Then A has at least three fixed points u1, u2 and u3 in Kc4. Furthermore, we have

u1 ∈ Kc1, u2 ∈ {u ∈ K(ψ, c2, c4);ψ(u) > c2}, u3 ∈ Kc4\{K(ψ, c2, c4) ∪Kc1}.

One may observe that (1.1) is equivalent to

x(t) =

∫ t+T

t

G(t, s)f(s, x(h(s))) ds,

where G(t, s) = e−
R s
t a(θ) dθ

1−e−
R T
0 a(θ) dθ

is the Green’s kernel. The Green’s kernel G(t, s) used

in this paper is well known in the literature. As is shown in many articles, its lower

bound, being positive, is used for defining a cone. It is easy to verify that G(t, s)

satisfies the property

0 < α =
δ

1 − δ
≤ G(t, s) ≤

1

1 − δ
= β, s ∈ [t, t+ T ],

where δ = e−
R T

0 a(θ) dθ < 1.

LetX = {x(t); x ∈ C(R,R), x(t) = x(t+T )} with the norm ‖x‖ = supt∈[0,T ] |x(t)|,

then X is a Banach space with the norm ‖.‖. Define a cone K in X by

K = {x(t); x ∈ X, x(t) ≥ δ‖x‖ ∀t ∈ [0, T ]}

and an operator A on X by

(Ax)(t) =

∫ t+T

t

G(t, s)f(s, x(h(s))) ds. (2.1)

It is easy to verify that A(K) ⊂ K. One may proceed as in the lines of Lemma 5

due to Han and Wang [8] that A : K → K is completely continuous. The existence

of a positive periodic solution of (1.1) is equivalent to the existence of a fixed point

problem of A in K.
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3. MAIN RESULTS

In this section, we shall prove the main results of the paper by using Theorem

2.1 and Theorem 2.2. Denote

f θ = lim sup
x→θ

f(t, x)

a(t)x
and F θ = lim sup

x→θ

f(t, x)

x
.

Theorem 3.1. Assume that there exist constants c1 and c2 with 0 < c1 < c2 such

that

(H1)
∫ T

0
f(s, x(h(s))) ds > c2

α
for c2 ≤ x ≤ c2

δ

and

(H2)
∫ T

0
f(s, x(h(s))) ds < c1

β
for 0 ≤ x ≤ c1

hold. Then (1.1) has at least two positive T -periodic solutions.

Proof. Define a nonnegative concave functional ψ on K by ψ(x) = mint∈[0,T ] x(t).

Then ψ(x) ≤ ‖x‖. Set c3 = c2
δ

and φ0(t) = φ0 = c2+c3
2

. Then φ0 ∈ {x; x ∈

K(ψ, c2, c3), ψ(x) > c2}. Further, for x ∈ K(ψ, c2, c3) we have, by using (H1)

ψ(Ax) = min
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≥ α

∫ T

0

f(s, x(h(s)))ds > c2.

Now, let x ∈ Kc1. Then, by using (H2)

‖Ax‖ = sup
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≤ β

∫ T

0

f(s, x(h(s)))ds < c1.

Next suppose that x ∈ Kc3 with ‖Ax‖ > c3. Then

ψ(Ax) = min
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≥ α

∫ T

0

f(s, x(h(s))) ds

and

c3 < ‖Ax‖ ≤ β

∫ T

0

f(s, x(h(s))) ds

=
α

δ

∫ T

0

f(s, x(h(s))) ds

≤
1

δ
ψ(Ax)

imply that

ψ(Ax) >
c2

c3
‖Ax‖.
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Hence, by Theorem 2.1, (1.1) has at least two positive T -periodic solutions. This

completes the proof of the theorem.

Theorem 3.2. Assume that there exist constants c1 and c2 with 0 < c1 < c2 such

that

(H3) f(t, x(h(t))) > c2
αT

for c2 ≤ x ≤ c2
δ

and

(H4) f(t, x(h(t))) < c1
βT

for 0 ≤ x ≤ c1

hold. Then (1.1) has at least two positive T -periodic solutions.

The proof of the theorem follows from Theorem 3.1. Indeed, (H1) and (H2) follow

from (H3) and (H4), respectively.

Theorem 3.3. Let

(H5) min0≤t≤T f
∞ = ∞

and

(H6) max0≤t≤T f
0 = 0

hold. Then (1.1) has at least two positive T -periodic solutions.

Proof. From (H5), it follows that there exists a real c2 > 0, c2 large enough such that

f(t, x) ≥ a(t)x for c2 ≤ x ≤ c2
δ
.

Set a nonnegative concave continuous functional ψ as in Theorem 3.1, c3 = c2
δ

and

φ0(t) = φ0 = c2+c3
2
. Then φ0 ∈ {x; x ∈ K(ψ, c2, c3), ψ(x) > c2}. For x ∈ K(ψ, c2, c3)

we have

ψ(Ax) = min
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≥ min
0≤t≤T

∫ t+T

t

a(s)G(t, s)x(s) ds

≥ c2 min
0≤t≤T

∫ t+T

t

a(s)G(t, s) ds = c2.

Next, by (H6), there exists a real ξ, 0 < ξ < c2 such that f(t, x) < a(t)x for 0 < x < ξ.

Set c1 = ξ. Then c1 < c2 and f(t, x) < a(t)c1 for 0 < x < c1. Using this fact, we can

easily prove that ‖Ax‖ < c1 for x ∈ Kc1.

To complete the proof of the theorem, it remains to show that the condition (iii)

of Theorem 2.1 holds. Now

c3 < ‖Ax‖ ≤ β

∫ T

0

f(s, x(h(s))) ds
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implies that

ψ(Ax) ≥ α

∫ T

0

f(s, x(h(s))) ds

≥ α.
1

β
‖Ax‖

≥ δ‖Ax‖ =
c2

c3
‖Ax‖.

Hence the theorem is complete.

Theorem 3.4. Suppose that there exists a constant µ, 0 < µ ≤ 1 such that

(H7) f 0 < µ

and

(H8) f∞ > 1
µ

hold. Then there exist two positive T -periodic solutions of (1.1).

Corollary 3.5. If f 0 < 1 and f∞ > 1, then (1.1) has at least two positive T -periodic

solutions.

Theorem 3.6. If

(H9) maxt∈[0,T ] F
0 = α1 ∈ (0, 1

βT
)

and there exists a constant c2 > 0 such that

(H10) f(t, x) > 1
αδT

x for c2 ≤ x ≤ c2
δ
,

then (1.1) has at least two positive T -periodic solutions.

Remark 3.7. The conditions of our Theorems 3.1–3.6 improve the results in [8, 15,

31, 33].

Theorem 3.8. Suppose that

(H11) f is nondecreasing with respect to x.

Further assume that there are constants 0 < c1 < c2 such that

(H12)
R T

0
f(t,c1) dt

(1−δ)c1
< 1 <

δ
R T

0
f(t,c2) dt

(1−δ)c2

holds. Then (1.1) has at least two positive T -periodic solutions.

Proof. Set c3 = c2
δ
. Define a nonnegative concave continuous functional ψ as in

Theorem 3.1 and φ0(t) = φ0 = c2+c3
2
. Then φ0 ∈ {x; x ∈ K(ψ, c2, c3), ψ(x) > c2}. For

x ∈ K(ψ, c2, c3), it follows from (H11) and (H12) that we have

ψ(Ax) = min
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≥ α

∫ T

0

f(s, x(h(s)))ds

≥ α

∫ T

0

f(s, c2)ds

> c2.
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Next, for x ∈ Kc1, it follows from (H11) and (H12) that we have

‖Ax‖ = sup
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≤ β

∫ T

0

f(s, ‖x‖)ds

≤ β

∫ T

0

f(s, c1)ds

< c1.

Finally, for x ∈ Kc3 with ‖Ax‖ > c3, we have

ψ(Ax) = min
0≤t≤T

∫ t+T

t

G(t, s)f(s, x(h(s))) ds

≥ α

∫ T

0

f(s, x(h(s))) ds

and

c3 < ‖Ax‖ ≤ β

∫ T

0

f(s, x(h(s))) ds

=
α

δ

∫ T

0

f(s, x(h(s))) ds

≤
1

δ
ψ(Ax),

then

ψ(Ax) >
c2

c3
‖Ax‖.

Thus all the conditions of Theorem 2.1 are satisfied. Consequently, (1.1) has at least

two positive T -periodic solutions. This completes the proof of the theorem.

Theorem 3.9. Suppose that (H11) holds. Further assume that there are constants

0 < c1 < c2 such that

(H13)
maxt∈[0,T ] f(t,c1)

(1−δ)c1
< 1

T
<

δ mint∈[0,T ] f(t,c2)

(1−δ)c2

holds. Then (1.1) has at least two positive T -periodic solutions.

Example 3.10. Consider the delay differential equation

x′(t) = (sin4 t+ cos4 t)x(t) −
1

π
[x(t) + x2(t− τ)], (3.1)

where τ > 0 is a real constant. Here a(t) = sin4 t+ cos4 t, f(t, x) = 1
π
[x + x2], T = π

2

and δ = e−
R T

0 a(s) ds = 0.3. Now choosing c1 = 0.3 and c2 = 4, we observe that

the conditions of Theorem 3.8 are satisfied. Hence (3.1) has at least two positive

T -periodic solutions.

In [29], Wang introduced the notation

i0 = number of zeros in the set {f0, f∞}
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and

i∞ = number of infinities in the set {f0, f∞},

where

f0 = lim
x→0+

f(x)

x
and f∞ = lim

x→∞

f(x)

x

for the existence of positive T -periodic solutions of the differential equation

x′(t) = a(t)g(x(t))x(t) − λb(t)f(x(t− τ(t))), (3.2)

where λ > 0 is a positive parameter, a, b ∈ C(R, [0,∞)) are T -periodic functions,∫ T

0
a(t) dt > 0,

∫ T

0
b(t) dt > 0, τ ∈ C(R,R) is T -periodic function, f, g : [0,∞) →

[0,∞) are continuous, 0 < l ≤ g(x) < L < ∞ for x ≥ 0, l, L are positive constants,

f(x) > 0 for x > 0.

In the following, we apply Theorem 2.1 in Eq.(3.2) to obtain some new results

differ those in [29]. The Banach space X and a cone K in X are the same as above,

while the operator A is replaced by

(Aλx)(t) = λ

∫ t+T

t

Gx(t, s)b(s)f(x(s− τ(s))) ds,

where Gx(t, s) = e−
R s
t a(θ)g(x(θ)) dθ

1−e−
R T
0 a(θ)g(x(θ)) dθ

is the Green’s kernel. The Green’s kernel Gx(t, s)

satisfies the property

δL

1 − δL
≤ Gx(t, s) ≤

1

1 − δl
.

If we proceed as in the lines of Theorem 3.8, we obtain the following theorem:

Theorem 3.11. Let f be nondecreasing. Further assume that there are constants

0 < c1 < c2 such that

(H14)
(1−δL)c2

δLf(c2)
R T

0 b(s) ds
< λ <

(1−δl)c1

f(c1)
R T

0 b(s) ds

hold. Then (3.2) has at least two positive T -periodic solutions.

Theorem 3.12. Let f 0 < 1 − δl and f∞ < 1 − δl hold. Further, assume that there

exists a constant c2 > 0 such that

(H15) f(x(t− τ(t))) > (1−δL)
δ2L c2 for c2 ≤ x ≤ (1−δL)

δL(1−δl)
c2

holds. Then (3.2) has at least three positive T -periodic solutions for

δL

∫ T

0
b(t) dt

< λ <
1∫ T

0
b(t) dt

.

Proof. By f̄∞ < 1 − δl, there exist 0 < ǫ < 1 − δl and ξ > 0 such that f(x) ≤ ǫx for

x ≥ ξ. Let γ = max0≤x≤ξ,0≤t≤T f(x). Then f(x) ≤ ǫx+ γ. Choose c4 > 0 such that

c4 > max{
γ

(1 − δl) − ǫ
,

1 − δL

δL(1 − δl)
c2}.
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Then, for x ∈ Kc4

‖Aλx‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)b(s)f(x(s− τ(s))) ds

≤
1

1 − δl
λ

∫ T

0

b(s)f(x(s− τ(s))) ds

≤
1

1 − δl
λ

∫ T

0

b(s)(ǫ‖x‖ + γ) ds

≤
1

1 − δl
(ǫc4 + γ) < c4,

that is, A : Kc4 → Kc4.

Now, we define a nonnegative concave functional ψ onK as ψ(x) = mint∈[0,T ] x(t).

Then ψ(x) ≤ ‖x‖. Set c3 = 1−δL

δL(1−δl)
c2 and φ0(t) = φ0 = c2+c3

2
. Then c2 < c3 and

φ0 ∈ {x; x ∈ K(ψ, c2, c3), ψ(x) > c2}. For x ∈ K(ψ, c2, c3) it follows from (H15) that

ψ(Aλx) = min
0≤t≤T

λ

∫ t+T

t

G(t, s)b(s)f(x(s− τ(s))) ds

≥
δL

1 − δL
λ

∫ T

0

b(s)f(x(s− τ(s))) ds

≥
δL

1 − δL
λ

∫ T

0

b(s) ds
(1 − δL)

δ2L
c2 > c2.

Next by f̄0 < 1 − δl, there exists a positive σ < c2 such that

f(x) < (1 − δl)x for 0 < x ≤ σ.

Set c1 = σ. Then c1 < c2. For x ∈ Kc1 , we have

‖Aλx‖ = sup
0≤t≤T

λ

∫ t+T

t

G(t, s)b(s)f(x(s− τ(s))) ds

≤
1

1 − δl
λ

∫ T

0

b(s)(1 − δl)x ds

≤
1

1 − δl
λ

∫ T

0

b(s)(1 − δl)c1 ds < c1.

Finally, for x ∈ K(ψ, c2, c4) with ‖Aλx‖ > c3, we have

c3 < ‖Aλx‖ ≤
1

1 − δl
λ

∫ T

0

b(s)f(x(s− τ(s))) ds,

which in turn implies that

ψ(Aλx) ≥
δL

1 − δL
λ

∫ T

0

b(s)f(x(s− τ(s))) ds

>
δL

1 − δL
(1 − δl)c3 = c2.

Hence, by Theorem 2.2, (3.2) has at least three positive T -periodic solutions.
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Corollary 3.13. If i0 = 2 and there exists a constant c2 > 0 such that (H15) holds,

then (3.2) has at least three positive T -periodic solutions for

δL

∫ T

0
b(t) dt

< λ <
1∫ T

0
b(t) dt

.

Remark 3.14. Wang [29] obtained three different results for the existence of at

least one positive periodic solution of (3.2) by using fixed point index theory [3].

In Corollary 3.13 we have shown that (3.2) has at least three positive T -periodic

solutions when i0 = 2. It would be interesting to obtain sufficient conditions for the

existence of at least two or three positive periodic solutions of (3.2) when i0 ∈ {0, 1}

and i∞ ∈ {0, 1, 2} by using leggett-Williams multiple fixed point theorems. Bai and

Xu [1] obtained a sufficient condition (Theorem 3.12 in [1]) for the existence of three

nonnegative T -periodic solutions of (3.2). Although the condition i0 = 2 holds both

in Theorem 3.2 in [1] and in our Corollary 3.13, our condition (H15) and the condition

(H5) in [1] are different. Accordingly, the ranges on the parameter λ are also different.

Padhi et al. [23] have considered the functional differential equation

x′(t) = a(t)x(t) − λb(t)f(x(t− τ(t))), (3.3)

which is a particular case of (3.2), λ, a, b, T and f are defined as in (3.2). The results

of [23] can be extended to (3.2). In the following, we show that our Theorem 3.12

and Corollary 3.13 are different from some of the results given in [23]. Extending

Theorem 3.4 and Corollary 3.5 of [23] to (3.2), we obtain the following results.

Theorem 3.15. Let f0 < T and f∞ < T hold. If there exists a constant c2 > 0 such

that

(H16) f(x(t− τ(t))) > 2T (1−δL)
δL(1−δl)

c2 for c2 ≤ x ≤ (1−δL)
δL(1−δl)

c2 and 0 ≤ t ≤ T,

then (3.2) has at least three positive T -periodic solutions for

1 − δl

2T
∫ T

0
b(t) dt

< λ <
1 − δl

T
∫ T

0
b(t) dt

.

Corollary 3.16. Let i0 = 2. If (H16) holds, then (3.2) has at least three positive

T -periodic solutions for

1 − δl

2T
∫ T

0
b(t) dt

< λ <
1 − δl

T
∫ T

0
b(t) dt

.

One may observe that the upper bounds on f 0 and f∞ in Theorem 3.15 and The-

orem 3.12 are T and 1 − δl, respectively. We may note that T and 1 − δl are not

comparable. Similarly, one may compare our Corollary 3.13 with Corollary 3.16. Al-

though the condition i0 = 2 holds both in Corollary 3.13 and Corollary 3.16, the

conditions (H15) and (H16) are different. Accordingly, the ranges on the parameter λ

are also different.
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4. APPLICATIONS

Ye et al. [31] showed that the models (1.5)–(1.8) have at least one positive periodic

solution, respectively. In the following section, we shall apply some of our results to

obtain sufficient conditions for the existence of at least two positive periodic solutions

of the models (1.5)–(1.8).

Example 4.1. The generalized logistic model of single species

x′(t) = x(t)[a(t) − b(t)x(t) − c(t)x(t− τ(t))] (4.1)

has at least two positive T -periodic solutions, where a(t), b(t) and c(t) are nonnegative

continuous periodic functions.

Proof. Set f(t, x) = x(t)[b(t)x(t) + c(t)x(t− τ(t))]. Since

max
t∈[0,T ]

f(t, x)

a(t)x
≤ max

t∈[0,T ]
{
b(t)

a(t)
}‖x‖ + max

t∈[0,T ]
{
c(t)

a(t)
}‖x‖ → 0 as x→ 0,

we see that (H6) is satisfied. Further, since

min
t∈[0,T ]

f(t, x)

a(t)x
≥ min

t∈[0,T ]
δ{
b(t)

a(t)
}‖x‖ → ∞ as x→ ∞,

then (H5) is satisfied. Thus by Theorem 3.3, (4.1) has at least two positive T -periodic

solutions.

Example 4.2. The logistic equation of single species

x′(t) = x(t)[a(t) −

n∑
i=1

bi(t)x(t− τi(t))] (4.2)

has at least two positive T -periodic solutions, where a, bi, τi ∈ C(R,R+) are T -periodic

functions.

Example 4.3. The logistic equation with several delays (1.5) has at least two positive

T -periodic solutions.

Example 4.4. The generalized Richards single species growth model (1.6) has at

least two positive T -periodic solutions.

The proofs of the Examples 4.3–4.4 are similar to the proof of the Example 4.1.

Applying Corollary 3.5 to the generalized Michaelis-Menton type single species

growth model (1.7), we obtain the following result:

Example 4.5. If

min
t∈[0,T ]

n∑
i=1

bi(t)

a(t)ci(t)
> 1,

then (1.7) has at least two positive T -periodic solutions.
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Now, we assume that the population is subject to harvesting. Under the catch-

per-unit-effort hypothesis [3], consider the harvested population’s growth model

x′(t) = x(t)[a(t) −
b(t)x(t)

1 + c(t)x(t)
] − qEx(t), (4.3)

where q and E are positive constants denoting the catch ability coefficients and

harvesting effort, respectively. Ye et al. [31] proved that if 0 < qE < 1−δ
T

and

( bm

c
+ qE) > 1−δ

δ2T
, then (4.3) has at least one positive T -periodic solution, where

bm = min0≤t≤T b(t) and 0 < c(t) ≤ c.

Theorem 4.6. Suppose that 0 < qE < 1−δ
T

and
δ

R T

0 b(t) dt

c
+ qE > δ−1

δ2T
. Then (4.3)

has at least two positive T -periodic solutions.

Proof. Set f(t, x) = b(t)x2

1+c(t)x
+qEx. Then qE < 1−δ

T
implies the condition (H9). Choose

c2 = δ(1−qEαδT )

αδ2T
R T

0
b(t) dt−c(1−qEαδT )

. Then
c2αδ2T

R T

0 b(t) dt

δ+cc2
+ qEαδT = 1. Set c3 = c2

δ
=

(1−qEαδT )

αδ2T
R T

0
b(t) dt−c(1−qEαδT )

. Then c2 < c3. Now for c2 ≤ x ≤ c3
δ
, we have

f(t, x) >
c22

∫ T

0
b(t) dt

1 + c c2
δ

+ qEc2 =
c2

αδT
.[
c2αδ

2T
∫ T

0
b(t) dt

δ + cc2
+ qEαδT ]

≥
c2

αδT
,

that is, (H10). Hence by Theorem 3.6, (4.3) has at least two positive T -periodic

solutions.

Remark 4.7. One may see in the literature, that very few result exist on the existence

of two periodic solutions of (1.1) with its application to the models (1.5)–(1.8). Hence

a simple result on the existence of two periodic solutions of the above equations are

of immense important.
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