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1. INTRODUCTION

Recently fractional differential equations arise in many engineering and scien-

tific disciplines as the mathematical modelling of systems and processes in the fields

of physics, chemistry, aerodynamics, electro-dynamics of complex medium, polymer

rheology, etc. (see [5,11,14,15,16]) involves derivatives of fractional order. Fractional

differential equations also serve as an excellent tool for the description of heredi-

tary properties of various materials and processes. Theory of fractional differential

equations has been extensively studied by Delbosco and Rodino [6] and Lakshmikan-

tham et al [19-21]. In [3,8,17] the authors have proved the existence of solutions of

abstract differential equations by using semigroup theory and fixed point theorem.

Many partial fractional differential equations can be expressed as fractional differen-

tial equations in some Banach Spaces [10].

The following equation






cDq
0+x(t) = f(t, x(t)), 0 < t < 1,

x(0) + x′(0) = 0, x(1) + x′(1) = 0,

where cDq
0+ denotes the Caputo fractional derivative with 1 < q ≤ 2 was studied by

S. Zhang [29] and the existence of positive solutions was obtained using classical fixed

point theorems.
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Recently G. M. Mophou et al [23], were studied the Cauchy problem with nonlocal

conditions






Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T ], n ∈ Z+

x(0) + g(x) = x0,

in general Banach space X with 0 < q < 1 and A is the infinitesimal generator of a

C0 semigroup of bounded linear operator. By means of the Krasnoselskii’s theorem,

existence of solutions was also obtained.

Subsequently several authors have investigated the problem for different types of

nonlinear differential equations and integrodifferential equations including functional

differential equations in Banach spaces.

In [28], the author studied both the local and global existence of solutions to the

equation






Dα
t x(t) = f(t, x(t)), t ∈ [0, T ]

xk(t0) = x0(k), k = 0, 1, 2, . . . , n − 1

in a finite dimensional space. The results are obtained via construction and the con-

traction mapping principle. Very recently N’Guerekata [12,13] discussed the existence

of solutions of fractional abstract differential equations with nonlocal initial condition.

This paper is organized as follows. In Section 2 we introduce some preliminary

results needed in the following sections. In Section 3 we present an existence result

for Boundary value problem for fractional semilinear evolution equations in Banach

spaces by using the fractional calculus and Sadovskii fixed point theorem.

2. PRELIMINARIES

We need some basic definitions[18,24,26] and properties of fractional calculus

which are used in this paper.

Definition 2.1 ([8]). A real function f(t) is said to be in the space Cα, α ∈ R if there

exists a real number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞) and it is said

to be in the space Cm
α iff f (m) ∈ Cα, m ∈ N .

Definition 2.2. The fractional (arbitrary) order integral of the function f ∈ L1([a, b], R+)

of order q ∈ R+ is defined by

Iq
af(t) =

∫ t

a

(t − s)q−1

Γ(q)
f(s)ds,

where Γ is the gamma function. When a = 0, we write Iqf(t) = f(t) ∗ ϕq(t), where

ϕq(t) = tq−1

Γ(q)
for t > 0, and ϕq(t) = 0 for t ≤ 0, and ϕq(t) → δ(t) as q → 0, where δ is

the delta function.
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Definition 2.3. The Riemann-Liouville fractional integral operator of order q > 0,

of a function f ∈ Cµ, µ ≥ −1 is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s)ds, q > 0, t > 0

I0f(x) = f(x),

Definition 2.4. The Caputo’s derivative of fractional order q for a function f(t) is

defined by

(cDqf)(t) =
1

Γ(n − q)

∫ t

0

f (n)(s)

(t − s)q−n+1
ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of real number q.

Definition 2.5. For a function f given on the interval [a, b], the Riemann-Liouville

fractional derivative of order q for a function f , is defined by

(Dq
a+f)(t) =

1

Γ(n − q)

(

d

dt

)n ∫ t

a

f(s)

(t − s)q−n+1
ds,

provided the right-hand side is pointwise defined on (0,∞), where Γ is the gamma

function.

The Riemann-Liouville derivative has certain disadvantages when trying to model

real-world phenomena with fractional differential equations. Therefore, we shall use

a modified fractional differential operator cDq proposed by M. Caputo in his work on

the theory of viscoelasticity.

Definition 2.6. Let X be a subset of Banach space. An operator T : X → X is called

condensing if for any bounded subset E ⊂ X, with µ(E) 6= 0, we get µ(T (E)) < µ(E),

when µ(E) denotes the measure of noncompactness of the set E.

Let (X, ‖ · ‖) be a Banach space, and I := [0, T ], T > 0 , a compact interval

of the real line R. Denote by C = C([0, T ], X) the Banach space of all continuous

functions [0, T ] → X endowed with the topology of uniform convergence (the norm

in this space will be denoted by ‖ · ‖C). For basic facts about fractional derivative

and fractional calculus one can refer to the books [16,18,24].

3. MAIN RESULTS

Now consider the first order boundary value problem for semilinear fractional

evolution equation






cDqx(t) = A(t)x(t) + f(t, x(t), Bx(t)), t ∈ I = [0, T ],

ax(0) + bx(T ) = c,
(1)
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where cDq is the Caputo fractional derivative and A(t) is a bounded linear operator

and 0 < q < 1, Bx(t) =
∫ t

0
K(t, s)x(s)ds, K belongs to C(D, R+), the set of all

positive continuous functions defined on D, with D := {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T}

and

B∗ = sup
t∈[0,T ]

∫ t

0

K(t, s)ds < ∞,

f : I × X × X → X, is continuous and a, b, c are real constants with a + b 6= 0. The

fractional derivative cDq is understood here in the Caputo sense, (i.e):

cDqg(t) =
1

Γ(1 − q)

∫ t

0

(t − s)−qg′(s)ds,

for a continuous function g : R+ → R provided that the right hand side is pointwise

defined on R+. The equation(1) is then equivalent to

x(t) =
1

Γ(q)

∫ t

0

(t − s)q−1A(s)x(s)ds +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s), Bx(s)ds

−
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1f(s, x(s), Bx(s)ds − c

]

, ∀t ∈ [0, T ]. (2)

See [18] for more details. We need the following assumptions to prove the existence

of solutions of equation (1).

(HA). A(t) is a bounded linear operator on X for each t ∈ I. The function t → A(t)

is continuous in the uniform operator topology. We set

M = max
t∈[0,T ]

‖A(t)‖.

(HB). f : I × X × X → X is continuous and there exist a constants L1 > 0, L2 > 0

such that

‖f(t, x, u) − f(t, y, v)‖ ≤ L1‖x − y‖ + L2‖u − v‖ for all x, y, u, v ∈ X.

For brevity let us take γ = T q

Γ(q+1)
and N = maxt∈I ‖f(t, 0)‖.

(HC). f : I × X → X is continuous and there exists a function µ ∈ L1(I, R+) such

that

‖f(t, x, y)‖ ≤ µ(t), ∀t ∈ I x, y ∈ X.

Theorem 3.1. Under assumptions (HA), (HB) and if γ(M + L) < 1
2
, then Eq.(1)

has a unique solution.

Proof. Let C = C([0, T ]] : X). Define the mapping F : C → C by

(Fx)(t) =
1

Γ(q)

∫ t

0

(t − s)q−1A(s)x(s)ds +
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s), Bx(s))ds

−
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1f(s, x(s), Bx(s))ds − c

]
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and we have to show that F has a fixed point. This fixed point is then a solution

of the equation (1). Let M = maxt∈I ‖A(t)‖(see [25]). Then we can show that

FBr ⊂ Br, where Br := {x ∈ Z : ‖x‖ ≤ r}. From the assumptions, we have to

choose r ≥ 2(Nγ(1 + |b|
|a+b|

)), then

‖(Fx)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1‖A(s)‖‖x(s)‖ds

+
1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s), Bx(s))‖ds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1‖f(s, x(s), Bx(s))‖ds

]

+
|c|

|a + b|

≤
1

Γ(q)

∫ t

0

(t − s)q−1‖A(s)‖‖x(s)‖ds

+
1

Γ(q)

∫ t

0

(t − s)q−1(‖f(s, x(s), Bx(s)) − f(s, 0, 0)‖+ ‖f(s, 0, 0)‖)ds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1(‖f(s, x(s), Bx(s)) − f(s, 0, 0)‖+ ‖f(s, 0, 0)‖)ds

]

+
|c|

|a + b|

≤ Mr
T q

Γ(q + 1)
+ ((L1 + L2B

∗)r + N)
T q

Γ(q + 1)

+
|b|

|a + b|
((L1 + L2B

∗))r + N)
T q

Γ(q + 1)
+

|c|

|a + b|

≤ Mrγ + ((L1 + L2B
∗)r + N)γ

(

1 +
|b|

|a + b|

)

+
|c|

|a + b|

≤ r,

by the choice of L, a, b, c and r. Thus, F maps Br into itself. Now, for x, y ∈ Z, we

have

‖(Fx)(t) − (Fy)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1‖A(s)(x(s) − y(s))‖ds

+
1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, x(s), Bx(s)) − f(s, y(s), By(s))‖ds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1‖f(s, x(s), Bx(s)) − f(s, y(s), By(s))‖ds

]

≤ ((L1 + L2B
∗) + M)‖x − y‖C

1

Γ(q)

∫ t

0

(t − s)q−1ds

+ ((L1 + L2B
∗) + M)‖x − y‖C

(

|b|

|a + b|

) [

1

Γ(q)

∫ T

0

(T − s)q−1ds

]
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≤





((L1 + L2B
∗) + M)T q

(

1 + |b|
|a+b|

)

Γ(q + 1)



 ‖x − y‖C.

Thus

‖Fx − Fy‖C ≤ Ωa,b,c,L1,L2,M,T,q‖x − y‖C,

where Ωa,b,c,L1,L2,M,T,q =
[

((L1 + L2B
∗) + M)γ

(

1 + |b|
|a+b|

)]

. And since Ωa,b,c,L1,L2,M,T,q <

1, F is a contraction mapping and therefore there exists a unique fixed point x ∈ Br

such that Fx(t) = x(t). Any fixed point of F is the solution of the problem (1).

Now recall this well known tool.

Theorem 3.2 (Sadovskii). . Let B be a closed, convex and bounded subset of a

Banach space X. If F : B → B is a condensing map, then F has a fixed point in B.

Theorem 3.3. Assume (HA)−(HC) hold. If Mγ < 1. Then the fractional evolution

Eq. (1) with boundary condition has at least one solution on I provided that

Mγ + µ(t)γ +
|b|

|a + b|
[µ(t)γ] +

|c|

r|a + b|
< 1. (3)

Proof. For each positive number r, let

Br : {x ∈ Z : ‖x‖ ≤ r, 0 ≤ t ≤ T} ,

then Br, for each r, is a bounded, closed, convex set in Z. So F is well defined on

Br. We claim that there exists a positive number r such that FBr ⊆ Br. If it is not

true, then for each positive number r, there is a function xr ∈ Br but Fxr /∈ Br, that

is, ‖Fxr(t)‖ > r for some t ∈ [0, T ]. However, on the other hand, we have

r ≤ ‖(Fxr)(t)‖

=
1

Γ(q)

∫ t

0

(t − s)q−1‖A(s)‖‖xr(s)‖ds +
1

Γ(q)

∫ t

0

(t − s)q−1‖f(s, xr(s), Bxr)‖ds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1‖f(s, xr(s), Bxr)‖ds

]

+
|c|

|a + b|

≤ Mrγ + µ(t)rγ +
|b|

|a + b|
[µ(t)rγ] +

|c|

|a + b|
.

Dividing both sides by r, we get

Mγ + µ(t)γ +
|b|

|a + b|
[µ(t)γ] +

|c|

r|a + b|
≥ 1.

This contradicts expression (3). Hence FBr ⊆ Br, for some positive number r.

Now define the operators F1 and F2 on Br as

F1(x)(t) :=
1

Γ(q)

∫ t

0

(t − s)q−1A(s)x(s)ds
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−
1

a + b

[

b

Γ(q)

∫ T

0

(T − s)q−1f(s, x(s), Bx(s))ds − c

]

and

F2(x)(t) :=
1

Γ(q)

∫ t

0

(t − s)q−1f(s, x(s), Bx(s))ds.

We will show that F1 is a contraction mapping and F2 is a compact operator. We

have to prove that F1 is a contraction, we take x, y ∈ Br, then for each t ∈ [0, T ], we

have

‖(F1(x)(t) − F1(y)(t)‖ ≤
1

Γ(q)

∫ t

0

(t − s)q−1‖A(s)(x(s) − y(s))‖ds

+
|b|

|a + b|

[

1

Γ(q)

∫ T

0

(T − s)q−1‖f(s, x(s), Bx(s)) − f(s, y(s), By(s))‖ds

]

≤ M‖x − y‖C

1

Γ(q)

∫ t

0

(t − s)q−1ds

+ (L1 + L2B
∗)‖x − y‖C

(

|b|

|a + b|

) [

1

Γ(q)

∫ T

0

(T − s)q−1ds

]

≤





(M + (L1 + L2B
∗)

(

|b|
|a+b|

)

T q

Γ(q + 1)



 ‖x − y‖C.

Thus

‖(F1x)(t) − (F1y)(t)‖ ≤ Ωa,b,L,M,T,q‖x − y‖C,

where Ωa,b,L,M,T,q =
[

M + (L1 + L2B
∗)

(

|b|
|a+b|

)

γ
]

. And since Ωa,b,L,M,T,q < 1, F1 is a

contraction mapping. We have to prove that F2 is compact. Since x is continuous,

then (F2x)(t) is continuous in view of (HB). Let us now note that F2 is uniformly

bounded on Br. This follows from the inequality

‖(F2x)(t)‖ ≤
T q‖µ‖L1

Γ(q + 1)
.

Now let us prove that (F2x)(t) is equicontinuous. Let t1, t2 ∈ I, t1 < t2 and

x ∈ Br. Using the fact that f is bounded on the compact set I × Br × B(Br) (thus

sup(t,s)∈I×Br
‖f(s, x(s), Bx(s)‖ := c0 < ∞), we will get

‖F2x(t2) − F2x(t1)‖ = ‖
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]f(s, x(s), Bx(s))ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1f(s, x(s))ds‖

≤
1

Γ(q)

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]‖f(s, x(s), Bx(s))‖ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1‖f(s, x(s), Bx(s))‖ds
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≤
c0

Γ(q)
‖

∫ t1

0

[(t1 − s)q−1 − (t2 − s)q−1]ds +
c0

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

≤
c0

Γ(q + 1)
[(t2 − t1)

q + tq1 − tq2] +
c0

Γ(q + 1)
(t2 − t1)

q

≤
c0

Γ(q + 1)
|2(t2 − t1)

q + tq1 − tq2|,

which does not depend on x. So F2(Br) is relatively compact. As t2 → t1, the right

hand side of the above inequality tends to zero. By the Arzela-Ascoli Theorem, F2

is a compact operator. These arguments show that F = F1 + F2 is a condensing

mapping on Br, and by the Sadovskii fixed point theorem there exists a fixed point

for F on Br, which is a solution of the problem (1). The proof is complete.
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