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ABSTRACT. A special type of practical stability for differential equations with “maxima” is

introduced. The definitions incorporate two different measures and a scalar product on a cone. The

application of a dot product allows us to use scalar comparison of ordinary differential equations for

investigation of stability properties of the solutions. At the same time, the fixed vector, involved in

the definition, plays a role of a weight of the components of the solution. Some sufficient conditions

for eventual d-practical stability in terms of two measures of nonlinear differential equations with

“maxima” are obtained. The proofs are based on the Razumikhin method and cone valued Lyapunov

functions. An example illustrates the practical application of the proven results and the advantage

of the introduced type of stability.
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1. INTRODUCTION

It is well-known ([5]) that stability and even asymptotic stability themselves

are neither necessary nor sufficient to ensure practical stability. The desired state

of a system may be mathematically unstable; however, the system may oscillate

sufficiently close to the desired state, so that its performance is deemed acceptable.

The practical stability is neither weaker nor stronger than the usual stability; an

equilibrium can be stable in the usual sense, but not practically stable, and vice

versa. For example, an aircraft may oscillate around a mathematically unstable path,

yet its performance may be acceptable. Practical stability is, in a sense, a uniform

boundedness of the solution relative to the initial conditions, but the bound must be

sufficiently small ([1], [3], [10], [11] , [12], [13]).

In the last few decades, great attention has been paid to automatic control sys-

tems and their applications to computational mathematics and modeling. Many
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problems in control theory correspond to the maximal deviation of the regulated

quantity ([7]). Such kind of problems could be adequately modeled by differential

equations that contain the maxima operator. A. D. Mishkisalso points out the ne-

cessity to study differential equations with “maxima” in his survey [6]. Note that

various conditions for stability of differential equations with “maxima” are obtained

by D. D. Bainov et al. ([8], [9]).

In this paper, eventual d-practical stability of differential equations with “max-

ima” is defined. The definition combines the ideas of two different measures and a

dot product. The dot product, introduced into the definition, plays a role of weights

of components of the solution. The Razhumikhin method and cone valued Lypunov

functions are used to obtain sufficient conditions for the introduced stability of solu-

tions of differential equations with “maxima.” Comparison results for scalar differ-

ential equations are applied. An appropriate example illustrates the application of

the obtained sufficient conditions and the main advantages of the considered type of

stability.

2. MAIN RESULTS

Let r > 0 be a given number, t0 ∈ R+, and φ ∈ C([−r, 0],Rn).

Consider the initial value problem for nonlinear differential equations with “max-

ima” (DEM),

x′ = F (t, x(t), max
s∈[t−r,t]

x(s)), for t ≥ t0,

x(t) = φ(t− t0), for t ∈ [t0 − r, t0],
(2.1)

where x ∈ R
n, F : R+ × R

n × R
n → R

n, F = (F1, F2, . . . , Fn).

Note that for x : [t− r, t] → R
n, x = (x1, x2, . . . , xn), we denote

max
s∈I(t)

x(s) =
(

max
s∈[t−r,t]

x1(s), max
s∈[t−r,t]

x2(s), . . . , max
s∈[t−r,t]

xn(s)
)

.

We denote by x(t; t0, φ) the solution of DEM (2.1). In our further investigations, we

will assume that solution x(t; t0, φ) is defined on [t0 − r,∞) for any initial function

φ ∈ C([−r, 0],Rn).

Let x, y ∈ R
n. Denote by (x • y) the dot product of both vectors x and y. Let

K ⊂ R
n be a cone. Consider the set

K∗ = {ϕ ∈ R
n : (ϕ • x) ≥ 0 for any x ∈ K}.

We assume that K∗ is a cone. Introduce the following sets

K = {a ∈ C(R+,R+) : a(s) is strictly increasing and a(0) = 0},

G = {h ∈ C([−r,∞) × R
n,K) : inf

x∈Rn

h(t, x) = 0 for each t ≥ −r}.
(2.2)
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Let ρ be positive constant, ϕ0 ∈ K∗, h ∈ G. Define

S̃(h, ρ, ϕ0) = {(t, x) ∈ [0,∞) × R
n : (ϕ0 • h(t, x)) < ρ}.

We introduce the following set (H) of conditions:

H1. The function F ∈ C[R+ × R
n × R

n,Rn], F (t, 0, 0) ≡ 0.

H2. The vector ϕ0 ∈ K∗ and the functions h0, h ∈ G.

In our further investigations, we will use the following comparison scalar ordinary

differential equation,

u′ = g(t, u), (2.3)

where u ∈ R, g(t, 0) ≡ 0.

Definition 1. Let h, h0 ∈ G. The function h is eventually ϕ0-stronger than h0 if,

for a couple (λ,A) such that 0 < λ < A, the inequality (ϕ0 • h0(t, x)) < λ, for some

(t, x) ∈ [−r,∞) × R
n, implies (ϕ0 • h(t, x)) < A.

Remark 1. Let x = (x1, x2, . . . , xn), ϕ0 be a vector with components greater than

or equal to 1, and h0(t, x) =
∑n

k=1 |xk|, and h(t, x) =
√

∑n

k=1 x
2
k. The function h is

eventually ϕ0-stronger than h0.

We add the following condition to the set (H) of conditions above:

H3. The functions h0, h ∈ G are such that h is eventually ϕ0-stronger than h0.

H4. The functions h0, h ∈ G are such that, for (t, x) ∈ S̃(h0, ρ0, ϕ0), the inequality

(ϕ0 • h(t, x)) ≤ Q((ϕ0 • h0(t, x))) holds, where Q ∈ K is such that Q(s) ≤ s and

ρ0 > 0 is a constant.

Definition 2. We will say that the function V (t, x) : Ω × R
n → K, Ω ⊂ R+,

V = (V1, V2, . . . , Vn), belongs to the class L if:

1. V (t, x) ∈ C1(Ω × R
n,K);

2. There exist constants Mi > 0, i = 1, 2, . . . , n, such that |Vi(t, x) − Vi(t, y)| ≤

Mi‖x− y‖ for any t ∈ Ω and x, y ∈ R
n.

Let the function V ∈ L, V = (V1, V2, . . . , Vn) and φ ∈ C([−r, 0],Rn). We define

a derivative DV (t, x) of the function V along DEM (2.1) by the equalities

DVi(t, φ(0)) =
∂Vi(t, φ(0))

∂t
+

n
∑

j=1

∂Vi(t, φ(0))

∂xj

Fj(t, φ(0), sup
s∈[−r,0]

φ(s)),

i = 1, 2, . . . , n,

(2.4)

where DV (t, x) = (DV1(t, x),DV2(t, x), . . . ,DVn(t, x)).

We will introduce the definition of a new type of eventual practical stability for

differential equations with “maxima” based on the ideas of stability in terms of two

measures ([4]) and the dot product.
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Definition 3. Let ϕ0 ∈ K∗, h, h0 ∈ G, and λ and A be constants such that 0 < λ < A.

The system of differential equations with “maxima” (2.1) is said to be

(S1) d-eventually practically stable in terms of measures h0 and h with a vector ϕ0

if, for any given couple (λ,A) such that 0 < λ < A, there exists τ(λ,A) > 0 such that,

for some t0 ≥ τ(λ,A) and φ ∈ C([−r, 0],Rn) such that sups∈[−r,0](ϕ0•h(t0+s, φ(s))) <

λ, the inequality (ϕ0 • h(t, x(t; t0, φ))) < A holds for t ≥ t0, where x(t; t0, φ) is a

solution of DEM (2.1);

(S2) uniformly d-eventually practically stable in terms of measures h0 and h with

a vector ϕ0 if, for given couple (λ,A) such that 0 < λ < A, there exists τ(λ,A) > 0,

such that for any t0 ≥ τ(λ,A) and φ ∈ C([−r, 0],Rn) such that sups∈[−r,0](ϕ0 • h(t0 +

s, φ(s))) < λ, the inequality (ϕ0 • h(t, x(t; t0, φ))) < A holds for t ≥ t0.

Note that the vector ϕ0, introduced in Definiton 3, plays the role of a weight

of components of the solution. In the case ϕ0 = (1, 1, . . . , 1), h(t, x) = h0(t, x) ≡

(|x1|, |x2|, . . . , |xn|), where x = (x1, x2, . . . , xn), the d-eventually practical stability

defined above in terms of two measures reduces to eventually practical stability.

Note that in the case r = 0, the above definitions reduce to definitions for practical

stability of ordinary differential equations given in the book [3].

In what follows, we will use following comparison result:

Lemma 1. Let the following conditions be fulfilled:

1. The conditions H1, H2 are satisfied.

2. The function V (t, x) : [t0, T ] × R
n → K, V ∈ L is such that for any function

ψ ∈ C([−r, 0],Rn) and any number t ∈ [t0, T ] such that (ϕ0 • V (t, ψ(0))) ≥

(ϕ0 • V (t+ s, ψ(s))) for s ∈ [−r, 0) the inequality
(

ϕ0 • D(2.1)V (t, ψ(0))
)

≤ g(t, (ϕ0 • V (t, ψ(0))))

holds, where g ∈ C(R+ × R+,R+) and g(t, 0) ≡ 0.

3. The function x(t) = x(t; t0, ϕ) is a solution of DEM (2.1), that is defined for

t ∈ [t0 − r, T ].

4. The function u∗(t) = u∗(t; t0, u0) is the maximal solution of (2.3) with initial

condition u∗(t0) = u0, that is defined for t ∈ [t0, T ].

Then the inequality maxs∈[−r,0](ϕ0 • V (t0 + s, ϕ(s))) ≤ u0 implies the validity of the

inequality (ϕ0 • V (t, x(t))) ≤ u∗(t) for t ∈ [t0, T ].

Proof. Let un(t) be the maximal solution of the initial value problem

u′ = g(t, u) +
1

n
, t ∈ [t0, T ], u(t0) = u0 +

1

n
, (2.5)

where maxs∈[−r,0](ϕ0 • V (t0 + s, ϕ(s))) ≤ u0 and n is a natural number. Assume that

un(t) is defined for t ∈ [t0, T ]. Define a function m(t) ∈ C([t0, T ],R+) by the equality
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m(t) = (ϕ0 • V (t, x(t))). Because of the fact that u∗(t; t0, u0) = limn→∞un(t), it is

enough to prove that for any natural number n, the inequality

m(t) ≤ un(t) for t ∈ [t0, T ] (2.6)

holds.

Note that for any natural number n, inequality m(t0) < un(t0) holds. Assume

inequality (2.6) is not true. Let n be a natural number such that there exists a point

η ∈ (t0, T ) such that m(η) > un(η). Let t∗n = max{t ∈ [t0, T ] : m(s) < un(s) for

s ∈ [t0, t)}, t
∗

n < T . Therefore,

m(t∗n) = un(t
∗

n), m(t) < un(t) for t ∈ [t0, t
∗

n), m(t) ≥ un(t) for t ∈ (t∗n, t
∗

n + δ),

(2.7)

where δ > 0 is a sufficiently small number. From inequalities (2.7) it follows that

m′(t∗n) ≥ u′n(t∗n) = g(t, un(t
∗

n)) +
1

n
= g(t,m(t∗n)) +

1

n
. (2.8)

Since g(t, u) + 1
n
> 0 on [t∗n − r, t∗n] ∩ [t0, T ], it follows that the function un(t) is

nondecreasing on [t∗n − r, t∗n] ∩ [t0, T ]. There are cases to consider:

If t∗n − r ≥ t0, then m(t∗n) = vn(t∗n) ≥ vn(s) > m(s) for s ∈ [t∗n − r, t∗n).

If t∗n − r < t0, then as above m(t∗n) > m(s) for s ∈ [t0, t
∗

n), and m(t∗n) = vn(t∗n) ≥

vn(t0) = u0 + 1
n
> u0 ≥ sups∈[−r,0] V (t0 + s, φ(s)) ≥ m(s) for s ∈ [t∗ − r, t0).

Therefore, m(t∗n) > m(s) for s ∈ [t∗n − r, t∗n), and according to Condition 1 of

Lemma 1, using standard arguments, we get m′(t∗n) ≤ g(t,m(t∗n)) < g(t,m(t∗n)) + 1
n
,

which is a contradiction to (2.8). Therefore the inequality (2.6) holds, and hence the

conclusion of Lemma 1 follows.

Remark 2. Note that the condition (ϕ0 • V (t0, ϕ(0))) ≤ u0 is not enough for the

validity of the conclusion of Lemma 1.

We will obtain sufficient conditions for d-eventual practical stability in terms of

two measures of systems of differential equations with “maxima.” We will employ

Lyapunov functions from the class L. The proof is based on the Razumikhin method

combined with a comparison method employing scalar ordinary differential equations.

Theorem 1. Let the following conditions be fulfilled:

1. The conditions H1–H3 are satisfied.

2. There exists a function V (t, x) : R+ × R
n → K, with V ∈ L such that

(i) b((ϕ0 • h(t, x))) ≤ (ϕ0 • V (t, x)) ≤ a((ϕ0 • h0(t, x))), (t, x) ∈ S̃(h, ρ, ϕ0),

where a, b ∈ K;

(ii) for any function ψ ∈ C[[−r, 0],Rn] and any number t ≥ 0 such that (ϕ0 •

V (t, ψ(0))) > (ϕ0 •V (t+ s, ψ(s))) for s ∈ [−r, 0) and (t, ψ(0))) ∈ S̃(h, ρ, ϕ0)
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the inequality
(

ϕ0 • D(2.1)V (t, ψ(0))
)

≤ g(t, (ϕ0 • V (t, ψ(0))))

holds, where g ∈ C(R+ × R+,R+), g(t, 0) ≡ 0, and ρ > 0 is a constant.

3. For any initial point (t0, u0) ∈ R+ × R the solution of the scalar equation (2.3)

exists on [t0,∞), t0 ≥ 0.

4. The scalar differential equation (2.3) is eventually practically stable.

Then the system of differential equations with “maxima” (2.1) is d-eventually practi-

cally stable in terms of the measures h0 and h with a vector ϕ0.

Proof. Let the couple (λ,A) such that 0 < λ < A be given.

Case 1. Let A < ρ. From Condition 4, it follows that there exist τ(λ,A) > 0 and

a point t0 ≥ τ(λ,A) such that |u0| < a(λ) implies

|u(t; t0, u0)| < b(A) for t ≥ t0, (2.9)

where u(t; t0, u0) is a solution of the scalar differential equation (2.3) with initial

condition u(t0) = u0.

Choose a function φ ∈ C([−r, 0],Rn) such that sups∈[−r,0](ϕ0•h0(t0+s, φ(s))) < λ,

where t0 is defined above. Let x(t) = x(t; t0, φ) be a solution of DEM (2.1) with the

initial function φ. From assumption H3, it follows that the inequality

(ϕ0 • h(t, φ(t− t0))) < A for t ∈ [t0 − r, t0] (2.10)

holds.

We claim that

(ϕ0 • h(t, x(t))) < A for t ≥ t0 (2.11)

holds.

Assume the claim is not true. From the choice of the initial function φ and

inequality (2.10), it follows there exists a point t∗ > t0 such that

(ϕ0 • h(t, x(t))) < A, for t ∈ [t0 − r, t∗),

(ϕ0 • h(t
∗, x(t∗))) = A.

(2.12)

Since A < ρ, the inclusion x(t; t0, φ) ∈ S̃(h, ρ, ϕ0) is valid for t ∈ [t0 − r, t∗].

Let u∗0 = maxs∈[−r,0](ϕ0 • V (t0 + s, φ(s))). From Lemma 1 and Condition (ii), it

follows that

(ϕ0 • V (t, x(t))) ≤ u∗(t; t0, u
∗

0) for t ∈ [t0, t
∗], (2.13)

where u∗(t; t0, u
∗

0) is a solution of scalar differential equation (2.3) with initial condi-

tion u(t0) = u∗0.
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From Condition (i) and the choice of the initial function φ, for s ∈ [−r, 0], we

obtain

(ϕ0 • V (t0 + s, φ(s))) ≤ a((ϕ0 • h0(t0 + s, φ(s)))) < a(λ). (2.14)

Inequality (2.14) proves that |u∗0| < a(λ), and therefore, according to inequalities (2.9)

and (2.13), we get

(ϕ0 • V (t0 + s, φ(s))) ≤ u∗(t; t0, u0) < b(A) for t ∈ [t0, t
∗]. (2.15)

From inequality (2.15), the choice of t∗, and Condition (i), we get

b(A) = b((ϕ0 • h(t
∗, x(t∗)))) ≤ (ϕ0 • V (t∗, x(t∗))) ≤ u∗(t∗; t0, u0) < b(A).

This is a contradiction, which proves (2.11).

Case 2. Let A ≥ ρ. We repeat the proof of Case 1, but instead of the number a,

everywhere we use the number ρ.

Note the Condition H3 could be replaced by the Condition H4 in the sufficient

condition for d-eventual practical stability:

Theorem 2. Let the Conditions H1, H2, H4 and Conditions 2, 3, 4 of Theorem 1 be

fulfilled. Then the system of differential equations with “maxima” (2.1) is d-eventually

practically stable in terms of the measures h0 and h with a vector ϕ0.

The proof of Theorem 2 is similar to the proof of Theorem 1. In this case we

consider the constant ρ1 = min{ρ, ρ0}, and from the choice of the initial function φ,

it follows that (t0 +s, φ(s)) ∈ S̃(h0, ρ1, ϕ0) for s ∈ [−r, 0]. Condition H4 immediatelly

shows the validity of inequality (2.10).

Theorem 3. Let the following conditions be fulfilled:

1. The Conditions 1, 2, 3 and 4 of Theorem 1 are satisfied.

2. The scalar differential equation (2.3) is uniformly eventually practically stable.

Then the system of differential equations with “maxima” (2.1) is uniformly d-eventually

practically stable in terms of the measures h0 and h with the vector ϕ0.

The proof of Theorem 3 is similar to the proof of Theorem 1 where we consider

an arbitrary point t0.

Note that Condition H3 could be replaced by Condition H4 in Theorem 3:

Theorem 4. Let the Conditions H1, H2, H4, Conditions 2, 3, 4 of Theorem 1 and

Condition 2 of Theorem 2 be fulfilled. Then the system of differential equations with

“maxima” (2.1) is uniformly d-eventually practically stable in terms of the measures

h0 and h with a vector ϕ0.
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In the case ϕ0 = (1, 1, . . . , 1) and h(t, x) = h0(t, x) ≡ (|x1|, |x2|, . . . , |xn|), where

x = (x1, x2, . . . , xn), the above results reduce to the following.

Theorem 5. Let the following conditions be fulfilled:

1. The condition H1 is satisfied.

2. There exists a function V (t, x) : R+ × R
n → K, with V ∈ L such that

(i) b(||x||) ≤
∑n

i=1 Vi(t, x) ≤ a(‖x‖), for t ∈ R+, ‖x‖ < A, where a, b ∈ K and

a(λ) < b(A);

(ii) for any ψ ∈ C([−r, 0],Rn) and t ≥ 0 such that
∑n

i=1 Vi(t, ψ(0)) >
∑n

i=1 Vi(t+

s, ψ(s)) for s ∈ [−r, 0) and sups∈[t0−r,t0] ψ(s)|| < A, the inequality

n
∑

i=1

D(2.1)Vi(t, ψ(0)) ≤ g(t,
n

∑

i=1

Vi(t, ψ(0)))

holds, where g ∈ C(R+ × R+,R+), g(t, 0) ≡ 0, and ρ > 0 is a constant.

3. For any initial point (t0, u0) ∈ R+×R the solution of scalar equation (2.3) exists

on [t0,∞), t0 ≥ 0.

If the scalar differential equation (2.3) is eventually practically stable, then the system

of differential equations with “maxima” (2.1) is eventually practically stable. If the

scalar differential equation (2.3) is uniformly eventually practically stable, then the

system of differential equations with “maxima” (2.1) is uniformly eventually practi-

cally stable.

3. APPLICATIONS

Now we will illustrate our results.

Consider the following system of differential equations with “maxima,”

x′(t) = y(t)
(

x2(t) + y2(t)
)

sin2 t+ e−t max
s∈[t−r,t]

x(s),

y′(t) = −
1

2
x(t)

(

x2(t) + y2(t)
)

sin2 t+ e−t max
s∈[t−r,t]

y(s), t ≥ t0,

(3.1)

with initial conditions

x(t) = φ1(t− t0), y(t) = φ2(t− t0) for t ∈ [t0 − r, t0], (3.2)

where x, y ∈ R, r > 0 is a sufficiently small constant, and t0 ≥ 0.

Let h0(t, x, y) = (|x|, |y|), h(t, x, y) = (x2, y2). Consider V : R
2 → K, V =

(V1, V2), V1(x, y) = 1
2
(x + 2y)2, V2(x, y) = 1

2
(x − y)2, where K = {(x, y) : x ≥ 0, y ≥

0} ⊂ R
2 is a cone. For the vector ϕ0 = (1, 2), then (ϕ0 • h(t, x, y)) = x2 + 2y2,

(ϕ0 •V (x, y)) = 1
2
(x+2y)2 +(x− y)2 = 3

2

(

x2 +2y2
)

and (ϕ0 •h0(t, x, y)) = |x|+2|y|.
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It is easy to check the validity of Condition (i) of Theorem 1 for functions a(s) =
3
2
s ∈ K and b(s) = 3

2
s2 ∈ K. Let ψ ∈ C([−r, 0],R2), ψ = (ψ1, ψ2) be such that

(ϕ0 • V (ψ1(0), ψ2(0))) =
3

2

(

ψ2
1(0) + 2ψ2

2(0)
)

≥
3

2

(

ψ2
1(s) + 2ψ2

2(s)
)

= (ϕ0 • V (ψ1(s), ψ2(s)) for s ∈ [−r, 0).

(3.3)

Then for i = 1, 2, we obtain

ψi(0) max
s∈[t−r,t]

ψi(s) ≤ |ψi(0)| | max
s∈[t−r,t]

ψi(s)| =
√

(ψi(0))2

√

( max
s∈[t−r,t]

ψi(s))2

≤

√

2

3
(ϕ0 • V (ψ1(0), ψ2(0)))

√

2

3
(ϕ0 • V (ψ1(s), ψ2(s))))

≤
2

3
(ϕ0 • V (ψ1(0), ψ2(0))).

Therefore, if inequality (3.3) is fulfilled, we have
(

ϕ0 • D(3.1)V (ψ1(0), ψ2(0))
)

= 3e−t
(

ψ1(0) max
s∈[t−r,t]

ψ1(s) + 2ψ2(0) max
s∈[t−r,t]

ψ2(s)
)

≤ 6e−t(ϕ0 • V (ψ1(0), ψ2(0))).

Now, consider the scalar comparison equation u′ = 6e−tu with inital condition

u(t0) = u0, whose solution is u(t) = u0e
6
(

e−t0−e−t

)

and |u(t)| ≤ |u0|e
6e−t0 for t ≥ t0.

For any numbers 0 < λ < A, we choose a number τ > max{0, ln6 − ln(ln(A
λ
))} > 0.

Note τ = τ(λ,A) > 0. It is easy to check that for t0 > τ and |u0| < λ, the inequality

|u(t)| < A holds, i.e., the scalar comparison equation is uniformly eventually practi-

cally stable. Therefore, according to Theorem 2, the system of differential equations

with “maxima” (3.1) is uniformly d-eventually practically stable in terms of two mea-

sures, i.e., for any numbers 0 < λ < A, there exists a number τ = τ(λ,A) > 0

such that, if t0 > τ , then the inequality sups∈[−r,0](|φ1(s)| + 2|φ2(s)|) < λ implies

x2(t; t0, φ) + 2y2(t; t0, φ) < A, for t ≥ t0.

Note that the choice of the vector ϕ0 has a huge influence on the sufficient con-

ditions. Let us, for example, consider the vector ϕ0 = (1, 1). In this case

(ϕ0 • V (x, y)) =
1

2
(x+ 2y)2 +

1

2
(x− y)2 = x2 + xy +

5

2
y2

and Condition (i) of Theorem 1 is not satisfied for the for the above defined function

V (x, y).

We could change the Lyapunov function by Ṽ : R
2 → K, Ṽ = (Ṽ1, Ṽ2), Ṽ1(x, y) =

1
2
(x + y)2, Ṽ2(x, y) = 1

2
(x − y)2. In this case (ϕ0 • Ṽ (x, y)) = x2 + y2 and Condition

(i) of Theorem 1 is satisfied. But in this case Condition (ii) is not satisfied.
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