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ABSTRACT. In this paper, we extend the oscillation criteria established by Fite, Kamenev, Hille

and Nehari for second order linear differential equations to second order linear delay dynamic equa-

tions with oscillatory coefficients on time scales. Our results are essentially new even for second order

differential equations and difference equations. Finally we consider several examples to illustrate our

main theorems.
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1. INTRODUCTION

In recent years, there has been an increasing interest in studying the oscillation

and nonoscillation of solutions of second order delay dynamic equations on times

scales which seeks to harmonize the oscillation of the continuous and the discrete, to

include them in one comprehensive theory, and to eliminate obscurity from both. For

the convenience we refer the reader to the papers [2-9,11,12,18,19] and the references

cited therein. However, to the best of our knowledge, few researchers [3] consider the

oscillation of the equation with oscillatory coefficients on time scales. In this paper,

based on the classic results of oscillation theory, we consider the second order linear

delay dynamic equation with oscillatory coefficients

x∆∆(t) +

m
∑

i=1

pi(t)x(t− τi) = 0 (1.1)

for t ∈ [t0,∞)T, where T is an arbitrary time scale which is unbounded above; t0 ∈ T

with t0 ≥ 0.

Throughout this paper, we always assume that

(A1) τi ∈ R
+ with τ1 > τ2 > · · · > τm > 0 such that t− τi ∈ T for t ∈ T;
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(A2) the functions pi, i = 1, . . . , m, are real-valued rd−continuous functions

defined on [t0,∞)T, and satisfy the following conditions:

(i) there exists a T0 ∈ [t0,∞)T such that for all t ∈ [T0,∞)T,

p1(t) ≥ 0,

θ1p1(t) + p2(t) ≥ 0,

θ2θ1p1(t) + θ2p2(t) + p3(t) ≥ 0,

· · · · · · ,
m−1
∏

i=1

θip1(t) +
m−1
∏

i=2

θip2(t) + · · · + θm−1pm−1(t) + pm(t) ≥ 0,

where

θ1 =
τm

τ1 − τ2 + τm
, θi =

τi−1 − τi
τi−1 − τi+1

, i = 2, 3, . . . , m− 1;

(ii) for any T ∈ [t0,∞)T, there exists a t∗ ∈ [T,∞)T such that pi(t) ≥ 0 on

[t∗, t∗ + τ1 + τm]T, i = 1, 2, . . . , m.

Remark 2.1. Obviously, if pi(t) ≥ 0 for t ∈ [T0,∞)T, i = 1, 2, . . . , m, then pi(t)

satisfy the conditions (i)–(ii). Conversely, if pi(t) satisfy the conditions (i)–(ii), then

the functions pi(t) may be oscillatory functions except p1(t). For example, let p1(t) =

τ1/τ2 and p2(t) = sin t, then p1(t) and p2(t) satisfy the conditions (i)–(ii). Clearly,

p2(t) is oscillatory on [1,∞)T.

Throughout this paper, the knowledge and understanding of time scales and

time-scale notation is assumed; for an excellent introduction to the calculus on time

scales, see [1,4,5,14]. By a solution of (1.1) we mean a nontrivial real-valued function

x(t) satisfying (1.1) for t ∈ [t0,∞)T. Our attention is restricted to those solutions of

(1.1) which exist on some half-line [tx,∞)T and satisfy sup{|x(t)| : t ∈ [T,∞)T} > 0

for any T ∈ [tx,∞)T. A solution x of (1.1) is said to be oscillatory if it is neither

eventually positive nor eventually negative, otherwise, it is nonoscillatory. (1.1) is

said to be oscillatory if all its solutions are oscillatory.

Here we are concerned with extending oscillation criteria for the second order

linear differential equation

x′′(t) + p(t)x(t) = 0, p ∈ C([t0,∞),R+). (1.2)

In 1918, Fite [10] proved that if

lim
t→∞

∫

t

t0

p(s)ds = ∞, (1.3)

then (1.2) is oscillatory.
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In 1978, Kamenev [16] gave another condition for the oscillation of (1.2), i.e.,

lim
t→∞

1

tn

∫

t

t0

(t− s)np(s)ds = ∞, n > 1. (1.4)

In 1948, Hille [15] by a different approach proved that if

lim inf
t→∞

t

∫ ∞

t

p(s)ds >
1

4
, (1.5)

then (1.2) is oscillatory.

In 1957, Nehari [17] proved that if

lim inf
t→∞

1

t

∫ ∞

t

s2p(s)ds >
1

4
, (1.6)

then (1.2) is oscillatory.

Recently, under the restriction that the coefficients are positive, the oscillation

criteria (1.3)–(1.6) have been obtained for dynamic equations, for example, see [6,7,8].

The purpose of this paper is establish oscillation criteria (1.3)–(1.6) for (1.1). Our

results are essentially new even for second order differential equations and difference

equations, i.e., T = R and T = N. Finally, we consider several examples to illustrate

our main theorems.

2. MAIN RESULTS

For simplicity, let

α(t, u) :=
t− τm − u

σ(t) − u
,

Θ(t) :=

m−1
∏

i=1

θip1(t) +

m−1
∏

i=2

θip2(t) + · · ·+ θm−1pm−1(t) + pm(t).

We begin with the following lemmas.

Lemma 2.1. Let x(t) be an eventually positive solution of (1.1). Then there exists a

T ∗ ∈ [t0,∞)T, sufficiently large, such that

x∆∆(t) ≤ 0, x∆(t) > 0, t ∈ [T ∗,∞)T,

and
m

∑

i=1

pi(t)x(t− τi) ≥ x(t− τm)Θ(t), t ∈ [T ∗,∞)T.

Proof. Let x(t) be an eventually positive solution of (1.1). Then there exists a

t1 ∈ [t0 + τ1,∞)T such that

x(t− τi) > 0, i = 1, 2, . . . , m, t ∈ [t1,∞)T.



528 B. WANG AND Z. XU

From the assumption (ii), there exists a T ∗ ∈ [t1,∞)T such that pi(t) ≥ 0 on [T ∗, T ∗+

τ1 + τm]T, i = 1, 2, . . . , m. Hence, for all t ∈ [T ∗, T ∗ + τ1 + τm]T, it follows from (1.1)

that

x∆∆(t) = −
m

∑

i=1

pi(t)x(t− τi) ≤ 0.

Now we claim that x∆∆(t) ≤ 0 on [T ∗ + τ1 + τm, T
∗ + τ1 + 2τm]T. Indeed, for any

t ∈ [T ∗ + τ1 + τm, T
∗ + τ1 + 2τm]T, we have t − τ1 − τm, t − τi ∈ [T ∗, T ∗ + τ1 + τm]T,

i = 1, 2, . . . , m. Noting that x(t) > 0 and x∆(t) is nonincreasing on [T ∗, T ∗+τ1+τm]T,

we get

x(t− τ1) > x(t− τ1) − x(t− τ1 − τm) =

∫

t−τ1

t−τ1−τm

x∆(s)∆s ≥ x∆(t− τ1)τm,

and

x(t− τ2) − x(t− τ1) =

∫

t−τ2

t−τ1

x∆(s)∆s ≤ x∆(t− τ1)(τ1 − τ2).

Thus,

x(t− τ2) − x(t− τ1) <
τ1 − τ2
τm

x(t− τ1),

i.e.,

x(t− τ1) >
τm

τ1 − τ2 + τm
x(t− τ2) = θ1x(t− τ2).

As the same argument of the above, we can get

x(t− τ2) > θ2x(t− τ3), x(t− τ3) > θ3x(t− τ4), . . . , x(t− τm−1) > θm−1x(t− τm).

So we have

x∆∆(t) = −p1(t)x(t− τ1) − p2(t)x(t− τ2) − · · · − pm(t)x(t− τm)

< −θ1p1(t)x(t− τ2) − p2(t)x(t− τ2) − · · · − pm(t)x(t− τm)

< −θ2[θ1p1(t) + p2(t)]x(t− τ3) − · · · − pm(t)x(t− τm)

< · · ·
< −Θ(t)x(t− τm) ≤ 0.

Therefore, x∆∆(t) ≤ 0 for t ∈ [T ∗ + τ1 + τm, T
∗ + τ1 + 2τm]T, which completes the

proof of our claim.

On the other hand, we can easily get that x∆∆(t) ≤ 0 on [T ∗ + τ1 + 2τm, T
∗ +

τ1 + 3τm]T, · · · , [T ∗ + τ1 + kτm, T
∗ + τ1 + (k + 1)τm]T. Then x∆∆(t) ≤ 0, and

m
∑

i=1

pi(t)x(t− τi) ≥ x(t− τm)Θ(t), t ∈ [T ∗,∞)T.

From the fact that x∆∆(t) ≤ 0 for t ≥ T ∗, we see that x∆(t) is nonincreasing on

[T ∗,∞)T, which implies that x∆(t) is eventually negative or eventually positive on

[T ∗,∞)T. If there exists a t2 ∈ [T ∗,∞)T such that x∆(t2) =: d < 0, then

x∆(t) ≤ x∆(t2) = d, t ∈ [t2,∞)T.
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Integrating both sides of the above from t2 to t, we get

x(t) ≤ x(t2) + d(t− t2) → −∞ as t→ ∞,

which contradicts the fact that x(t) > 0 on [t0,∞)T, and hence x∆(t) > 0 on [T ∗,∞)T.

This completes the proof. �

Lemma 2.2. Assume that there exists T ∗ ≥ t0, sufficiently large, such that

x(t) > 0, x∆(t) > 0, x∆∆(t) ≤ 0 on [T ∗,∞)T. (2.1)

Then

x(t− τm) > α(t, T ∗)xσ(t) for t ≥ T1 ≥ T ∗. (2.2)

Proof. Since x∆(t) is nonincreasing on [T ∗,∞)T. We can choose T1 ≥ T ∗ + τm so that

for t ≥ T1,

xσ(t) − x(t− τm) =

∫

σ(t)

t−τm

x∆(s)∆s ≤ x∆(t− τm)(σ(t) − t+ τm),

and so
xσ(t)

x(t− τm)
≤ 1 +

x∆(t− τm)

x(t− τm)
(σ(t) − t+ τm).

Also, we see

x(t− τm) > x(t− τm) − x(T ∗) =

∫

t−τm

T ∗

x∆(s)∆s ≥ x∆(t− τm)(t− τm − T ∗),

and thus,
x∆(t− τm)

x(t− τm)
<

1

t− τm − T ∗
.

Hence,
xσ(t)

x(t− τm)
< 1 +

σ(t) − t+ τm
t− τm − T ∗

=
σ(t) − T ∗

t− τm − T ∗
=

1

α(t, T ∗)
,

and then we get the desired inequality (2.2). This completes the proof. �

Let us start with a direct extension of Fite theorem [10] to (1.1).

Theorem 2.1. If there exists a positive ∆−differentiable function v(t) such that for

all sufficiently large T ∗,

lim sup
t→∞

∫

t

T ∗

[

v(s)Θ(s)α(s, T ∗) − (v∆
+ (s))2

4v(s)

]

∆s = ∞, (2.3)

where v∆
+ (s) := max{v∆(s), 0}, then (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Without

loss of generality we may assume that x(t) is an eventually positive solution of (1.1),

since the proof in the other case is similar. From Lemma 2.1, we have, for some

T ∗ ∈ [t0,∞)T,

x∆∆(t) ≤ −x(t− τm)Θ(t), t ∈ [T ∗,∞)T. (2.4)
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Let

w(t) := v(t)
x∆(t)

x(t)
. (2.5)

By the product rule, the quotient rule and from (2.4) and (2.5), we have

w∆(t) = v∆(t)
(x∆(t)

x(t)

)σ

+ v(t)
(x∆(t)

x(t)

)∆

=
v∆(t)

vσ(t)
wσ(t) +

v(t)x∆∆(t)

xσ(t)
− v(t)(x∆(t))2

x(t)xσ(t)

≤ v∆(t)

vσ(t)
wσ(t) − v(t)Θ(t)

x(t− τm)

xσ(t)
− v(t)(x∆(t))2

x(t)xσ(t)
. (2.6)

From Lemma 2.2,

x(t− τm) > α(t, T ∗)xσ(t).

Noting that x∆(t) > 0 and x∆(t) is nonincreasing on [T ∗,∞)T, from (2.6) and the

above inequality, we can obtain

w∆(t) ≤ −v(t)Θ(t)α(t, T ∗) +
v∆(t)

vσ(t)
wσ(t) − v(t)

(vσ(t))2
(wσ(t))2

≤ −v(t)Θ(t)α(t, T ∗) +
v∆
+ (t)

vσ(t)
wσ(t) − v(t)

(vσ(t))2
(wσ(t))2. (2.7)

Completing the square of (2.7), we get

w∆(t) ≤ −v(t)Θ(t)α(t, T ∗) +
(v∆

+ (t))2

4v(t)
.

Integrating both sides of the above from T ∗ to t, and rearranging the terms, we have
∫

t

T ∗

[

v(s)Θ(s)α(s, T ∗) − (v∆
+ (s))2

4v(s)

]

∆s ≤ −w(t) + w(T ∗) ≤ w(T ∗),

which contradicts (2.3), and hence the proof is complete. �

We are now ready to state and prove a Kamenev-type criterion [16] for (1.1).

Theorem 2.2. If there exist a positive ∆−differentiable function v(t) and a number

n > 1 such that for all sufficiently large T ∗,

lim sup
t→∞

1

tn

∫

t

T ∗

[

(t− s)nv(s)Θ(s)α(s, T ∗) − δ2(t, s)

4v(s)(t− s)n

]

∆s = ∞, (2.8)

where

δ(t, s) := (t− s)nv∆
+ (s) − nvσ(s)(t− σ(s))n−1,

and v∆
+ (s) is defined in Theorem 2.1, then (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). As in

the proof of Theorem 2.1, we may assume that x(t) is an eventually positive solution

of (1.1). Define w(t) as (2.5). Proceeding as in the proof of Theorem 2.1, there exists
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a T ∗ ∈ [t0,∞)T, sufficiently large, so that (2.7) holds. Multiplying both sides of (2.7),

with t replaced by s, by (t− s)n, integrating with respect to s from T ∗ to t, we get
∫

t

T ∗

(t− s)nv(s)Θ(s)α(s, T ∗)∆s ≤ −
∫

t

T ∗

(t− s)nw∆(s)∆s

+

∫

t

T ∗

(t− s)n
v∆
+ (s)

vσ(s)
wσ(s)∆s−

∫

t

T ∗

(t− s)n
v(s)

(vσ(s))2
(wσ(s))2∆s

= (t− T ∗)nw(T ∗) +

∫

t

T ∗

((t− s)n)∆swσ(s)∆s+

∫

t

T ∗

(t− s)n
v∆
+ (s)

vσ(s)
wσ(s)∆s

−
∫

t

T ∗

(t− s)n
v(s)

(vσ(s))2
(wσ(s))2∆s. (2.9)

We now claim that if t ≥ σ(s) and n ≥ 1 then

((t− s)n)∆s ≤ −n(t− σ(s))n−1. (2.10)

For this, we consider the following two cases:

Case 1. If µ(t) = 0, then

((t− s)n)∆s = −n(t− s)n−1.

Case 2. If µ(t) 6= 0, then

((t− s)n)∆s =
1

µ(s)
[(t− σ(s))n − (t− s)n]

=
−1

σ(s) − s
[(t− s)n − (t− σ(s))n]. (2.11)

Using Theorem 41 [13],

xn − yn ≥ nyn−1(x− y), x ≥ y > 0, n ≥ 1,

we have

(t− s)n − (t− σ(s))n ≥ n(t− σ(s))n−1(σ(s) − s).

Then, from (2.11) and the above, we get

((t− s)n)∆s ≤ −n(t− σ(s))n−1,

which proves (2.10) holds. Substituting (2.10) in (2.9), completing the square, we

obtain
∫

t

T ∗

(t− s)nv(s)Θ(s)α(s, T ∗)∆s ≤ (t− T ∗)nw(T ∗) − n

∫

t

T ∗

(t− σ(s))n−1wσ(s)∆s

+

∫

t

T ∗

(t− s)n
v∆
+ (s)

vσ(s)
wσ(s)∆s−

∫

t

T ∗

(t− s)n
v(s)

(vσ(s))2
(wσ(s))2∆s

= (t− T ∗)nw(T ∗) +

∫

t

T ∗

δ(t, s)

vσ(s)
wσ(s)∆s−

∫

t

T ∗

(t− s)n
v(s)

(vσ(s))2
(wσ(s))2∆s

≤ (t− T ∗)nw(T ∗) +

∫

t

T ∗

δ2(t, s)

4v(s)(t− s)n
∆s.
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So we have

1

tn

∫

t

T ∗

[

(t− s)nv(s)Θ(s)α(s, T ∗) − δ2(t, s)

4v(s)(t− s)n

]

∆s ≤ w(T ∗) <∞,

which contradicts (2.8), and hence the proof is complete. �

In the following, we extend the theorems of Hille [15] and Nehari [17] to (1.1).

For convenience, we introduce the following notations, for all sufficiently large T ∗, set

p∗ := lim inf
t→∞

t

∫ ∞

t

Θ(s)α(s, T ∗)∆s, q∗ := lim inf
t→∞

1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s,

l∗ := lim inf
t→∞

σ(t)

t
, l∗ := lim sup

t→∞

σ(t)

t
.

In order for the definition of p∗ to make sense, we assume that
∫ ∞

t0

Θ(s)α(s, T ∗)∆s <∞.

Theorem 2.3. If for all sufficiently large T ∗,

lim inf
t→∞

t

∫ ∞

t

Θ(s)α(s, T ∗)∆s >
1

4
, (2.12)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). As in

the proof of Theorem 2.1, we may assume that x(t) is an eventually positive solution

of (1.1). Define w(t) as (2.5) by putting v(t) = 1. Proceeding as in the proof of

Theorem 2.1, there is a T ∗ ∈ [t0,∞)T sufficiently large, so that (2.6) holds with

v(t) = 1. From Lemma 2.2 and (2.6), we obtain

w∆(t) ≤ −Θ(t)α(t, T ∗) − (x∆(t))2

x(t)xσ(t)
. (2.13)

Since x∆∆(t) ≤ 0 on [T ∗,∞)T, we have

w∆(t) ≤ −Θ(t)α(t, T ∗) − w(t)wσ(t). (2.14)

From (2.14), we see

w∆(t) ≤ −w(t)wσ(t) for t ∈ [T ∗,∞)T.

and so,
(

− 1

w(t)

)∆

=
w∆(t)

w(t)wσ(t)
≤ −1 for t ∈ [T ∗,∞)T.

Therefore,

− 1

w(t)
+

1

w(T ∗)
=

∫

t

T ∗

w∆(s)

w(s)wσ(s)
∆s ≤ −

∫

t

T ∗

∆s = −(t− T ∗),
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which implies that limt→∞w(t) = 0. Integrating both sides of (2.14) from t to ∞,

using the fact that lim
t→∞

w(t) = 0, we have

w(t) ≥
∫ ∞

t

Θ(s)α(s, T ∗)∆s+

∫ ∞

t

w(s)wσ(s)∆s.

Multiplying both sides of the above by t, we obtain

tw(t) ≥ t

∫ ∞

t

Θ(s)α(s, T ∗)∆s + t

∫ ∞

t

w(s)wσ(s)∆s

= t

∫ ∞

t

Θ(s)α(s, T ∗)∆s+ t

∫ ∞

t

1

sσ(s)
(sw(s)σ(s)wσ(s))∆s

= t

∫ ∞

t

Θ(s)α(s, T ∗)∆s+ t

∫ ∞

t

(sw(s)σ(s)wσ(s))
(−1

s

)∆
∆s. (2.15)

Let

r∗ := lim inf
t→∞

tw(t) and r∗ := lim sup
t→∞

tw(t).

Then, for any ε > 0, by the definition of r∗, r
∗ l∗ and l∗, we can pick t ∈ [T ∗,∞)T,

sufficiently large, such that

r∗ − ε ≤ tw(t) ≤ r∗ + ε, l∗ − ε ≤ σ(t)

t
≤ l∗ + ε. (2.16)

Taking the lim inf of (2.15) as t→ ∞ and substituting (2.16) in it, we get

r∗ ≥ p∗ + (r∗ − ε)2.

Since ε > 0 is arbitrary, we have

r∗ ≥ p∗ + r2
∗, (2.17)

and then

p∗ ≤ r∗ − r2
∗ ≤

1

4
,

which contradicts (2.12), and then the proof is complete. �

Theorem 2.4. If for all sufficiently large T ∗,

lim inf
t→∞

1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s >
l∗

l∗ + 1
, (2.18)

then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Proceeding as in the

proof of Theorem 2.3, there is a T ∗ ∈ [t0,∞)T, sufficiently large, so that (2.14) holds.

Multiplying both sides of (2.14) by (σ(t))2, integrating from T ∗ to t (t ≥ T ∗), dividing

by t, and rearranging the terms, we have

tw(t) ≤ 1

t
T ∗2w(T ∗) +

1

t

∫

t

T ∗

(s2)∆w(s)∆s− 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s

− 1

t

∫

t

T ∗

(σ(s))2w(s)wσ(s)∆s
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=
1

t
T ∗2w(T ∗) − 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s +
1

t

∫

t

T ∗

(s+ σ(s))w(s)∆s

− 1

t

∫

t

T ∗

(σ(s))2w(s)wσ(s)∆s

=
1

t
T ∗2w(T ∗) − 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s +
1

t

∫

t

T ∗

(

1 +
σ(s)

s

)

(sw(s))∆s

− 1

t

∫

t

T ∗

σ(s)

s
(sw(s)σ(s)wσ(s))∆s.

Taking the lim sup of both sides of the above as t→ ∞, we obtain

r∗ ≤ −q∗ + (r∗ + ε)(1 + l∗ + ε) − (r∗ − ε)2(l∗ − ε),

where r∗ and r∗ are as in the proof of Theorem 2.3. Since ε > 0 is arbitrary, we have

r∗ ≤ −q∗ + r∗(1 + l∗) − r2
∗l∗,

i.e.,

q∗ ≤ r∗l∗ − r2
∗l∗. (2.19)

On the other hand, from (2.13), we can get

w∆(t) ≤ −Θ(t)α(t, T ∗) −
(x∆(t)

x(t)

)2 x(t)

xσ(t)

= −Θ(t)α(t, T ∗) − w2(t)

1 + µ(t)w(t)
.

Multiplying the above by (σ(t))2, integrating from T ∗ to t, dividing by t, and rear-

ranging the terms, we get

tw(t) ≤ 1

t
T ∗2w(T ∗) +

1

t

∫

t

T ∗

(s2)∆w(s)∆s− 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s

− 1

t

∫

t

T ∗

(σ(s))2w2(s)

1 + µ(s)w(s)
∆s

=
1

t
T ∗2w(T ∗) − 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s+
1

t

∫

t

T ∗

ψ(s, w(s))∆s, (2.20)

where

ψ(s, w(s)) := (s+ σ(s))w(s) − (σ(s))2w2(s)

1 + µ(s)w(s)
.

We claim that

ψ(s, w(s)) ≤ 1 for s ∈ [T ∗,∞)T.

To see this observe that if we let

g(s, u) := (s+ σ(s))u− (σ(s))2u2

1 + µ(s)u
,

then we have, after some simplification,

g(s, u) =
(2σ(s) − µ(s))u(1 + µ(s)u) − (σ(s))2u2

1 + µ(s)u
=

(2σ(s) − µ(s))u− s2u2

1 + µ(s)u
,
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since s+σ(s) = 2σ(s)−µ(s). We note that if µ(s) = 0, then the maximum of g(s, u)

(with respect to u) occurs at u0 := 1/s. Moreover in the case µ(s) > 0, after some

calculations, one finds that for fixed s > 0, the maximum of g(s, u) for u ≥ 0 occurs

at u0 = 1/s also. Hence, we have

g(s, u) ≤ g(s, u0) = (s+ σ(s))u0 −
(σ(s))2u2

0

1 + µ(s)u0
=
s+ σ(s)

s
− (σ(s))2

s(s+ µ(s))
= 1

for u ≥ 0. Hence, we conclude that ψ(s, w(s)) ≤ 1, and so
∫

t

T ∗

ψ(s, w(s))∆s ≤ t− T ∗.

Substituting the above in (2.20), we get

tw(t) ≤ 1

t
T ∗2w(T ∗) − 1

t

∫

t

T ∗

(σ(s))2Θ(s)α(s, T ∗)∆s+
t− T ∗

t
.

Taking the lim sup of the above as t→ ∞, from (2.16), we get

r∗ ≤ −q∗ + 1,

and then

q∗ ≤ 1 − r∗.

Combining this with (2.19), we get

q∗ ≤ min{1 − r∗, r∗l∗ − r2
∗l∗}, (2.21)

and consequently,

q∗ ≤ min{1 − r∗, r∗l∗},
which implies that

q∗ ≤
l∗

l∗ + 1
,

which contradicts (2.18), and the proof is complete. �

Theorem 2.5. If 0 ≤ p∗ ≤ 1
4

and

q∗ >
1

1 + l∗

[

l∗ − l∗

(1

2
− p∗ −

1

2

√

1 − 4p∗

)]

, (2.22)

then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Proceeding as in the

proof of Theorems 2.3 and 2.4, we have that (2.17) and (2.21) hold, respectively.

From (2.17), we can get that

r∗ ≥ ε∗ :=
1

2
(1 −

√

1 − 4p∗),

and so using (2.21),

q∗ ≤ min{1 − r∗, r∗l∗ − r2
∗l∗} ≤ min{1 − r∗, r∗l∗ − ε2

∗l∗}
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for ε∗ ≤ r∗ ≤ 1, where r∗ and r∗ are as in the proof of Theorem 2.3. Note that

1 − r∗ = r∗l∗ − ε2
∗l∗ when r∗ = ε∗ :=

1

1 + l∗
(1 + ε2

∗l∗),

and after some easy calculations, so

q∗ ≤ 1 − ε∗ =
1

1 + l∗

[

l∗ − l∗

(1

2
− p∗ −

1

2

√

1 − 4p∗

)]

,

which contradicts (2.22), and the proof is complete. �

Remark 2.2. A close look at the proof of Theorem 2.4 shows that the inequality

q∗ ≤ r∗l∗ − r2
∗l∗

holds, when we replace l∗ and l∗ by

λ∗ := lim sup
t→∞

1

t

∫

t

T

σ(s)

s
∆s and λ∗ := lim inf

t→∞

1

t

∫

t

T

σ(s)

s
∆s,

respectively. Then Theorems 2.4 and 2.5 hold with l∗ and l∗ replaced by λ∗ and λ∗,

respectively.

3. EXAMPLES

In this section, we give some examples to illustrate our main results.

Example 3.1. Consider the delay dynamic equation

x∆∆(t) + ax(t− 1) +
b sin t

t
x(t− 1

2
) = 0, t ∈ (0,∞)T, (3.1)

where p1(t) = a, p2(t) = (b sin t)/t for a > 2b > 0, τ1 = 1 and τ2 = 1/2. It is easy to

check that p1(t), p2(t) ≥ 0 on the interval [2nπ, π + 2nπ]T, n = 0, 1, 2, . . . , and for all

t ∈ (0,∞)T,

p1(t) > 0,
τ2
τ1
p1(t) + p2(t) =

a

2
+
b sin t

t
≥ a

2
− b > 0.

Let T ∗ = 1 and v(t) = 1, we have

lim sup
t→∞

∫

t

1

[

v(s)Θ(s)α(s, 1)− (v∆
+ (s))2

4v(s)

]

∆s

≥ lim sup
t→∞

∫

t

1

(a

2
− b

) s− 3
2

σ(s) − 1
∆s = ∞.

Then, by Theorem 2.1, (3.1) is oscillatory.

Example 3.2. Consider the delay differential equation

x′′(t) +
a

t
x(t− 2) +

b cosβt

t
x(t− 1) = 0, t ≥ 1, (3.2)
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where p1(t) = a/t, p2(t) = (b cosβt)/t for 0 < β ≤ π/(12) and a ≥ 4b > 0, τ1 = 2 and

τ2 = 1. It is easy to check that p1(t), p2(t) ≥ 0 on the interval [2nπ/β, (1+4n)π/(2β)],

n = 0, 1, 2, . . . , and for all t ∈ [1,∞),

p1(t) > 0,
τ2
τ1
p1(t) + p2(t) =

a

2t
+
b

t
cos βt ≥ a

2t
− b

t
≥ b

t
> 0.

Let T ∗ = 3. Then, for all t ≥ 4,

Θ(t)α(t, 3) ≥ b(t− 4)

t(t− 3)
.

Let v(t) = 1. Then δ(t, s) = −n(t− s)n−1, and

lim sup
t→∞

1

tn

∫

t

3

[

(t− s)nv(s)Θ(s)α(s, 3)− δ2(t, s)

4v(s)(t− s)n

]

ds

≥ lim sup
t→∞

1

tn

∫

t

3

(t− s)n−2
[b(s− 4)

s(s− 3)
(t− s)2 − n2

4

]

ds

≥ lim sup
t→∞

1

tn

∫

t

3

(t− s)n−2
[b

s
(t− s)2 − b

s(s− 3)
(t− s)2 − n2

4

]

ds

= b lim sup
t→∞

ln t+ constant = ∞.

Therefore, by Theorem 2.2, (3.2) is oscillatory.

Example 3.3. Consider the delay difference equation

∆2x(t) +
( a

t2
sin2 βt

)

x(t− 2) +
( b

t2
cos 2βt

)

x(t− 1) = 0, t ∈ [1,∞)N, (3.3)

where p1(t) = (a sin2 βt)/t2, p2(t) = (b cos 2βt)/t2 for 0 < β ≤ π/(24), and a ≥ 4b > 1,

τ1 = 2 and τ2 = 1. It is easy to check that p1(t), p2(t) ≥ 0 on [nπ/β, (1+4n)π/(4β)]N,

n = 0, 1, 2, . . . , and for all t ∈ [1,∞)N,

p1(t) ≥ 0,
τ2
τ1
p1(t) + p2(t) =

a

2t2
sin2 βt+

b

t2
cos 2βt ≥ b

t2
> 0.

Let T ∗ = 3. Hence, for all t ≥ 4,

Θ(t)α(t, 3) ≥ b(t− 4)

t2(t− 2)
,

and so

lim inf
t→∞

t

∫ ∞

t

Θ(s)α(s, 3)∆s = b lim inf
n→∞

n
∞

∑

i=n

[ 1

i(i− 2)
− 4

i2(i− 2)

]

=
b

2
lim inf
n→∞

n
( 1

n− 2
+

1

n− 1

)

= b.

Therefore, by Theorem 2.3, (3.3) is oscillatory.

Example 3.4. Consider the delay difference equation

∆2
h
x(t) +

a

t2
x(t− 1.5) +

b

t2
cosβt · x(t− 1) +

b

t2
sin

(

βt− π

6

)

x(t− 0.5) = 0, (3.4)
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where t ∈ [0.5,∞) 1

2
N
, p1(t) = a/t2, p2(t) = (b cosβt)/t2, p3(t) = (b sin(βt − /6))/t2

for 0 < β ≤ π/(24), and a ≥ 4
√

3b > 0, τ1 = 1.5, τ2 = 1, and τ3 = 0.5. It is easy to

check that p1(t), p2(t), and p3(t) ≥ 0 on [π/(6β) + (2nπ)/β, π/(2β) + (2nπ)/(β)] 1

2
N
,

n = 0, 1, 2, . . . , and for all t ∈ [0.5,∞) 1

2
N
,

p1(t) =
a

t2
≥ 0,

τ3
τ1 − τ2 + τ3

p1(t) + p2(t) =
a

2t2
+
b

t2
cos βt ≥ (2

√
3 − 1)b

t2
> 0,

(τ1 − τ2) × τ3
(τ1 − τ3)(τ1 − τ2 + τ3)

p1(t) +
τ1 − τ2
τ1 − τ3

p2(t) + p3(t)

=
1

4
p1(t) +

1

2
p2(t) + p3(t) ≥

√
3b

2t2
> 0.

Let T ∗ = 2, then p1(t), p2(t), and p3(t) satisfy the conditions (i) and (ii). Hence, for

all t ≥ 2, we have

Θ(t)α(t, 2) ≥
√

3b(t− 2.5)

2t2(t− 1.5)
.

Then,

p∗ = lim inf
t→∞

t

∫ ∞

t

Θ(s)α(s, 2)∆s

≥ lim inf
n→∞

n

∞
∑

i=n

√
3b(i− 2.5)

4i2(i− 1.5)

=

√
3b

4
lim inf
n→∞

n

∞
∑

i=n

[ 1

i(i− 1.5)
− 2.5

i2(i− 1.5)

]

≥
√

3b

4
lim inf
n→∞

n

∞
∑

i=n

[ 1

i(i− 1)
− 2.5

n2(n− 1.5)

]

=

√
3b

4
,

and

q∗ = lim inf
t→∞

1

t

∫

t

2

(σ(s))2Θ(s)α(s, 2)∆s

≥ lim inf
n→∞

1

n

n−1
∑

i=4

1

2
(i+

1

2
)2

√
3b

2i2
i− 2.5

i− 1.5

=

√
3b

4
lim inf
n→∞

1

n

n−1
∑

i=4

(

1 −
9
4
i+ 5

8

i3 − 1.5i2

)

≥
√

3b

4
lim inf
n→∞

1

n

n−1
∑

i=4

[

1 − 77

32i(i− 1.5)

]

≥
√

3b

4
lim inf
n→∞

1

n

n−1
∑

i=4

[

1 − 77

32i(i− 2)

]

=

√
3b

4
lim inf
n→∞

[

1 − 1921

384n
+

77(2n− 3)

64n(n− 1)(n− 2)

]

=

√
3b

4
.
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Clearly, l∗ = l∗ = 1. Therefore,

(1) Let b > 2
√

3
3

, i.e., q∗ >
l
∗

l∗+1
= 1

2
, by Theorem 2.4, (3.4) is oscillatory;

(2) Let 1
4
< b ≤ 1

2
, then (2.12) holds, by Theorem 2.3, (3.4) is oscillatory.
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