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ABSTRACT. In this paper, we study an HIV-1 infection mathematical model with Holling type-

II incidence. Both local and global mathematical analysis is carried out. By identifying a basic

reproduction number R0, we show that if R0 ≤ 1, the uninfected steady state P0 is the only

equilibrium in the feasible region, and P0 is globally asymptotically stable. Therefore, no HIV-1

infection persists and infected T cells and HIV-1 virus are cleared over time. However, if R0 > 1,

a unique infected steady state P ∗ emerges in the interior of the feasible region and P0 becomes

unstable. We show that the system is uniformly persistent and the unique infected steady state P ∗

is globally asymptotically stable in the interior of the feasible region. Therefore, HIV-1 infection

persists and the concentrations of the healthy cells, infected cells, and HIV-1 virus will settle at the

level of P ∗.
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1. INTRODUCTION

To describe the interaction of HIV-1 virus and T cells, we partition the total T

cells into healthy(uninfected) T cells and infected T cells and study the dynamics be-

tween healthy T cells, infected T cells, and HIV-1 free virus with their concentrations

represented by T (t), T ∗(t) and V (t) at time t, respectively. Then a basic mathemat-

ical model describing the HIV-1 infection can be written in the following form, see

[1-8]:

Ṫ = s − αT − kV T,

Ṫ ∗ = kV T − βT ∗, (1)

V̇ = NβT ∗ − ǫV.

The human body produces T cells and it is assumed that T cells are produced at a

constant rate s and that newly produced T cells are susceptible and healthy. Param-

eters α, β, and ǫ are the per-capita death rates of the healthy T cells, infected T cells,

and the virus particles, respectively. The infection is through a direct contact between
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virus and healthy T cells. The incidence is described by a simple mass-action term

kV T , where k > 0 is the contact rate between virus and healthy T cells. Infected

T cells produce virus and each infected T cell produces N virus during its lifetime.

Other mathematical models have also been developed to describe the HIV-1 infection

in which a logistic proliferation in T cells is assumed, see [8-13] and references therein.

In this paper, we will focus on system (1) with a more general Holling type-II

incidence.

Ṫ = s − αT −
kV T

1 + aV
,

Ṫ ∗ =
kV T

1 + aV
− βT ∗, (2)

V̇ = NβT ∗ − ǫV,

where a ≥ 0, and if a = 0 system (2) becomes system (1). Li and Ma [5] studied sys-

tem (2) with a = 1 and with a time delay; local stability of the uninfected and infected

steady states and global stability of the uninfected steady state are established. In

this paper, for system (2) we will carry out a complete mathematical analysis. Local

and global stability for both the uninfected and infected steady states are carried out.

In the next section, we establish that all solutions of system (2) are bounded and

that a certain bounded region Γ in the nonnegative orthant R3
+ is positively invariant

with respect to (2). After identifying a basic reproduction number R0, we show that

system (2) has a unique uninfected steady state P0 if R0 ≤ 1; whereas if R0 > 1,

system (2) has two steady states in Γ : P0 and a unique infected steady state P ∗ ∈
◦

Γ,

the interior of Γ. Then in Section 3, It is shown that if P0 is the only steady state in

Γ, then it is globally asymptotically stable. However, if R0 > 1, then P ∗ emerges, P0

becomes unstable, and all solutions initiating sufficiently close to P0 move away from

P0 except those starting on the invariant T axis. In this case, the system is uniformly

persistent. In Section 4, stability of the infected steady state P ∗ is investigated. We

show that once the uninfected steady state P ∗ emerges, it is globally asymptotically

stable. The result is obtained using a global stability criterion developed by Li and

Moldulwney [14].

2. BOUNDEDNESS, POSITIVE INVARIANCE,

AND STEADY STATES

It is easy to see that system (2) is positively invariant with respect to the non-

negative orthant R3
+ = {(T, T ∗, V ) : T ≥ 0, T ∗ ≥ 0, V ≥ 0}.

It follows from the first equation of system (2) that if T (0) < s/α, then T (t) < s/α

for all t > 0. Furthermore, adding the first two equations of system (2) gives

Ṫ + Ṫ ∗ = s − αT − βT ∗ ≤ s − η(T + T ∗),
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where η = min{α, β}. Therefore T + T ∗ is bounded, and so is T ∗. Obviously, V is

bounded from the third equation if T ∗ is bounded. We thus proved that there exists

a number M > 0 such that the set

Γ = {(T, T ∗, V ) ∈ R3
+ : T ≤ s/α, T ∗ ≤ M, V ≤ M}

is positively invariant with respect to (2). In the following, we only study the system

(2) in the positively invariant region Γ.

Clearly, P0 = (s/α, 0, 0) is a steady state of (2) and it exists for all feasible

parameter values. The steady state P0 is referred to as the uninfected steady state.

Define

R0 =
skN

αǫ
(3)

as the basic reproduction number. Then the following result establishes the existence

and the uniqueness of the infected steady state P ∗ = (T̄ , T̄ ∗, V̄ ).

Proposition 2.1. If R0 ≤ 1, then system (2) has only the uninfected steady state

P0 = (s/α, 0, 0); whereas if R0 > 1, then system (2) has two steady states: P0 and a

unique infected steady state P ∗ = (T̄ , T̄ ∗, V̄ ), where T̄ > 0, T̄ ∗ > 0, and V̄ > 0 and

T̄ =
asN + ǫ

N(aα + k)
, T̄ ∗ =

skN − αǫ

βN(aα + k)
, V̄ =

skN − αǫ

ǫ(aα + k)
.

3. STABILITY OF THE UNINFECTED STEADY STATE P0

AND UNIFORM PERSISTENCE

Proposition 2.1 shows that system (2) has at most two steady states in Γ. In this

subsection, we study the stability of the uninfected steady state P0. We show that if

P0 is the only steady state in Γ, then it is globally asymptotically stable. However,

when the infected steady state P ∗ emerges in
◦

Γ, P0 becomes unstable. The following

theorem describes the local stability of P0.

Theorem 3.1. If R0 < 1, then P0 is locally asymptotically stable. If R0 = 1, then

P0 is locally stable. If R0 > 1, then P0 is unstable and solutions starting sufficiently

close to P0 move away from P0 except those starting in the invariant T axis.

Proof. The Jacobian matrix of system (2) at P0 is

J(P0) =







−α 0 −ks/α

0 −β ks/α

0 Nβ −ǫ






.

One eigenvalue of J(P0) is λ1 = −α < 0. The other two eigenvalues are determined

by the quadratic equation

λ2 + (β + ǫ)λ + βǫ − Nβks/α = 0,
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and they have negative real parts if and only if βǫ−Nβks/α > 0, which is equivalent

to R0 < 1. If R0 = 1, one eigenvalue is 0 and it is simple. So P0 is stable. If R0 > 1,

one eigenvalue is positive. Therefore P0 is unstable. The last assertion comes from

the instability result for P0 and the first equation of system (2).

Using a uniform persistence result in [15] and a similar argument as in the proof of

Proposition 3.2 in [16], we can show that, when P0 is unstable, system (2) is uniformly

persistent, that is, there exists a constant c > 0, independent of the initial data in
◦

Γ,

such that any solution (T (t), T ∗(t), V (t)) of (2) satisfies

lim inf
t→∞

T (t) ≥ c, lim inf
t→∞

T ∗(t) ≥ c, lim inf
t→∞

V (t) ≥ c

provided (T (0), T ∗(0), V (0)) ∈
◦

Γ. The uniform persistence of (2), together with the

boundedness of solutions proved above, implies the existence of a compact absorbing

set K ⊂
◦

Γ, see [17, 18]. We thus proved the following result.

Proposition 3.2. If R0 > 1, then system (2) is uniformly persistent, and there exists

a compact absorbing set K ⊂
◦

Γ.

Local stability of P0 is established in Theorem 3.1 when R0 ≤ 1. The following

result shows that P0 is globally asymptotically stable in Γ.

Theorem 3.3. Assume that R0 ≤ 1; then P0 is globally asymptotically stable in Γ.

Proof. Let L = NT ∗ + V. Then the derivative of L along a solution of (2) is

L′ =
NkV T

1 + aV
− ǫV = ǫV

(

NkT

ǫ(1 + aV )
− 1

)

≤ ǫV (R0 − 1) ≤ 0

in Γ. L′ = 0 if and only if V = 0 or R0 = 1 and T = s/α. The maximum invariant

set in {(T, T ∗, V ) ∈ Γ : L′ = 0} is the singleton P0. LaSalle’s Invariance Principle

[19, 20] implies that all solutions converge to P0. This and the local stability of P0

established in Theorem 3.1 imply the global asymptotic stability of P0.

Example 3.4. We choose parameter values s = 20; a = 1; α = 0.02; β = 0.3; ǫ =

2.4; k = 0.00018; and N = 10. Then R0 = 0.75, and P0 = (1002.97, 0, 0). Numerical

simulations with these parameter values indicate that all solutions converge to P0,

see Figure 1.
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Figure 1. Global stability of P0 when R0 ≤ 1.

Theorem 3.3 determines the global dynamics of (2) in Γ when R0 ≤ 1. Biologi-

cally, it implies that if R0 ≤ 1, then all infected T cells and virus particles are cleared

over time and no HIV-1 infection persists. The disease dies out and the uninfected T

cell population settles at s/α.

4. STABILITY OF THE INFECTED STEADY STATE P ∗

Proposition 2.1 shows that the infected steady state P ∗ ∈
◦

Γ exists if R0 > 1.

Theorem 3.1 implies that if P ∗ emerges, then P0 becomes unstable. In this section,

we study the stability behavior of P ∗. First, we investigate the local stability of P ∗.

The Jacobian matrix of system (2) at P ∗ = (T̄ , T̄ ∗, V̄ ) is

J(P ∗) =







−α − kV̄

1+aV̄
0 − kT̄

(1+aV̄ )2

kV̄
1+aV̄

−β kT̄
(1+aV̄ )2

0 Nβ −ǫ






.

Notice that kT̄
1+aV̄

= ǫ
N

and the characteristic polynomial associated with J(P ∗) can

be simplified as

P (λ) = λ3 +

(

α + β + ǫ +
kV̄

1 + aV̄

)

λ2

+

[

(β + ǫ)

(

α +
kV̄

1 + aV̄

)

+
βǫV̄

1 + aV̄

]

λ +
βǫ(k + α)V̄

1 + aV̄
.

All coefficients are positive. Thus, by the Routh-Hurwitz conditions, all zeros of P (λ)

have negative real parts if and only if

∆ =

(

α + β + ǫ +
kV̄

1 + aV̄

) [

(β + ǫ)

(

α +
kV̄

1 + aV̄

)

+
βǫV̄

1 + aV̄

]

−
βǫ(k + α)V̄

1 + aV̄
> 0. (4)

Obviously, the last term can be canceled by some terms from the distribution of the

first product. We thus have:

Proposition 4.1. Let R0 > 1; then the infected steady state P ∗ is locally asymptoti-

cally stable.

To establish the global stability of P ∗, we apply a criterion developed by Li and

Muldowney [14] which we briefly summarize here.

Let D be an open set in Rn and f : x ∈ D 7→ f(x) ∈ Rn be a C1 function.

Consider the differential equation

x′ = f(x). (5)
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Denote by x(t, x0) the solution to (5) such that x(0, x0) = x0. A set K is said to

be absorbing in D for system (5) if x(t, K1) ⊂ K for each compact set K1 ⊂ D and

sufficiently large t. We make the following assumptions:

(H1) System (5) has a unique equilibrium point x̄ in D.

(H2) System (5) has a compact absorbing set K ⊂ D.

Let | · | denote a vector norm in Rn and also denote the induced matrix norm in

Rn×n, the space of all n×n matrices. For each matrix X in Rn×n, define the Lozinskĭı

measure with respect to the norm | · | as (see [21], p. 41)

µ(X) = lim
h→0+

|I + hX| − 1

h
.

Then µ(X) is well defined and µ(X) dominates the real part of eigenvalues of matrix

X, see [21].

Let X be an n×n matrix in Rn×n. The second additive compound matrix of X,

denoted by X [2], is an
(

n

2

)

×
(

n

2

)

matrix. For instance, if X = (xij) is a 3 × 3 matrix,

then

X [2] =







x11 + x22 x23 −x13

x32 x11 + x33 x12

−x31 x21 x22 + x33






. (6)

For a complete discussion of compound matrices and their applications in differential

equations, we refer the readers to [22, 23].

Let P : D 7−→ P (x) be an
(

n

2

)

×
(

n

2

)

matrix-valued function that belongs to C1

on D and let µ be a Lozinskĭı measure on RN×N , where N =
(

n

2

)

. Define a quantity

q̄2 by

q̄2 = lim sup
t→∞

sup
x0∈K

1

t

∫ t

0

µ(X(x(s, x0)))ds, (7)

where

X = PfP
−1 + PJ [2]P−1,

the matrix Pf is obtained by replacing each entry pij of P by its derivative in the

direction of f, (pij)f , and J [2] is the second additive compound matrix of the Jacobian

matrix J of system (5). The following result is proved by Li and Muldowney in [14].

Lemma 4.2. For system (5), assume that D is simply connected and that the assump-

tions (H1) and (H2) hold. Then the unique equilibrium x̄ is globally asymptotically

stable in D if there exists a function P and a Lozinskĭı measure µ such that q̄2 < 0.

Apparently,
◦

Γ is simply connected and P ∗ is the unique equilibrium in
◦

Γ when

R0 > 1. Proposition 3.1 implies the existence of a compact absorbing set K ⊂
◦

Γ.

Now we prove that P ∗ is globally asymptotically stable.

Theorem 4.3. Assume that R0 > 1. Then P ∗ is globally asymptotically stable in
◦

Γ.
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Proof. To use Lemma 4.1, we need to show that there exists a function P and a

Lozinskĭı measure µ such that q̄2 defined in (7) satisfies q̄2 < 0.

The Jacobian matrix J associated with the general solution (T (t), T ∗(t), V (t)) to

(2) is

J =







−α − kV
1+aV

0 − kT
(1+aV )2

kV
1+aV

−β kT
(1+aV )2

0 Nβ −ǫ







and its second additive compound matrix J [2] is, by (6),

J [2] =







−α − β − kV
1+aV

kT
(1+aV )2

kT
(1+aV )2

Nβ −α − ǫ − kV
1+aV

0

0 kV
1+aV

−β − ǫ






.

Set the function P (x) = P (T, T ∗, V ) = diag{1, T ∗/V, T ∗/V }. Then we have

PfP
−1 = diag{0, Ṫ ∗/T ∗ − V̇ /V, Ṫ ∗/T ∗ − V̇ /V },

and

X = PfP
−1 + PJ [2]P−1

=













−α − β − kV
1+aV

kTV
(1+aV )2T ∗

kTV
(1+aV )2T ∗

NβT ∗

V
Ṫ ∗

T ∗
− V̇

V
− α − ǫ − kV

1+aV
0

0 kV
1+aV

Ṫ ∗

T ∗
− V̇

V
− β − ǫ













=

[

X11 X12

X21 X22

]

where X11 = [−α − β − − kV
1+aV

], X12 = [ kTV
(1+aV )2T ∗

, kTV
(1+aV )2T ∗

], X21 = [NβT ∗/V, 0]T ,

and

X22 =





Ṫ ∗

T ∗
− V̇

V
− α − ǫ − kV

1+aV
0

kV
1+aV

Ṫ ∗

T ∗
− V̇

V
− β − ǫ



 .

It is easy to see that |(u, v, w)| = max{|u|, |v| + |w|} defines a norm in R3. Let µ be

the Lozinskĭı measure with respect to this norm. Then we have the estimate, (see

[24]),

µ(X) ≤ max{g1, g2} (8)

where

g1 = µ1(X11) + |X12|, and g2 = |X21| + µ1(X22),

and |X12|, |X21| are the matrix norm with respect to the l1 vector norm, and µ1 is

the Lozinskĭı measure with respect to l1 norm. More specifically, µ1(X11) = −p −
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β, |X12| = kTV/T ∗, |X21| = NβT ∗/V, and µ1(X22) can be evaluated by the following,

(see [21]),

µ1(X22) = max

{

Ṫ ∗

T ∗
−

V̇

V
− α − ǫ,

Ṫ ∗

T ∗
−

V̇

V
− β − ǫ

}

=
Ṫ ∗

T ∗
−

V̇

V
− ǫ + max {−α,−β} ≤

Ṫ ∗

T ∗
−

V̇

V
− ǫ − min {α, β} .

Using the fact that Ṫ ∗/T ∗ = kV T
(1+V )T ∗

− β and V̇ /V = NβT ∗/V − ǫ, it follows that

g1 = −α − β −
kV

1 + aV
+

kTV

(1 + aV )2T ∗

≤ −α − β −
kV

1 + aV
+

kTV

(1 + aV )T ∗
≤

Ṫ ∗

T ∗
− α

g2 ≤
NβT ∗

V
+

Ṫ ∗

T ∗
−

V̇

V
− ǫ − min{α, β} =

Ṫ ∗

T ∗
− min {α, β}

Therefore µ(X) ≤ Ṫ ∗

T ∗
− η as t becomes large, where η = min{α, β}.

Let (T (t), T ∗(t), V (t)) be any solution initiating in K and let t̄ be the uniform

time such that (T (t), T ∗(t), V (t)) ∈ K for all t ≥ t̄. Then along each such solution

(T (t), T ∗(t), V (t)) to (2) such that (T (0), T ∗(0), V (0)) ∈ K and t > t̄, we have

1

t

∫ t

0

µ(X)ds ≤
1

t

∫ t̄

0

µ(X)ds +
1

t
ln

T ∗(t)

T ∗(t̄)
−

t − t̄

t
η.

The boundedness of T ∗ implies q̄2 < 0, completing the proof.

Example 4.4. We choose parameter values s = 20; a = 1; α = 0.02; β = 0.3; ǫ =

2.4; k = 0.0018; and N = 10. Then R0 = 7.5, and P ∗ = (928.44, 4.7706, 5.9633).

Numerical simulations with these parameter values indicate that all solutions converge

to P ∗, see Figure 2.
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Figure 2. Global stability of P ∗ when R0 > 1.

5. DISCUSSION

In this paper, we study a mathematical model that describes the interaction

between HIV-1 virus and T cells. A general Holling type-II incidence form is applied.

By identifying a basic reproduction number R0, we show that if R0 ≤ 1 only the

uninfected steady state P0 exists and it is globally asymptotically stable in the feasible
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region. Therefore, all infected T cells and HIV virus will be cleared over time and the

HIV infection will die out. However, if R0 > 1, there is a unique infected steady state

emerges and it becomes globally asymptotically stable in the interior of the feasible

region. Therefore, the HIV infection will persist and the concentrations of T healthy

T cells, infected T cells and free HIV virus will settle at the level of P ∗.

Oscillations have been observed from HIV models with a logistic growth governing

term. However, in our model, numerical simulations show that no oscillations occur

as solutions converge to either R0 or R∗. This is consistent with the clinical data

on positive HIV patients, in particular, when solutions converge to the global stable

equilibrium P ∗.

When showing the global stability of the uninfected steady state P0, a Lyapunov

function is found and used. The global stability of the infected steady state P ∗ is

established by using a new global stability criterion developed by Li and Muldowney

[14], which has been used successfully in other higher dimensional mathematical mod-

els [12, 13, 16].
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