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ABSTRACT. In this paper, we study the existence of periodic solutions of Volterra type integral

equations with finite delay. These equations often arise from delay differential equations. Banach

fixed point theorem, Krasnosel’skii’s fixed point theorem, and a combination of Krasnosel’skii’s

and Schaefer’s fixed point theorems are employed in the analysis. The combination theorem of

Krasnosel’skii and Schaefer requires an a priori bound on all solutions. We employ Liapunov’s

direct method to obtain such an a priori bound. In the process, we compare these theorems in

terms of assumptions and outcomes.
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1. Introduction

To study the qualitative behavior of ordinary or functional differential equations,

one normally inverts these into integral equations. The resulting integral equation is

frequently a Volterra type equation. The integrals of the Volterra equation can take

the form
∫

t

t−h

, or

∫

t

t0

, or

∫

t

−∞

,

depending on the duration of “heredity.” For example, the delay functional differential

equation

x′(t) = ax(t) − q(x(t), x(t− h)) + r(t), h > 0, a 6= 0, (1.1)

can be inverted into the integral equation

x(t) = x(t− h)eah −

∫

t

t−h

q(x(s), x(s− h))ea(t−s)ds+ p(t), (1.2)

if the integration is carried out from t−h to t. Examples of delay functional differential

equations and their applications can be found in [14] and the references therein.

In the present paper we consider the following generalization of (1.2):

x(t) = f(t, x(t), x(t− h)) −

∫

t

t−h

C(t, s)g(s, x(s), x(s− h))ds, (1.3)
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where f : R×R×R → R, g : R×R×R → R, and C : R×R → R, are all continuous.

We refer to (1.3) as a Volterra type integral equation with finite delay. We study the

existence of continuous periodic solutions of (1.3) under suitable assumptions on the

functions f , g, and C.

Generally, a fixed point theorem is used to study the existence of periodic solu-

tions to this type of equation. We employ Banach fixed point theorem, also known

as the contraction principle, Krasnosel’skii’s fixed point theorem, and a fixed point

theorem which is a combination of Krasnosel’skii’s theorem and Schaefer’s fixed point

theorem. This combination theorem was obtained by Burton and Kirk [4]. In our

current paper, we refer to this as Theorem Krasnosel’skii-Schaefer. We also refer to

Krasnosel’skii’s theorem as Theorem Krasnosel’skii, and Schaefer’s theorem as The-

orem Schaefer. Statements of these theorems are provided at the end of this section.

In the process of obtaining periodic solutions of (1.3), we compare these theorems

in terms of assumptions and outcomes. As we know, Banach fixed point theorem gives

the uniqueness of the solution, but it restricts the sizes of the functions involved in

the equation. In particular, we observed that for equation (1.3), Banach’s fixed point

theorem requires functions C and g to be small for a given f . Likewise, we found

that Krasnosel’skii’s theorem places some size or growth restrictions on functions C

and g. On the other hand, Theorem Krasnosel’skii-Schaefer does not place any size

or growth restrictions on these functions. However, due to Schaefer’s fixed point the-

orem, Theorem Krasnosel’skii-Schaefer requires an a priori bound on all solutions.

Following a technique similar to that of Burton and Kirk [4], we employed Liapunov’s

direct method to obtain such an a priori bound on all periodic solutions of (1.3).

We used a Liapunov functional in the analysis and found that functions C and g

need to satisfy certain sign conditions. One might be able to obtain the required a

priori bound without these sign conditions, by employing a different method, or con-

structing a suitable Liapunov functional different from ours. Our analysis, therefore,

indicates that the use of Theorem Krasnosel’skii-Schaefer to study periodic solutions

of equations like (1.3) has potential for yielding better results than the use of Theorem

Krasnosel’skii alone.

Related to Schaefer’s theorem, the degree-theoretic work of Granas [11], which

also requires an a priori bound on all solutions, has been used by many researchers

to study the existence of bounded and/or periodic solutions of certain equations (cf.

[5-7], [9], [10], and [12]). Recently, some researchers have studied these existence

results for functional equations using fixed point theorems on time scales. We refer

readers interested in time scales to [1], [16], and the references therein.

We remark that in this paper we used Liapunov’s method for the integral equation

(1.3). Although Liapunov’s direct method has been used extensively for ordinary and

functional differential equations, its use on integral equations is relatively new and
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somewhat limited. Readers interested in Liapunov’s method for integral equations

will find [3] a very useful resource.

In a parallel article [15], the author has studied periodic solutions of an integral

equation with infinite heredity employing the same fixed point theorems used in this

paper.

For results on basic existence theory for Volterra type integral equations, we refer

readers to [8], [13], and [18].

Theorem Krasnosel’skii. ([19]) Let M be a closed convex subset of a Banach space

S. Suppose A and B map M into S such that

(i) x, y ∈M , implies Ax+By ∈M ,

(ii) A is continuous and AM is contained in a compact subset of S,

(iii) B is a contraction mapping.

Then there exists z ∈M with z = Az +Bz.

Theorem Schaefer. ([19]) Let S be a normed space, H a continuous mapping of S

into S which is compact on each bounded subset X of S. Then either (i) the equation

x = λHx has a solution for λ = 1, or (ii) the set of all such solutions x, for 0 < λ < 1,

is unbounded.

Theorem Krasnosel’skii-Schaefer. ([4]) Let S be a Banach space. Suppose A

and B map S into S, where B is a contraction, and A is continuous with A mapping

bounded sets into compact sets. Then either (i) x = λB(x

λ
) + λAx has a solution in

S for λ = 1, or (ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.

2. Solution by Banach Fixed Point Theorem

In this section, we employ Banach fixed point theorem on (1.3), and obtain a

unique periodic solution. In addition to the basic continuity conditions on functions

f, g, and C, we assume:

(A1) there exists a constant T > 0 such that

f(t+ T, x, y) = f(t, x, y),

g(t+ T, x, y) = g(t, x, y),

C(t+ T, s+ T ) = C(t, s);

(A2) there exist positive constants a, b, c, and d such that

|f(t, x1, y1) − f(t, x2, y2)| ≤ a|x1 − x2| + b|y1 − y2|,

|g(t, x1, y1) − g(t, x2, y2)| ≤ c|x1 − x2| + d|y1 − y2|,
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with

(a+ b) + (c+ d)hC̄ < 1,

where

C̄ = max{|C(t, s)| : 0 ≤ t ≤ T, −h ≤ s ≤ T}.

Let PT be the Banach space of all continuous T -periodic real-valued functions

with the supremum norm ‖ · ‖.

Theorem 2.1. Suppose (A1) and (A2) hold. Then (1.3) has a unique continuous

T -periodic solution.

Proof. For ϕ ∈ PT let

(Pϕ)(t) = (Bϕ)(t) + (Aϕ)(t), (2.1)

where

(Bϕ)(t) = f(t, ϕ(t), ϕ(t− h)) (2.2)

and

(Aϕ)(t) = −

∫

t

t−h

C(t, s)g(s, ϕ(s), ϕ(s− h))ds. (2.3)

Clearly, (Bϕ)(t) is continuous and T -periodic in t. Using (A1), one can easily

verify that (Aϕ)(t) is T -periodic in t. Since C is continuous, it is uniformly continuous

for 0 ≤ t ≤ T, −h ≤ s ≤ T . Therefore, we can say that for each ε > 0 there

exists a δ > 0 such that u, v ∈ [0, T ], s, t ∈ [−h, T ], |u − v| + |s − t| < δ implies

|C(u, s) − C(v, t)| ≤ ε.

Since g is continuous, it is uniformly continuous on a set [−h, T ] × [−m,m] ×

[−m,m] for any m > 0. Also, g is T -periodic in t. Therefore, g is bounded on that

set.

Then for any ϕ ∈ PT with ||ϕ|| ≤ m, there exists a constant Ḡ > 0 such that

|g(t, ϕ(t), ϕ(t− h))| ≤ Ḡ for t ∈ R. (2.4)

Therefore, one can see that (Aϕ)(t) defined in (2.3) is continuous in t. It follows

from (2.1) that Pϕ ∈ PT for each ϕ ∈ PT .

Now, we show that P is a contraction mapping on PT . Let ϕ, ψ ∈ PT with

||ϕ|| ≤ m, ||ψ|| ≤ m. Then,

|(Pϕ)(t) − (Pψ)(t)| ≤ |(Bϕ)(t) − (Bψ)(t)| + |(Aϕ)(t) − (Aψ)(t)|

≤ |f(t, ϕ(t), ϕ(t− h)) − f(t, ψ(t), ψ(t− h))|

+
∣

∣

∣
−

∫

t

t−h

C(t, s)g(s, ϕ(s), ϕ(s− h))ds

+

∫

t

t−h

C(t, s)g(s, ψ(s), ψ(s− h))ds
∣

∣

∣

≤ a|ϕ(t) − ψ(t)| + b|ϕ(t− h) − ψ(t− h)|
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+

∫

t

t−h

|C(t, s)||g(s, ϕ(s), ϕ(s− h)) − g(s, ψ(s), ψ(s− h))|ds

≤ (a + b)||ϕ− ψ|| +

∫

t

t−h

|C(t, s)|(c+ d)||ϕ− ψ||ds

≤
[

(a+ b) + (c+ d)C̄h
]

||ϕ− ψ||.

This shows that P is a contraction on PT by assumption (A2). Therefore, by

Banach fixed point theorem, there exists a unique function ϕ ∈ PT such that Pϕ = ϕ;

ϕ is the unique solution of (1.3). This concludes the proof of Theorem 2.1.

We remark that to satisfy the condition (a+b)+(c+d)C̄h < 1 of (A2), (c+d)C̄

needs to be small if (a+ b) is close to one since h is fixed. This means that to apply

Banach fixed point theorem on (1.3), one may have to choose functions C and g small

for a given f .

3. Solution by Krasnosel’skii’s Fixed Point Theorem

In this section, we apply Theorem Krasnosel’skii to (1.3) to obtain a periodic

solution. Let PT be the Banach space defined in Section 2. Let m > 0 be any

constant. Then

M = {ϕ ∈ PT : ||ϕ|| ≤ m} (3.1)

is a closed convex subset of PT . Using (2.3), we define a mapping A : M → PT , i.e.,

for ϕ ∈M,

(Aϕ)(t) = −

∫

t

t−h

C(t, s)g(s, ϕ(s), ϕ(s− h))ds. (3.2)

We have already shown in Section 2 that (Aϕ)(t) is T -periodic and continuous in

t, and hence Aϕ ∈ PT for ϕ ∈M . Also, in Section 2 we established that the function

g is bounded on [−h, T ]× [−m,m]× [−m,m]. So, for each ϕ ∈M , there exists Ḡ > 0

satisfying (2.4). Therefore, for each ϕ ∈M ,

|(Aϕ)(t)| ≤

∫

t

t−h

|C(t, s)||g(s, ϕ(s), ϕ(s− h))|ds

≤ C̄Ḡh (3.3)

where C̄ is the constant in (A2). This proves that the set {Aϕ : ϕ ∈ M} is (uniformly)

bounded. The arguments used earlier to show the continuity of (Aϕ)(t) in t, will in

fact prove that the set {Aϕ : ϕ ∈ M} is equicontinuous. Therefore, by the Arzela-

Ascoli theorem, A maps M into a compact set.

Now, we show that mapping A of (3.2) is continuous. For that, pick ϕ, ψ ∈ M .

Then for 0 ≤ u ≤ T ,

|(Aϕ)(u) − (Aψ)(u)|
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≤

∫

t

t−h

|C(t, s)||g(s, ϕ(s), ϕ(s− h)) − g(s, ψ(s), ψ(s− h))|ds (3.4)

Once again, g is continuous and periodic in t implies that g is uniformly con-

tinuous on[−h, T ] × [−m,m] × [−m,m]. Since C is bounded on [0, T ] × [−h, T ], we

can make the right side of (3.4) as small as we wish. This proves that mapping A is

continuous. Thus, condition (ii) of Theorem Krasnosel’skii is satisfied.

Using (2.2) we define B : M → PT , i.e., for ϕ ∈M ,

(Bϕ)(t) = f(t, ϕ(t), ϕ(t− h)).

We know (Bϕ)(t) is continuous and T -periodic in t and hence Bϕ ∈ PT for each

ϕ ∈M .

Assume that

(A3) there exist positive constants a and b such that

|f(t, x1, y1) − f(t, x2, y2)| ≤ a|x1 − x2| + b|y1 − y2|, a+ b < 1,

for all t ∈ R.

Clearly, when (A3) holds then B is a contraction, which satisfies condition (iii)

of Theorem Krasnosel’skii. Let

m̄ = max{|f(t, 0, 0)| : 0 ≤ t ≤ T}. (3.5)

Assume g is bounded by a constant Ḡ. Choose a constant m such that

m̄+ C̄Ḡh

1 − (a + b)
≤ m, (3.6)

where C̄ is defined in (A2). Now, consider the set M defined in (3.1) for the m of

(3.6). For ϕ, ψ ∈M , we have

|(Aϕ)(t)+(Bψ)(t)| = |f(t, ψ(t), ψ(t−h))|+|

∫

t

t−h

C(t, s)g(s, ϕ(s), ϕ(s−h))ds|. (3.7)

Notice that

|f(t, ψ(t), ψ(t− h))| ≤ |f(t, ψ(t), ψ(t− h)) − f(t, 0, 0)| + |f(t, 0, 0)|

≤ a|ψ(t)| + b|ψ(t− h)| + m̄

≤ (a + b)||ψ|| + m̄. (3.8)

Then, from (3.3), (3.6), (3.7), and (3.8), we obtain

|(Aϕ)(t) + (Bψ)(t)| ≤ (a + b)m+ m̄+ C̄Ḡh ≤ m.

This proves that for ϕ, ψ ∈ M we have Aϕ + Bψ ∈ M , which establishes condition

(i) of Theorem Krasnosel’skii.

Now we prove the existence of a periodic solution of (1.3) in the next theorem.
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Theorem 3.1. Suppose assumptions (A1) and (A3) hold. Then there exists a

continuous T -periodic solution of (1.3).

Proof. From the preceding work it follows from Theorem Krasnosel’skii that there

exists a function ϕ ∈ M such that ϕ = Aϕ + Bϕ. This function ϕ is a solution of

(1.3).

Remark. One can see from condition (3.6) that if (a + b) is close to one then the

constants C̄ and Ḡ need to be small, which means the functions C and g need to be

small. Also, observe that if (a + b) is close to one then |f(t, 0, 0)| needs to be small.

4. Solution by Theorem Krasnosel’skii-Schaefer

In this section, we employ Theorem Krasnosel’skii-Schaefer stated in the intro-

duction section. We continue to assume that functions f, g, and C are all continuous,

and assumptions (A1) and (A3) hold.

Let PT be the Banach space defined in Section 2. Consider the mappings B and

A from PT into PT defined by (2.2) and (2.3) respectively. We have seen in Section 2

that B is a contraction with contraction constant (a+ b) of (A3). Also, we have seen

that A is a continuous mapping from PT into PT and that A maps bounded sets into

compact sets.

Next, notice that if mapping B is defined by

(Bx)(t) = f(t, x(t), x(t− h))

then for any scalar λ,
(

λB(
x

λ
)
)

(t) = λf

(

t,
x(t)

λ
,
x(t− h)

λ

)

. (4.1)

Lemma 4.1 ([3, Proposition 6.1.1]). The mapping (λB( 1
λ
)) defined in (4.1) is a

contraction on PT .

Proof. First notice that for x ∈ PT , (x

λ
) ∈ PT . So, B(x

λ
) ∈ PT because B is a

mapping from PT into PT . Therefore, λB(x

λ
) ∈ PT . Now, for any x, y ∈ PT , it follows

from (A3) that
∣

∣

∣
λB(

x

λ
)(t) − λB(

y

λ
)(t)

∣

∣

∣
=

∣

∣

∣

∣

λf

(

t,
x(t)

λ
,
x(t− h

λ

)

− λf

(

t,
y(t)

λ
,
y(t− h)

λ

)
∣

∣

∣

∣

= λ

[

a

∣

∣

∣

∣

x(t)

λ
−
y(t)

λ

∣

∣

∣

∣

+ b

∣

∣

∣

∣

x(t− h)

λ
−
y(t− h)

λ

∣

∣

∣

∣

]

≤ (a+ b)||x− y||.

Therefore, (λB( 1
λ
)) is a contraction with contraction constant a + b < 1. This con-

cludes the proof of Lemma 4.1.

We have already shown in the previous section that A defined in (2.3) (also in

(3.2)) is a continuous mapping on PT and it maps bounded sets into compact sets.
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So, for any λ, 0 < λ ≤ 1, the same properties hold for mapping λA. Therefore, by

Theorem Krasnosel’skii-Schaefer, the equation

x = λB(
x

λ
) + λAx

has a solution x ∈ PT provided the set of all solutions x, 0 < λ < 1, is bounded. This

means if we can show that all solutions of

x(t) = λf

(

t,
x(t)

λ
,
x(t− h)

λ

)

− λ

∫

t

t−h

C(t, s)g(s, x(s), x(s− h))ds. (4.2)

for all λ, 0 < λ < 1, are bounded by a fixed constant, independent of λ, then (1.3)

has a continuous T- periodic solution. In the next lemma, we show the existence of

such a fixed bound on all periodic solutions of (4.2) for all λ, 0 < λ < 1.

Lemma 4.2. Assume (A1) and (A3) hold. Also, assume

(A4) xg(t, x, y) ≥ 0, and there exists β > 0 and L > 0 such that

[

− (1 − a)xg(t, x, y) + b|y||g(t, x, y)|+ m̄|g(t, x, y)|
]

≤ L− β|g(t, x, y)|,

where a and b are the constants defined in (A3), and m̄ is the constant defined in

(3.5);

(A5) C(t, t− h) = 0, Cs(t, t − h) ≥ 0, Cst(t, s) ≤ 0, and Cs, Cst are continuous

for t− h ≤ s ≤ t.

Then for any λ, 0 < λ ≤ 1, if a T -periodic function x satisfies (4.2) then there exists

a positive constant K, independent of λ, such that ||x|| < K.

Proof. Let x be a T−periodic solution of (4.2). Define a Liapunov functional

V (t) := V (t, x(·)) = λ2

∫

t

t−h

Cs(t, s)

(
∫

t

s

g(u, x(u), x(u− h))du

)2

ds. (4.3)

One can easily verify that V (t) is T -periodic in t. Differentiating (4.3) and using (A5)

we get

V ′(t) ≤ 2λ2g(t, x(t), x(t− h))

∫

t

t−h

Cs(t, s)

∫

t

s

g(u, x(u), x(u− h))duds

Now, using integration by parts, and (A5) again, we obtain

V ′(t) ≤ 2λ2g(t, x(t), x(t− h))

∫

t

t−h

C(t, s)g(s, x(s), x(s− h))ds.

Then from (4.2), we have

V ′(t) ≤ 2λg(t, x(t), x(t− h))
(

λf
(

t,
x(t)

λ
,
x(t− h)

λ

)

− x(t)
)

.

From (3.8) one can see that
∣

∣

∣

∣

λf(t,
x(t)

λ
,
x(t− h)

λ
)

∣

∣

∣

∣

≤ a|x(t)| + b|x(t− h)| + m̄
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where m̄ is the constant defined in (3.5). So,

V ′(t) ≤ 2λ
[

|g(t, x(t), x(t− h))|
{

a|x(t)| + b|x(t− h)| + m̄
}

−x(t)g(t, x(t), x(t− h))]

= 2λ
[

− (1 − a)x(t)g(t, x(t), x(t− h)) + b|x(t− h)||g(t, x(t), x(t− h))|

+m̄|g(t, x(t), x(t− h))|
]

≤ λ
[

2L− 2β|g(t, x(t), x(t− h))|
]

.

Assumption (A4) is used in the last step of the above inequality.

Now, integrating both sides of the above inequality from 0 to T , and using the

T -periodicity of V yields

0 = V (T ) − V (0) ≤ −2λβ

∫

T

0

|g(t, x(t), x(t− h))|dt+ 2λLT.

Therefore,
∫

T

0

|g(s, x(s), x(s− h))|ds ≤
LT

β
.

Since x ∈ PT and g ∈ PT , there exists a constant N such that
∫

t

t−h

|g(s, x(s), x(s− h))|ds ≤ N.

So, for any T -periodic solution x(t), (4.2) gives

|x(t)| ≤
∣

∣λf

(

t,
x(t)

λ
,
x(t− h)

λ

)

∣

∣ + λ
∣

∣

∫

t

t−h

C(t, s)g(s, x(s), x(s− h))ds
∣

∣

≤ a|x(t)| + b|x(t− h)| + m̄+ λC̄

∫

t

t−h

|g(s, x(s), x(s− h))|ds

≤ (a + b)||x|| + m̄+ λC̄N.

This implies

||x|| ≤
m̄+ C̄N

1 − (a + b)
:= K.

This concludes the proof of Lemma 4.2.

Therefore, we have the following theorem.

Theorem 4.1. Suppose assumptions (A1), (A3) - (A5) hold. Then there exists a

continuous T -periodic solution of (1.3).

Proof. Proof of this theorem follows from Theorem Krasnosel’skii - Schaefer. All

required work has already been shown.

Remark. We observed that in this section no growth or size restrictions are placed

on the functions C and g, although we had to use some sign conditions as shown in

(A4) and (A5). However, we used these sign conditions only to obtain an a priori

bound employing Liapunov’s method, which requires construction of a suitable Lia-

punov functional. We used one such functional for equation (1.3). It is possible that



66 MUHAMMAD N. ISLAM

one can employ an alternative method to Liapunov’s, or perhaps construct an entirely

different Liapunov functional that may not need these sign conditions. Therefore, our

analysis indicates that the use of Theorem Krasnosel’skii-Schaefer to study periodic

solutions of equations like (1.3) has potential for yielding better results than the use

of Theorem Krasnosel’skii alone.

Another Remark. In [2], Burton introduced a type of contraction called “large con-

traction” and proved that Krasnosel’skii’s theorem holds if the contraction property

of the mapping B is replaced by a large contraction. Later in [17], Liu and Li intro-

duced a more general concept of contraction called “separate contraction.” In that

article, the authors have shown that every large contraction is a separate contraction,

and that Krasnosel’skii’s theorem as well as Theorem Krasnosel’skii-Schaefer hold if

the mapping B is a separate contraction. Therefore, the results of Sections 3 and

4 of our present paper hold if the function f of equation (1.3) defines a separate

contraction or a large contraction. For definitions of separate contraction and large

contraction, and for examples of functions f that define these types of contractions,

we refer the reader to [17].
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