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ABSTRACT. This paper investigates the existence of solutions for a boundary value problem of

fractional differential inclusions of order q ∈ (1, 2] with four-point nonlocal boundary conditions

involving convex and non-convex multivalued maps. The main tools of our study are the nonlinear

alternative of Leray Schauder type and some suitable fixed point theorems.
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1. INTRODUCTION

In recent years, there has been a significant progress in the investigation of initial

and boundary value problems of fractional differential equations. Such problems arise

in a variety of areas of applied mathematics, physics, variational problems of control

theory, chemistry, biology, economics, biophysics, fitting of experimental data, etc.

[1, 2]. It is found that the differential equations of arbitrary order provide an excellent

instrument for the description of memory and hereditary properties of various ma-

terials and processes. With these features, the fractional-order models become more

realistic and practical than the classical integer-order models, in which such effects

are not taken into account. The advantages of fractional derivatives become appar-

ent in modelling mechanical and electrical properties of real materials. In view of the

recent interest in fractional calculus, the subject of differential inclusions of fractional

order has attracted the attention of many researchers. For some recent work on the

subject, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein.

In this paper, we study the existence of solutions for a nonlocal four-point bound-

ary value problem of differential inclusions of order q ∈ (1, 2] involving convex and
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non-convex multivalued maps. Our existence results are based on the nonlinear al-

ternative of Leray Schauder type and some suitable theorems of fixed point theory.

Precisely, we consider the following problem
{

cDqx(t) ∈ F (t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x′(0) + ax(η1) = 0, bx′(1) + x(η2) = 0, 0 < η1 ≤ η2 < 1, a, b ∈ (0, 1)
(1.1)

where cDq denotes the Caputo fractional derivative of order q, and F : [0, 1] × R →

P(R) is a multivalued map, P(R) is the family of all non-empty subsets of R.

Here we remark that multi-point boundary conditions are important in various

physical problems of applied science when the controllers at the end points of the

interval (under consideration) dissipate or add energy according to the sensors located

at intermediate points [13].

2. PRELIMINARIES

Let C([0, 1]) denote a Banach space of continuous functions from [0, 1] into R with

the norm ‖x‖∞ = supt∈[0,1] |x(t)|. Let L1([0, 1],R) be the Banach space of measurable

functions x : [0, 1] → R which are Lebesgue integrable and normed by ‖x‖L1 =
∫ 1

0
|x(t)|dt.

Now we recall some basic definitions on multi-valued maps [14, 15, 16].

For a normed space (X, ‖.‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =

{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =

{Y ∈ P(X) : Y is compact and convex}. A multi-valued map G : X → P(X)

is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is

bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)

(i.e. supx∈B
{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)

on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for

each open set N of X containing G(x0), there exists an open neighborhood N0 of

x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively

compact for every B ∈ Pb(X). If the multi-valued map G is completely continuous

with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,

i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is

x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be

denoted by FixG. A multivalued map G : [0; 1] → Pcl(R) is said to be measurable if

for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A multivalued map F : [0, 1]×R → P(R) is said to be L1−Carathéodory

if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;
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(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1];

(iii) for each ν > 0, there exists ϕν ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕν(t) for all ‖x‖∞ ≤ ν and for a. e. t ∈ [0, 1].

Note that the multivalued map F is said to be Carathéodory if the conditions (i)

and (ii) hold in Definition 2.1.

For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E)

is a multivalued operator with nonempty closed values. G is lower semi-continuous

(l.s.c.) if the set {y ∈ X : G(y)∩B 6= ∅} is open for any open set B in E. Let A be a

subset of [0, 1] × R. A is L ⊗ B measurable if A belongs to the σ−algebra generated

by all sets of the form J × D, where J is Lebesgue measurable in [0, 1] and D is

Borel measurable in R. A subset A of L1([0, 1],R) is decomposable if for all u, v ∈ A

and measurable J ⊂ [0, 1] = J , the function uχJ + vχJ−J ∈ A, where χJ stands for

the characteristic function of J .

Definition 2.2. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))

be a multivalued operator. We say N has a property (BC) if N is lower semi-

continuous (l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1]×R → P(R) be a multivalued map with nonempty compact values.

Define a multivalued operator F : C([0, 1]× R) → P(L1([0, 1],R)) associated with F

as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 2.3. Let F : [0, 1]×R → P(R) be a multivalued function with nonempty

compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-

ciated Nemytskii operator F is lower semi-continuous and has nonempty closed and

decomposable values.

Let (X, d) be a metric space induced from the normed space (X; ‖.‖). Consider

Hd : P(X) × P(X) → R ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a

metric space and (Pcl(X), Hd) is a generalized metric space (see [17]).

Definition 2.4. A multivalued operator N : X → Pcl(X) is called

(a) γ−Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;
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(b) a contraction if and only if it is γ−Lipschitz with γ < 1.

The following lemmas will be used in the sequel.

Lemma 2.5. [18] Let X be a Banach space. Let F : [0, 1] × R → Pcp,c(X) be an

L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from

L1([0, 1], X) to C([0, 1], X), then the operator

Θ ◦ SF : C([0, 1], X) → Pcp,c(C([0, 1], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1], X) × C([0, 1], X).

Lemma 2.6. [19] Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))

be a multivalued operator satisfying the property (BC). Then N has a continuous se-

lection, that is, there exists a continuous function (single-valued) g : Y → L1([0, 1],R)

such that g(x) ∈ N(x) for every x ∈ Y .

Lemma 2.7. [20] Let (X, d) be a complete metric space. If N : X → Pcl(X) is a

contraction, then FixN 6= ∅.

Let us recall some definitions on fractional calculus [21].

Definition 2.8. For a continuous function g : [0,∞) → R, the Caputo derivative of

fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma

function.

Definition 2.9. The Riemann-Liouville fractional integral of order q for a continuous

function g is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).

In order to define the solution of (1.1), we recall the following lemma [22].

Lemma 2.10. For a given σ ∈ C[0, 1], the unique solution of the boundary value

problem
{

cDqx(t) = σ(t), 0 < t < 1, 1 < q ≤ 2,

x′(0) + ax(η1) = 0, bx′(1) + x(η2) = 0, 0 < η1 ≤ η2 < 1,
(2.1)

is given by

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
σ(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
σ(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
σ(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
σ(s)ds

]

, (2.2)
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where µ1 = b+ η2, µ2 = 1 + aη1, µ3 = [1 + a(η1 − η2 − b)]−1.

Definition 2.11. A function x ∈ C2([0, 1]) is a solution of the problem (1.1) if there

exists a function f ∈ L1([0, 1],R) such that f(t) ∈ F (t, x(t)) a.e. on [0, 1] and

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]

. (2.3)

3. MAIN RESULTS

Theorem 3.1. Assume that

(H1) F : [0, 1]×R → P(R) is Carathéodory and has nonempty compact convex values;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a

function p ∈ L1([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖∞) for each(t, x) ∈ [0, 1] × R;

(H3) there exists a number M > 0 such that

Γ(q)M
[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
1

)]

ψ(M)‖p‖L1

> 1,

where

λ1 = sup
t∈[0,1]

|aµ3(µ1 − t)|, λ2 = sup
t∈[0,1]

|µ3(at− µ2)|. (3.1)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Define an operator Ω : C([0, 1],R) → P(C([0, 1],R)) by

Ω(x) =







































h ∈ C([0, 1], R) :

h(t) =



































∫ t

0

(t − s)q−1

Γ(q)
f(s)ds

+aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+µ3(at − µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds +

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]

,


























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

for f ∈ SF,x.We will show that Ω satisfies the assumptions of the nonlinear alternative

of Leray- Schauder type. The proof consists of several steps. As a first step, we show

that Ω(x) is convex for each x ∈ C([0, 1],R). For that, let h1, h2 ∈ Ω(x). Then there

exist f1, f2 ∈ SF,x such that for each t ∈ [0, 1], we have

hi(t) =

∫ t

0

(t− s)q−1

Γ(q)
fi(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
fi(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
fi(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
fi(s)ds

]

, i = 1, 2.
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Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, 1], we have

[ωh1 + (1 − ω)h2](t) =

∫ t

0

(t− s)q−1

Γ(q)
[ωf1(s) + (1 − ω)f2(s)](s)ds

+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
[ωf1(s) + (1 − ω)f2(s)](s)ds

+ µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
[ωf1(s) + (1 − ω)f2(s)](s)ds

+

∫ η2

0

(η2 − s)q−1

Γ(q)
[ωf1(s) + (1 − ω)f2(s)](s)ds

]

.

Since SF,x is convex (F has convex values), therefore it follows that ωh1 +(1−ω)h2 ∈

Ω(x).

Next, we show that Ω(x) maps bounded sets into bounded sets in C([0, 1],R). For

a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖∞ ≤ r} be a bounded set in

C([0, 1],R). Then, for each h ∈ Ω(x), x ∈ Br, there exists f ∈ SF,x such that

h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]

and

|h(t)| ≤

∫ t

0

|t− s|q−1

Γ(q)
|f(s)|ds+ |aµ3(µ1 − t)|

∫ η1

0

|η1 − s|q−1

Γ(q)
|f(s)|ds

+|µ3(at− µ2)|
[

b

∫ 1

0

|1 − s|q−2

Γ(q − 1)
|f(s)|ds+

∫ η2

0

|η2 − s|q−1

Γ(q)
|f(s)|ds

]

≤
1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

ψ(‖x‖∞)

∫ 1

0

p(s)ds,

where λ1 and λ2 are given by (3.1). Thus,

‖h‖∞ ≤
1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

ψ(‖x‖∞)

∫ 1

0

p(s)ds.

Now we show that Ω maps bounded sets into equicontinuous sets of C([0, 1],R). Let

t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Br, where Br is a bounded set of C([0, 1],R). For

each h ∈ Ω(x), we obtain

|h(t′′) − h(t′)|

=
∣

∣

∣

∫ t′′

0

(t′′ − s)q−1

Γ(q)
f(s)ds−

∫ t′

0

(t′ − s)q−1

Γ(q)
f(s)ds

+aµ3(t
′′ − t′)

[

−

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]
∣

∣

∣
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≤
∣

∣

∣

∫ t′

0

[(t
′′

− s)q−1 − (t′ − s)q−1]

Γ(q)
f(s)ds

∣

∣

∣
+

∣

∣

∣

∫ t′′

t′

(t
′′

− s)q−1

Γ(q)
f(s)ds

∣

∣

∣

+
∣

∣

∣
aµ3(t

′′ − t′)
[

−

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]
∣

∣

∣
.

Obviously the right hand side of the above inequality tends to zero independently

of x ∈ Br′ as t′′ − t′ → 0. As Ω satisfies the above three assumptions, therefore it

follows by Ascoli-Arzelá theorem that Ω : C([0, 1],R) → P(C([0, 1],R)) is completely

continuous.

In our next step,we show that Ω has a closed graph by employing a technique

used in [23]. Let xn → x∗, hn ∈ Ω(xn) and hn → h∗. Then we need to show that

h∗ ∈ Ω(x∗). Associated with hn ∈ Ω(xn), there exists fn ∈ SF,xn
such that for each

t ∈ [0, 1],

hn(t) =

∫ t

0

(t− s)q−1

Γ(q)
fn(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
fn(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
fn(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
fn(s)ds

]

.

Thus we have to show that there exists f∗ ∈ SF,x∗
such that for each t ∈ [0, 1],

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f∗(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f∗(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f∗(s)ds

]

.

Let us consider the continuous linear operator Θ : L1([0, 1],R) → C([0, 1],R) so that

f 7→ Θ(f) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]

.

Observe that

‖hn(t) − h∗(t)‖ =
∥

∥

∥

∫ t

0

(t− s)q−1

Γ(q)
(fn(s) − f∗(s))ds

+aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
(fn(s) − f∗(s))ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
(fn(s) − f∗(s))ds

+

∫ η2

0

(η2 − s)q−1

Γ(q)
(fn(s) − f∗(s))ds

]
∥

∥

∥
→ 0 as n→ ∞.
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Thus, it follows by Lemma 2.5 that Θ ◦ SF is a closed graph operator. Further, we

have hn(t) ∈ Θ(SF,xn
). Since xn → x∗, it follows that

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f∗(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f∗(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f∗(s)ds

]

,

for some f∗ ∈ SF,x∗
.

Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1). Then

there exists f ∈ L1([0, 1],R) with f ∈ SF,x such that, for t ∈ [0, 1], we have

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(s)ds

]

.

In view of (H2), for each t ∈ [0, 1], we obtain

|x(t)| ≤
1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

ψ(‖x‖∞)

∫ 1

0

p(s)ds,

where λ1 and λ2 are given by (3.1). Consequently, we have

Γ(q)‖x‖∞
[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
1

)]

ψ(‖x‖∞)‖p‖L1

≤ 1,

In view of (H3), there exists M such that ‖x‖∞ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖∞ < M + 1}.

Note that the operator Ω : U → P(C([0, 1],R)) is upper semicontinuous and com-

pletely continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µΩ(x) for

some µ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type

[24], we deduce that Ω has a fixed point x ∈ U which is a solution of the problem

(1.1). This completes the proof.

As a next result, we study the case when F is not necessarily convex valued. Our

strategy to deal with this problems is based on the nonlinear alternative of Leray

Schauder type together with the selection theorem of Bressan and Colombo [19] for

lower semi-continuous maps with decomposable values.

Theorem 3.2. Assume that (H2) − (H3) and the following conditions hold:

(H4) F : [0, 1] × R → P(R) is a nonempty compact-valued multivalued map such that

(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,

(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, 1];

(H5) for each σ > 0, there exists ϕσ ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|y| : y ∈ F (t, x)} ≤ ϕσ(t) for all ‖x‖∞ ≤ σ and for a.e.t ∈ [0, 1].
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Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. It follows from (H4) and (H5) that F is of l.s.c. type. Then from Lemma 2.6,

there exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such that f(x) ∈

F(x) for all x ∈ C([0, 1],R).

Consider the problem
{

cDqx(t) = f(x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x′(0) + ax(η1) = 0, bx′(1) + x(η2) = 0, 0 < η1 ≤ η2 < 1, a, b ∈ (0, 1).
(3.2)

Observe that if x ∈ C2([0, 1]) is a solution of (3.2), then x is a solution to the

problem (1.1). In order to transform the problem (3.2) into a fixed point problem,

we define the operator Ω as

Ωx(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(x(s))ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
f(x(s))ds

+ µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
f(x(s))ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
f(x(s))ds

]

.

It can easily be shown that Ω is continuous and completely continuous. The remaining

part of the proof is similar to that of Theorem 3.1. So we omit it. This completes

the proof.

Now we prove the existence of solutions for the problem (1.1) with a nonconvex

valued right hand side by applying a fixed point theorem for multivalued map due to

Covitz and Nadler [20].

Theorem 3.3. Assume that (H4) and the following condition hold:

(H6) F : [0, 1] × R → Pcp(R) is such that F (·, x) : [0, 1] → Pcp(R) is measurable for

each x ∈ R.

(H7) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x − x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with

m ∈ L1([0, 1],R) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].

Then the boundary value problem (1.1) has at least one solution on [0, 1] if

‖m‖L1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

< 1.

Proof. Observe that the set SF,x is nonempty for each x ∈ C([0, 1],R) by the as-

sumption (H7), so F has a measurable selection (see Theorem III.6 [25]). Now we

show that the operator Ω satisfies the assumptions of Lemma 2.7. To show that

Ω(x) ∈ Pcl((C[0, 1],R)) for each x ∈ C([0, 1],R), let {un}n≥0 ∈ Ω(x) be such that

un → u (n→ ∞) in C([0, 1],R). Then u ∈ C([0, 1],R) and there exists vn ∈ SF,x such

that, for each t ∈ [0, 1],

un(t) =

∫ t

0

(t− s)q−1

Γ(q)
vn(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
vn(s)ds



150 B. AHMAD AND S. NTOUYAS

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
vn(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
vn(s)ds

]

.

As F has compact values, we pass onto a subsequence to obtain that vn converges to

v in L1([0, 1],R). Thus, v ∈ SF,x and for each t ∈ [0, 1],

un(t) → u(t) =

∫ t

0

(t− s)q−1

Γ(q)
v(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
v(s)ds

+ µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
v(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
v(s)ds

]

.

Hence u ∈ Ω(x).

Next we show that there exists γ < 1 such that

Hd(Ω(x),Ω(x̄)) ≤ γ‖x− x̄‖∞ for each x, x̄ ∈ C([0, 1],R).

Let x, x̄ ∈ C([0, 1],R) and h1 ∈ Ω(x). Then there exists v1(t) ∈ F (t, x(t)) such that,

for each t ∈ [0, 1],

h1(t) =

∫ t

0

(t− s)q−1

Γ(q)
v1(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
v1(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
v1(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
v1(s)ds

]

.

By (H4), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t) − x̄(t)|.

So, there exists w ∈ F (t, x̄(t)) such that

|v1(t) − w| ≤ m(t)|x(t) − x̄(t)|, t ∈ [0, 1].

Define U : [0, 1] → P(R) by

U(t) = {w ∈ R : |v1(t) − w| ≤ m(t)|x(t) − x̄(t)|}.

Since the multivalued operator U(t)∩F (t, x̄(t)) is measurable (Proposition III.4 [25]),

there exists a function v2(t) which is a measurable selection for V . So v2(t) ∈ F (t, x̄(t))

and for each t ∈ [0, 1], we have |v1(t) − v2(t)| ≤ m(t)|x(t) − x̄(t)|.

For each t ∈ [0, 1], let us define

h2(t) =

∫ t

0

(t− s)q−1

Γ(q)
v2(s)ds+ aµ3(µ1 − t)

∫ η1

0

(η1 − s)q−1

Γ(q)
v2(s)ds

+µ3(at− µ2)
[

b

∫ 1

0

(1 − s)q−2

Γ(q − 1)
v2(s)ds+

∫ η2

0

(η2 − s)q−1

Γ(q)
v2(s)ds

]

.

Thus

|h1(t) − h2(t)| ≤

∫ t

0

|t− s|q−1

Γ(q)
|v1(s) − v2(s)|ds

+|aµ3(µ1 − t)|

∫ η1

0

|η1 − s|q−1

Γ(q)
|v1(s) − v2(s)|ds
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+|µ3(at− µ2)|
[

b

∫ 1

0

|1 − s|q−2

Γ(q − 1)
|v1(s) − v2(s)|ds

+

∫ η2

0

|η2 − s|q−1

Γ(q)
|v1(s) − v2(s)|ds

]

≤
1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

∫ 1

0

m(s)‖x− x‖ds.

Hence

‖h1(t) − h2(t)‖∞ ≤
‖m‖L1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

‖x− x‖∞.

Analogously, interchanging the roles of x and x, we obtain

Hd(Ω(x),Ω(x̄)) ≤ γ‖x− x̄‖∞

≤
‖m‖L1

Γ(q)

[

1 + λ1η
q−1
1 + λ2

(

b(q − 1) + η
q−1
2

)]

‖x− x‖∞.

Since Ω is a contraction, it follows by Lemma 2.7 that Ω has a fixed point x which is

a solution of (1.1). This completes the proof.
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