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ABSTRACT. Motivated by a problem which arises in the analysis of stagnation point flow toward

a stretching sheet, we consider a general class of problems of the form y′′′ = f(y, y′, y′′), y(0) = a,

y′(0) = m, limt→∞ y′(t) = b. We give conditions on f which imply existence of at least one solution

and obtain a partial uniqueness result.
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1. INTRODUCTION

We study a class of third order boundary value problems of the form

y′′′ = f(y, y′, y′′), (1.1)

y(0) = a, y′(0) = m, lim
t→∞

y′(t) = b. (1.2)

A special case of this problem with

f(y, y′, y′′) = −yy′′ + (y′)2 − b2, (1.3)

a = 0, and m = 1 was considered in [9], in which the authors show that the problem

arises in the analysis of stagnation point flow toward a stretching sheet and provide

further references. In [9], it is proved that their example problem has a solution if

b > 0. This solution φ(t) is unique and φ′(t) is monotone increasing if b > m = 1.

If 0 < b < m = 1, φ′(t) is monotone decreasing and φ(t) is the only solution with a
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monotone derivative. Numerical evidence for multiple solutions was given in case the

positive b is less than a critical value approximately 0.169.

Examples of boundary value problems on infinite intervals appeared over thirty

years ago in the book [6]; see in particular pp. 72-76 (an example studied more

carefully in [1]), pp. 119-121, pp. 126-132, problem 2 on p. 134, and pp. 192-197.

A survey of theorems on second order problems with appropriate references can be

found in Chapter 8 of [8]. Interesting examples of third order problems appeared

recently in a number of applied settings; see e.g. [2, 7, 10] and these have led to

mathematical treatments by Paullet and his colleagues [3, 4, 5].

Our goal here is to describe a class of problems which contain the example of [9]

as a special case. In addition to broadening the sweep of the conclusions, insight into

the features of the example which imply the resulting conclusions are clearly seen.

Our approach to the problem, while following [9] in the use of shooting methods,

is rather different in detail and, at least to us, seems simpler. Solutions to initial

value problems, while guaranteed under our general hypotheses including the example

above, may exist only locally, so care should be exercised when shooting on infinite

intervals. Such caution lies beneath the surface in [9]; here it will be clearly visible.

Our existence theorem in section 2 (and in section 3) and the uniqueness result in

section 4, apply only indirectly to the example in [9] given by (1.3) via the modified

form

f(y, y′, y′′) = −sgn(y′′)|y||y′′| + (y′)2 − b2 (1.4)

But since all solutions (with a = 0, m = 1 as in [9]) guaranteed by these existence

theorems have y′ > 0 and hence y > 0 on (0,∞), then the solutions satisfy the original

example in [9] given by (1.3).

The uniqueness result in section 4 applies only to the case b < m and includes

the example (1.4) to give the existence of at most one solution. For a = 0, m = 1,

0 < b < 1, as in [9] and the example (1.4), we conclude the the existence of at most

one solution φ satisfying φ′′ ≤ 0, or equivalently φ′ is non-increasing. Thus φ′ ≥ b > 0

so φ ≥ a = 0 and the motivational example of [1], given by (1.3), has at most one

solution with y′ non-increasing on [0,∞).

More details and extensions of these remarks appear in section 5. Note that we

have no uniqueness result for the case b > m. The proofs in [9] for uniqueness in both

cases b > m and b < m depend on behavior of the fifth order equation obtained by

differentiating the given third order equation twice. Our result here shows that the

uniqueness for the case b < m does not depend on such behavior. It is curious that

uniqueness in the case b > m seems to lie deeper than that for the case b < m. If

one attempts to mimic our proof of Theorem 2 below for the case b > m, one will see

that the needed inequality is reversed.
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Until further notice, we shall assume that b ≥ m and let

Ym,b =











[a,∞), if m > 0,

(−∞,∞), if m ≤ 0 < b,

(−∞, a], if b ≤ 0.











We then assume that for some δ > 0, the function f in (1.1) satisfies

• H1: f(y, u, v) is continuous and satisfies a Lipschitz condition in (y, u, v) for

y ∈ Ym,b, m − δ ≤ u ≤ b + δ, v ≥ −δ;

• H2: f(y, u, 0) > 0 if b < u ≤ b + δ, for all y ∈ Ym,b;

• H3: f(y, u, v) < 0 if m − δ ≤ u < b, v ≥ 0, for all y ∈ Ym,b;

• H4: For α > 0, let

Zm,b =











[a, a + 2b(b−m)
α

], if m ≥ 0,

[a + 2m(b−m)
α

, a + 2b(b−m)
α

], if m < 0 < b,

[a + 2m(b−m)
α

, a], if b ≤ 0,











and

Sα = {(y, u, v) : y ∈ Zm,b, m ≤ u ≤ b,
α

2
≤ v ≤ α};

then

lim
α→∞

min{f(y, u, v) : (y, u, v) ∈ Sα}

α2
= 0,

• H5: For any γ > 0, m < L < b

sup{f(y, u, v) : y ∈ Ym,b, m ≤ u ≤ L, 0 ≤ v ≤ γ} < 0.

The purpose of H1 is to permit use of the standard theorems on existence, uniqueness,

and continuous dependence of solutions of initial value problems. Since f is continu-

ous, it follows from H2 and H3 above that f(y, b, 0) = 0 for all y ∈ Ym,b and moreover

that f is non-positive on the set Sα so that H4 is basically a growth restriction on

f . Since y and u are restricted to compact sets, at first glance H4 appears to require

that the growth of f as a function of v is less than quadratic as v → ∞. However, the

definition of Sα requires that y → a as α → ∞ and in some cases this might allow

v to grow faster than α2. The example mentioned above from [9] is a case in point.

The presence of a term like −sgn(y′′)|y||y′′|p would be acceptable if a = 0 and p < 3.

We will return to this thought later.

EXISTENCE FOR THE CASE m ≤ b

Here is our first theorem.

Theorem 2.1. Under the hypotheses H1-H5, then for b > m the boundary value

problem (1.1), (1.2) has a solution y = φ(t) satisfying m < φ′(t) < b, φ′′(t) > 0 for

all t > 0. If b = m, then y = a + bt is a solution.



198 J. BAXLEY AND G. BALLARD

We prepare for the proof with two preliminary lemmas. Let IVP be the initial

value problem consisting of (1.1) and the initial conditions

y(0) = a, y′(0) = m, y′′(0) = α, (2.1)

where α ≥ 0 is a shooting parameter. We say that a function y is a solution of this

initial value problem on an interval [0, s) if y satisfies the differential equation (1.1) on

this interval and the initial conditions (2.1), and (y(t), y′(t), y′′(t))) is contained in the

region described in H1 for each t ∈ [0, s). By hypothesis H1, IVP has a unique local

solution yα; we let Iα = [0, cα) be the maximal interval of existence of this solution.

Let

A = {α ≥ 0 : y′′

α has a zero on Iα}.

If α ∈ A, then there exists tα ∈ Iα which is a root of y′′

α. We may assume that tα is

the smallest such root. If α = 0, then clearly tα = 0 also and in the case α > 0, we

have y′′

α(t) > 0 for 0 ≤ t < tα.

Lemma 2.2. Suppose H1-H3 are satisfied. If 0 < α ∈ A, then y′

α(tα) < b.

Proof: Suppose y′

α(tα) = b. Then by H2, H3 the function u(t) = b(t − tα) + yα(tα)

satisfies (1.1) as well as the conditions u(tα) = yα(tα), u′(tα) = b = y′

α(tα), u′′(tα) =

0 = y′′

α(tα), and the uniqueness of the solution of this terminal value problem implies

u(t) ≡ yα(t) on [0, tα]. But this is a contradiction since u′′(0) = 0 and y′′

α(0) = α > 0.

Now suppose that y′

α(tα) > b. Then from H2,

y′′′

α (tα) = f(yα(tα), y′

α(tα), y′′

α(tα)) = f(yα(tα), y′

α(tα), 0) > 0.

Thus y′′

α is increasing in a left neighborhood of tα, which implies that y′′

α < 0 in that

neighborhood, a contradiction. Thus y′

α(tα) < b. �

Lemma 2.3. Suppose b > m and H1-H4 are satisfied. Then A is bounded above.

Proof: We use H4 to choose α > 0 so large that

min{f(y, u, v) : (y, u, v) ∈ Sα}

α2
> −

1

4(b − m)

and then show that α 6∈ A. Suppose, for contradiction, that α ∈ A. Since y′′

α(0) = α,

the intermediate value theorem guarantees a solution of y′′

α(x) = α/2 in (0, tα); let sα

be the smallest such solution. Since y′′

α > 0 on [0, tα), then y′

α is increasing on that

interval. Thus from Lemma 2.2,

m ≤ y′

α(t) < b (2.2)

on [0, sα]. Hence from H3,

y′′′

α (t) = f(yα(t), y′

α(t), y′′

α(t)) < 0
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on [0, sα], and we conclude that y′′

α is decreasing on [0, sα] and therefore

α ≥ y′′

α(t) ≥ α/2

on [0, sα]. Integrating the right side of this inequality gives

b > y′

α(sα) ≥ m +
α

2
sα,

from which we obtain sα < 2(b − m)/α. Then integrating (2.2) gives

a + mt ≤ yα(t) ≤ a + bt

on [0, sα]. If b ≤ 0, then yα(t) ≤ a; if b > 0, then yα(t) ≤ a + bsα < a + 2b(b − m)/α.

If m ≥ 0, then yα(t) ≥ a; if m < 0, then yα(t) ≥ a + msα > a + 2m(b − m)/α. We

have now shown that on the interval [0, sα], all points (yα(t), y′

α(t), y′′

α(t)) belong to

the set Sα.

By our choice of α using H4, we then calculate

−α/2 = y′′

α(sα) − y′′

α(0) =

∫ sα

0

y′′′

α (x)dx > −
α2

4(b − m)
sα > −α/2,

a contradiction. �

Now for the proof of Theorem 2.1. Clearly y = a + bt is a solution of (1.1) and

satisfies (1.2) if b = m. So suppose b > m. By Lemma 2.3, the set A is bounded

above. Since 0 ∈ A, then A 6= ∅. Let γ = sup A. We shall show that γ /∈ A, that

Iγ = [0,∞) and that lim
t→∞

y′

γ(t) = b.

Suppose that γ ∈ A. If γ > 0, then by Lemma 2.2, y′

γ(tγ) < b; if γ = 0, this last

inequality is trivially true. Therefore H3 implies y′′′

γ (tγ) < 0. Thus y′′

γ is decreasing in

a right neighborhood of tγ and y′′

γ < 0 in a right neighborhood of tγ . By continuous

dependence, for α > γ and sufficiently close to γ, then y′′

α < 0 at points to the right

of tγ , and hence α ∈ A, a contradiction.

Since γ 6∈ A then y′′

γ > 0 on Iγ and y′

γ is increasing on Iγ. We claim that y′

γ < b on

Iγ. For otherwise, there exists t1 ∈ Iγ so that y′

γ(t1) = b and y′

γ(t) < b for 0 ≤ t < t1.

Then we can choose t1 < t2 < cγ so that y′

γ(t2) > b and y′

γ(t) < b + δ on [t1, t2].

By continuous dependence, there exists α ∈ A so that y′′

α(t) > 0, y′

α(t) < b + δ on

[0, t2] with y′

α(t2) > b. But this contradicts Lemma 2.2. It then follows from H3 that

y′′′

γ < 0 on Iγ so y′′

γ is decreasing and positive on Iγ. Thus if cγ < ∞, yγ, y
′

γ, y
′′

γ all

have limits from the left as t → cγ and the solution can be continued beyond cγ , a

contradiction. Thus Iγ = [0,∞).

Now y′

γ is increasing on [0,∞) and bounded by b. Thus L = lim
t→∞

y′

γ(t) exists and

is no larger than b. We complete the proof by showing that L < b is impossible. Since

y′′

γ is decreasing on [0,∞), then γ ≥ y′′

γ(t) on [0,∞). From H5, we conclude that y′′′

γ

is negative and bounded away from zero; thus y′′

γ is unbounded below on [0,∞), a

contradiction. �
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EXISTENCE FOR THE CASE m > b

We consider now the case where m > b in (1.2). If we change variables with

u = −y, then (1.1) becomes

u′′′ = −f(−u,−u′,−u′′) (3.1)

and (1.2) changes to

u(0) = −a, u′(0) = −m, lim
t→∞

u′(0) = −b. (3.2)

Now −m < −b, so Theorem 2.1 may be applied if g(y, u, v) = −f(−y,−u,−v)

satisfies all the required assumptions H1-H5. Note that in this case, the solution φ

will then satisfy m > φ′ > b, φ′′ < 0 for t > 0.

UNIQUENESS

Here is our uniqueness result.

Theorem 4.1. Suppose that m ≥ b and that f(y1, u1, v) > f(y2, u2, v) whenever

y1 > y2, u1 > u2, v ≤ 0. Then there is at most one solution of (1.1), (1.2)

satisfying y′′(t) ≤ 0 for all t ≥ 0.

Proof: Suppose that there are two distinct solutions y1 and y2 satisfying y′′

i (t) ≤ 0

for all t ≥ 0 and i = 1, 2. Then

y1(0) = y2(0) = a, y′

1(0) = y′

2(0) = m, lim
t→∞

y′

1(t) = lim
t→∞

y′

2(t) = b.

Certainly, y′′

1(0) 6= y′′

2(0) since otherwise by uniqueness in initial value problems,

y1 ≡ y2. So we may assume that y′′

1(0) > y′′

2(0). Now let u = y′

1 − y′

2. It follows that

u has a positive maximum on (0,∞) and we may let t1 be the first zero of u′ on this

interval. Since u′(0) > 0, then u′ = y′′

1 −y′′

2 is positive on [0, t1). Hence u is increasing

on this interval and so u = y′

1 − y′

2 > 0 on (0, t1]. Then y1 − y2 > 0 also and

u′′(t1) = y′′′

1 (t1) − y′′′

2 (t1) = f(y1(t1), y
′

1(t1), y
′′

1(t1)) − f(y2(t1), y
′

2(t1), y
′′

2(t1)).

Then our hypothesis implies that u must have a minimum at t1, a contradiction. �

EXAMPLE AND DISCUSSION

We return to a slightly more general example than that of [9]:

y′′′ = −sgn(y′′)|y|q|y′′|p + (y′)2 − b2, (5.1)

with boundary conditions

y(0) = 0, y′(0) = 1, y′′(0) = b. (5.2)
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Assume first that b > 1. Then it is straightforward to check that all the hypotheses

H1-H5 are satisfied, where a = 0, m = 1. Note that for H4, we have

min{f(y, u, v) > −(2b(b − 1))qαp−q + 1 − b2.

So what is required for H4 is that p < q+2. If the boundary condition were y(0) = 1,

then we would have instead

min{f(y, u, v) > −

(

1 +
2b(b − 1)

α

)q

αp + 1 − b2,

now we need p < 2. The extra freedom allowed is totally a consequence of the zero

boundary condition. Thus there is a solution satisfying all the conclusions of Theorem

2.1. This solution φ(t) has a monotone increasing derivative, which is thus always

positive, and φ(t) is positive and concave up. In particular the example of [9] with

p = q = 1 is allowed for any value of y(0) ≥ 0. Note that the solution guaranteed

by Theorem 2.1 satisfies φ(t) > 0, φ′′(t) > 0 for all t > 0 so it is a solution of that

original example.

Now consider 0 < b < 1. One now must check that

g(y, u, v) = −f(−y,−u,−v) = sgn(−v)|y|p|v|p − u2 + b2

satisfies H1-H5, where now a = 0, m is replaced by −1, b by −b. Again, these

hypotheses are easily checked.

Note that the solution guaranteed for (5.1), (5.2) with p = q = 1, whether or not

b > 1 or 0 < b < 1, also satisfies the original example in [9]. Our uniqueness result

also applies to (5.1), (5.2) when 0 < b < 1, and thus for the original Paullet-Weidman

example if 0 < b < 1.
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