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ABSTRACT. T-periodic solutions of systems of differential equations of the form

(φ(u′))′ = ∇uF (x, u) + h(x)

where φ = ∇Φ, with Φ strictly convex, is a homeomorphism of the ball Ba ⊂ R
n onto R

n, are

considered under various conditions upon F and h. The approach is mostly variational, but requires

the use of results on an auxiliary system based upon fixed point theory and Leray-Schauder degree.
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1. INTRODUCTION

In this note, we consider the existence of solutions of the T-periodic boundary

value problem

(φ(u′))′ = ∇uF (x, u) + h(x), u(0) = u(T ), u′(0) = u′(T ), (1.1)

where φ : Ba → R
n is a homeomorphism such that φ(0) = 0, φ = ∇Φ for some

real strictly convex function Φ ∈ C1(Ba) ∩ C(Ba) (a situation which occurs for the

acceleration in special relativity), F : [0, T ]×R
n → R is such that ∇uF : [0, T ]×R

n →

R
n exists and satisfies Carathéodory conditions, and h ∈ (L1(0, T ))n.

In the case of the classical second order problem

u′′ = ∇uF (x, u) + h(x), u(0) = u(T ), u′(0) = u′(T ), (1.2)

some existence results were proved, using the direct method of the calculus of varia-

tions, by Berger and Schechter [4, 5], when F (x, u) − 〈h(x), u〉 is coercive in u uni-

formly in x ∈ [0, T ], and in [14] when
∫ T

0
[F (x, u)−〈h(x), u〉] dx is coercive and, either

∇uF (x, u) is bounded or F (x, ·) is convex for a.e. x ∈ [0, T ]. Numerous extensions

of those results have been given for wider classes of potentials F and for u′′ replaced
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by the p-Laplacian (|u′|p−2u)′, and we refer in particular to [9],[16]-[24],[25]-[28] and

their references.

An existence theorem was also proved for (1.2) in [13, 14], when F is periodic

in each variable ui for a.e. x ∈ [0, T ] and h has mean value zero. Such a result

is easily extended to the case of the p-Laplacian as shown in [12]. The problem is

more delicate in the case where u′′ is replaced by a ‘relativistic’ differential operator

(φ(u′))′ like above. The scalar case was recently considered in [6] and the methodology

of this paper is used here to obtain existence results in the case of system (1.1), under

conditions upon F of the type covered in [5] and [14]. Like in [6], the treatment is

essentially based upon the direct method of the calculus of variations and variational

inequalities, but an auxiliary result is used, which is a consequence of some existence

theorems proved in [2] using Leray-Schauder’s method. A pure variational treatment

of those questions remains to be done. On the other hand, no proof based upon

topological methods of the results given here is known by now.

In Section 2, we introduce the class of homeomorphisms φ occuring in (1.1) and

recall some of their properties used in the sequel. Section 3 surveys the approach,

introduced in [2, 3] for (not necessarily variational) problems (1.1), and based upon a

reduction to a fixed point problem treated with Leray-Schauder degree. An auxiliary

existence and uniquess result is proved for subsequent use in the paper. In Section 4,

we introduce the action functional

I(u) =

∫ T

0

[Φ(u′) + F (x, u) + 〈h(x), u〉] dx

whose minima on a suitable closed convex set of the Banach space of Lipschitzian

functions should provide solutions of (1.1). We give there a sufficient condition for the

existence of a minimum, and the corresponding variational inequality. In Section 5,

we show that the minima of I provide solutions of problem (1.1). Section 6 describes a

result of Berger-Schechter’s type for (1.1). In Section 7, we show that the sublinearity

in u of ∇uF in the classical case can be replaced by an arbitrary polynomial growth

condition, and that the coercivity condition upon F can be weakened. In the last

Sections 8 and 9, we consider the classes of convex and periodic potentials respectively.

In R
n, we denote the usual inner product by 〈·, ·〉 and the corresponding Euclidian

norm by | · |. We denote the usual norm in Ln
p := (Lp(0, T ))n (1 ≤ p ≤ ∞) by ‖ · ‖p. C

denotes the Banach space of continuous functions from [0, T ] into R
n, endowed with

the uniform norm ‖·‖∞, AC ⊂ C the subspace of absolutely continuous functions from

[0, T ] into R
n, C1 ⊂ AC the subspace space of continuously differentiable functions,

Br the open ball of center 0 and radius r in any normed space. For any u ∈ Ln
1 , we

set

u =
1

T

∫ T

0

u dx, ũ = u− u.
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2. A CLASS OF HOMEOMORPHISM

The class of homeomorphisms which occurs in (1.1) is characterized by the fol-

lowing condition

(HΦ) φ is a homeomorphism from Ba ⊂ R
n onto R

n such that φ(0) = 0, φ = ∇Φ,

with Φ : Ba → ] −∞, 0] of class C1 on Ba, continuous and strictly convex on Ba.

So, φ is strictly monotone on Ba.

If Φ∗ : R
n → R is the Legendre-Fenchel transform of Φ defined by

Φ∗(v) = 〈φ−1(v), v〉 − Φ[φ−1(v)] = sup
u∈Ba

{〈u, v〉 − Φ(u)},

then Φ∗ is also strictly convex,

Φ∗(v) ≤ a|v| − inf
Ba

Φ ◦ φ−1 := a|v| + d, (2.1)

and, using the negativity of Φ,

Φ∗(v) ≥ sup
u∈Ba

〈v, u〉 = a|v|, (2.2)

so that Φ∗ is coercive on R
n [14]. Adapting the reasoning of Proposition 2.4 in [14],

we obtain that Φ∗ is of class C1. Hence φ−1 = ∇Φ∗, so that

v = ∇Φ(u) = φ(u), u ∈ Ba ⇔ u = φ−1(v) = ∇Φ∗(v), v ∈ R
n.

Given b ∈ R
n and g ∈ C, let us define ψ(b; g) by

ψ(b; g) =

∫ T

0

φ−1[g(x) − b] dx =

∫ T

0

∇bΦ
∗[g(x) − b] dx

= ∇b

∫ T

0

Φ∗[g(x) − b] dx = ∇bΨ(b; g),

where Ψ(b; g) is defined by

Ψ(b; g) =

∫ T

0

Φ∗[g(x) − b] dx.

The following result is proved in [3].

Lemma 2.1. If φ = ∇Φ, with Φ verifying Assumption (HΦ), then, for each g ∈ C,

the system ψ(b; g) = 0 has a unique solution b := Qφ(g). Moreover, Qφ : C → R
n is

continuous and takes bounded sets into bounded sets.

Example 2.2. Let us consider the C∞-mapping Φ : B1 ⊂ R
n → R, given by

Φ(u) = −
√

1 − |u|2 (u ∈ B1), (2.3)

so that

−1 ≤ Φ(u) ≤ 0 (u ∈ B1), φ(u) = ∇Φ(u) =
u√

1 − |u|2
(u ∈ B1).



238 H. BREZIS AND J. MAWHIN

As |·|2 is strictly convex on R
n, it follows that Φ is strictly convex on B1. Furthermore,

φ : B1 → R
n is a homeomorphism such that, for any v ∈ R

n.

φ−1(v) =
v√

1 + |v|2
= ∇Φ∗(v),

where Φ∗(v) =
√

1 + |v|2 is strictly convex and of class C∞ on R
n. Hence, Assumption

(HΦ) with a = 1 holds for Φ given by (2.3).

3. FIXED POINT PROBLEM

We introduce the (possibly) nonlinear operatorsN : C → L1 and f : [0, T ]×R
n →

R
n satisfying the following assumptions :

(HN) N : C → L1 is continuous and takes bounded sets into bounded sets,

(Hf ) f : [0, T ] × R
n → R

n satisfies the L1-Carathéodory conditions.

We associate to f its Nemytskii operator Nf : C → L1 defined for a.e. x ∈ [0, T ] by

Nf (u)(x) = f [x, u(x)].

It is standard to show that Nf is continuous and takes bounded sets into bounded

sets.

A solution of problem

(φ(u′))′ = N(u), u(0) = u(T ), u′(0) = u′(T ) (3.1)

is a function u ∈ C1 such that φ(u′) ∈ AC and the equations in (3.1) are satisfied

(a.e. for the differential system).

The proof of the following proposition, essentially analogous to that given for the

scalar case and for f = f(x, u, u′) in [2], is not repeated here. We define P : C → R
n

by Pu := u(0), Q : L1 → R
n by Qu := u, H : L1 → AC1 by

Hu(x) =

∫ x

0

u(s) ds (x ∈ [0, T ]),

and we let C# = {u ∈ C : u(0) = u(T )}. When appropriate, we identify R
n with the

subspace of constant functions in C.

Proposition 3.1. If Assumptions (HΦ) and (HN) hold, u is a solution of problem

(3.1) if and only if u ∈ C# is a fixed point of the operator M defined on C# by

M(u) = Pu+QF (u) +H ◦ φ−1 ◦ (I −Qφ) ◦ [H(I −Q)N ](u). (3.2)

Furthermore, ‖(M(u))′‖∞ < a for all u ∈ C# and M is completely continuous.

Consider now the periodic boundary value problem

(φ(u′))′ = f(x, u), u(0) = u(T ), u′(0) = u′(T ), (3.3)

when Assumptions (HΦ) and (Hf) hold. In order to apply Leray-Schauder degree [8]

to the equivalent fixed point operator M given in (3.2) with F = Nf , we introduce,
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for λ ∈ [0, 1], by analogy to the semilinear situation considered in [10], the family of

periodic boundary value problems

(φ(u′))′ = λNf(u) + (1 − λ)QNf (u), u(0) = u(T ), u′(0) − u′(T ). (3.4)

Notice that (3.4) coincide with (3.3) for λ = 1. For each λ ∈ [0, 1], the fixed point

operator (3.2) on C# associated to (3.4) is M(λ, ·), where M is defined on [0, 1]×C#

by

M(λ, u) = Pu+QNf (u) +H ◦ φ−1 ◦ (I −Qφ) ◦ [λH(I −Q)Nf ](u). (3.5)

Using Lemma 2.1 and Arzelá-Ascoli’s theorem it is not difficult to see that M :

[0, 1] × C# → C# is completely continuous.

A special case of the following existence and uniqueness result will be used in

Section 5.

Proposition 3.2. If assumption (HΦ) holds, then, for any e ∈ Ln
1 , p > 1 and any

b 6= 0, the periodic problem

(φ(u′))′ = b|u|p−2u+ e(x), u(0) = u(T ), u′(0) = u′(T ) (3.6)

has at least one solution, and any solution satisfies ‖u′‖∞ < a. Furthermore, the

solution is unique if b > 0.

Proof. It is clear that f(x, u) = b|u|p−2u+ e(x) satisfies Assumption (Hf). Let M be

the fixed point operator (3.5) with Nf(u) = b|u|p−2u+ e, and let (λ, u) ∈ [0, 1] × C#

be such that u = M(λ, u). Then u ∈ C1 and ‖u′‖∞ < a, so that, by (4.1),

‖ũ‖∞ < Ta. (3.7)

Taking x = 0 in u = M(λ, u), we get, for λ ∈ [0, 1],

u(0) = Pu+QNf(u)

which is equivalent to
∫ T

0

[b|u|p−2u+ e(x)] dx = 0. (3.8)

We claim that there exists ρ > 0 such that for any λ ∈ [0, 1] and any u such that

u = M(λ, u), one has ‖u‖ < ρ. If it were not the case, there would exist a sequence

(λk) in [0, 1] and a nonzero sequence (uk) in C# such that |uk| → ∞ and, using (3.8),
∫ T

0

[b|uk + ũk|
p−2(uk + ũk) + e(x)] dx = 0 (k ∈ N),

and hence such that

b

∫ T

0

[∣∣∣∣
uk

|uk|
+

ũk

|uk|

∣∣∣∣
p−2(

uk

|uk|
+

ũk

|uk|

)]
dx = −

Te

|uk|p−1
(k ∈ N). (3.9)

Because of (3.7), ũk/|uk| → 0 uniformy on [0, T ], and, going if necessary to a sub-

sequence, we can assume that uk/|uk| → v for some v ∈ R
n with |v| = 1. Letting
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k → ∞ in (3.9), we get bv = 0, a contradiction. Consequently, for any λ ∈ [0, 1], and

any possible fixed point u of M(λ, ·), we have

‖u‖∞ < ρ+ Ta := R (3.10)

Hence, the Leray-Schauder degree dLS[I − M(λ, ·), BR, 0] is well defined and inde-

pendent of λ ∈ [0, 1]. Using the reduction property of degree, and denoting by dB the

Brouwer degree in R
n [8, 10], we obtain

dLS[I −M(1, ·), BR, 0] = dLS[I −M(0, ·), BR, 0]

= dLS[I − P −QNf , BR, 0] = dB[−QNf |Rn , BR ∩ R
n, 0].

But, for any c ∈ R
n,

QNf(c) = b|c|p−2c+ e,

and it is easy to see that

dB[−QNf |Rn, BR ∩ R
n, 0] = (− sgn b)n.

Hence M(1, ·) has a fixed point u, and (3.6) has a solution, with ‖u′‖∞ < a.

For uniqueness, if we assume that b > 0 and that (3.6) has two solutions u and

v, then, substracting the equations, taking the inner product by u − v of the result

and integrating over [0, T ], we obtain

0 ≥ −〈φ(u′) − φ(v′), u′ − v′〉 = b

∫ T

0

〈|u|p−2u− |v|p−2v, u− v〉 dx ≥ 0,

and hence
∫ T

0

〈|u|p−2u− |v|p−2v, u− v〉 dx = 0. (3.11)

Consequently, because of the monotonicity and the continuity of the integrated func-

tion,

〈|u|p−2u− |v|p−2v, u− v〉 = 0.

which easily implies that

(
|u|p−1 − |v|p−1

)
(|u| − |v|) = 0

and hence |u| = |v|. Introduced in (3.11), this gives

∫ T

0

|u|p−2|u− v|2 dx = 0,

and consequently u = v.
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4. MINIMIZATION PROBLEM

Let a > 0, Φ : Ba → R satisfy Assumption (HΦ), and F : [0, T ]×R
n → R satisfy

the condition :

(HF ) F (·, u) is measurable on [0, T ] for every u ∈ R
n, F (x, ·) is continuously differ-

entiable on R
n for a.e. x ∈ [0, T ], and ∇uF satisfies the L1-Carathéodory conditions.

Let Lipn
# := (Lip#[0, T ])n denote the space of functions u : [0, T ] → R

n such that

u(0) = u(T ), which are Lipschitzian with Lipschitz constant

[u]0,1 := sup
x,y∈[0,T ],x 6=y

|u(x) − u(y)|

|x− y|
< +∞.

With the norm

‖u‖0,1 := ‖u‖∞ + [u]0,1,

Lipn
# is a Banach space. Any element of Lipn

# is a.e. differentiable, u′ corresponds to

the distributional derivative of u, and ‖u′‖∞ = [u]0,1.

Notice that if u ∈ Lipn
#, then ũj vanishes at some yj ∈ [0, T ] (j = 1, . . . , n), and

therefore, for all x ∈ [0, T ], we have

|ũj(x)| = |ũj(x) − ũj(yj)| ≤

∫ T

0

|u′j(t)| dt ≤ T [uj]0,1 (j = 1, . . . , n),

and hence

|ũ|∞ ≤ T [u]0,1. (4.1)

If K denotes the closed convex subset of Lipn
# defined by

K := {u ∈ Lipn
# : |u′(x)| ≤ a for a.e. x ∈ [0, T ]},

then the action integral

I(u) :=

∫ T

0

{Φ(u′) + F (x, u) + 〈h, u〉} dx (4.2)

is well defined on K for any h ∈ Ln
1 . This happens for example when Φ is given by

(2.3), in which case (4.2) can be seen as the action integral associated to a system of

relativistic forced oscillators.

The following lemma, given in [6] for n = 1, is useful to prove the lower semi-

continuity of I. The proof in [6] applies verbatim to arbitrary n.

Lemma 4.1. If assumption (HΦ) holds, then, for any sequence (uj)j∈N in K which

converges uniformly on [0, T ] to some u ∈ K, one has

lim inf
j→∞

∫ T

0

Φ(u′j) dx ≥

∫ T

0

Φ(u′) dx. (4.3)

We now give a sufficient condition for the existence of a minimum to I.

Theorem 4.2. If assumptions (HΦ) and (HF ) hold, then I has a minimum over K

if and only if it has a minimizing subsequence (uk) such that (uk) is bounded.
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Proof. The necessity is obvious. For sufficiency, let (uk) in K be a minimizing se-

quence for I with (uk) bounded. By (4.1), (uk) is bounded in uniform norm and

equicontinuous. So we can assume, using Arzelá-Ascoli’s theorem and going if nec-

essary to a subsequence, that (uk) converges uniformly in [0, T ] to some continuous

u∗ ∈ C#. From the relations

|uk(x) − uk(y)|

|x− y|
≤ a (x 6= y ∈ [0, T ], k ∈ N)

we easily get that u∗ ∈ K. Consequently, using Lemma 4.1, we have

inf
K

I = lim
k→∞

I(uk) ≥ I(u∗)

so that u∗ minimizes I over K.

The following lemma provides the variational inequality satisfied by a minimizer

of I.

Lemma 4.3. If u minimizes I overs K, then
∫ T

0

[Φ(v′) − Φ(u′) + 〈∇uF (x, u) + h(x), v − u〉] dx ≥ 0 for all v ∈ K. (4.4)

Proof. Let v ∈ K. By assumption, we have, for all λ ∈ (0, 1],

I(u) ≤ I[u + λ(v − u)],

i.e.
∫ T

0

{Φ[u′ + λ(v′ − u′)] − Φ(u′) + F [x, u+ λ(v − u)] − F (x, u)

+λ〈h(x), v − u〉} dx ≥ 0.

Applying the convexity of Φ we deduce that
∫ T

0

{
Φ(v′) − Φ(u′) + λ−1[F (x, u+ λ(v − u)) − F (x, u)]

+〈h(x), v − u〉} dx ≥ 0.

By Lebesgue dominated convergence theorem, we obtain, when λց 0,
∫ T

0

[Φ(v′) − Φ(u′) + 〈∇uF (x, u), v − u〉 + 〈h(x), v − u〉] dx ≥ 0.

5. EXISTENCE THEOREM

To obtain further information about the minimizer u, let us consider the auxiliary

problem

(φ(u′))′ = u+ e(x), u(0) = u(T ), u′(0) = u′(T ), (5.1)

where φ satisfies Assumption (HΦ) and e ∈ Ln
1 .

We know by Proposition 3.2 that, for any e ∈ Ln
1 , problem (5.1) has a unique

classical solution ûe, and ‖û′e‖∞ < a.
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Lemma 5.1. For any e ∈ Ln
1 , ûe ∈ K is such that

∫ T

0

[Φ(v′) − Φ(û′e) + 〈ûe + e(x), v − ûe〉] dx ≥ 0 for all v ∈ K.

Proof. Given v ∈ K, we have, using integration by parts and (5.1),
∫ T

0

[Φ(v′) − Φ(û′e)] dx ≥

∫ T

0

〈φ(û′e), v
′ − û′e〉 dx

= −

∫ T

0

〈(φ(û′e))
′, v − ûe〉 dx = −

∫ T

0

〈ûe + e(x), v − ûe〉 dx.

We can now combine the results of the previous sections to relate the existence

of at least one (classical) solution for the periodic boundary value problem

(φ(u′))′ = ∇uF (x, u) + h(x), u(0) = u(T ), u(0) = u′(T ) (5.2)

to the existence of a minimizer of I on K.

Theorem 5.2. If assumptions (HΦ) and (HF ) hold, then any minimizer of I on K

is a solution of (5.2).

Proof. Let u be a minimizer of I over K. By Lemma 4.3, u satisfies the variational

inequality (4.4), which can be written
∫ T

0

[Φ(v′) − Φ(u′) + 〈u, v − u〉 + 〈∇uF (x, u) + h(x) − u, v − u〉] dx ≥ 0

for all v ∈ K,

so that u is a solution of the variational inequality
∫ T

0

[Φ(v′) − Φ(u′) + 〈u+ eu(x), v − u〉] dx ≥ 0 for all v ∈ K, (5.3)

where

eu = ∇uF [·, u(·)] + h− u ∈ Ln
1 .

Now, given any w ∈ K, the unique solution ûew
of problem (5.1) with e = ew satisfies,

by Lemma 5.1,
∫ T

0

[Φ(v′) − Φ(û′ew
) + 〈ûew

+ ew(x), v − ûew
〉] dx ≥ 0 for all v ∈ K. (5.4)

Chosing v = ûeu
in (5.3), w = v = u (u the minimizer of I over K) in (5.4), and

adding the resulting inequalities, we obtain
∫ T

0

|u− ûeu
|2 dx ≤ 0. (5.5)

It follows from (5.5) that u = ûeu
and hence that ‖u′‖∞ = ‖û′eu

‖∞ < a. Moreover u

is a classical solution of (5.2), since ûeu
is a classical solution of (5.1) with e = eu.
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6. COERCIVE POTENTIAL

As a first application, let us consider the case of a coercive potential F . The

following result was first proved by Berger and Schechter [4, 5] for the classical problem

(1.2).

Theorem 6.1. Assume that Assumptions (HΦ) and (HF ) hold. Then, for all h ∈ Ln
1

such that

F (x, u) + 〈h(x), u〉 → +∞ as |u| → ∞ uniformly for a.e. x ∈ [0, T ], (6.1)

problem (5.2) has at least one solution minimizing I on K.

Proof. By Theorems 4.2 and 5.2, it suffices to prove that I admits a minimizing

sequence (uk) in K such that (uk) is bounded. From Assumption (6.1), given r > 0,

there exists ρ > 0 such that

F (x, u) + 〈h(x), u〉 ≥ T−1r − min Φ (6.2)

for every u ∈ R
n such that |u| ≥ ρ and a.e. x ∈ [0, T ]. Hence, for any u ∈ K such that

|u| ≥ R := ρ+Ta, we have |u(x)| ≥ ρ for all x ∈ [0, T ], and, using (6.2), I(u) ≥ r. In

other words, I(u) → +∞ when u ∈ K and |u| → ∞, which implies that I is bounded

from below, and any minimizing sequence (uk) in K is such that (uk) is bounded.

For the use in examples, let us define the continuous mapping S : R
n → R

n by

S(u) := (sin u1, sin u2, . . . , sin un),

so that

S(u) = ∇c(u), with c(u) := −
n∑

j=1

cos uj (u ∈ R
n).

Example 6.2. Given any b ∈ Ln
∞ such that essinf b > 0, problem

(
u′√

1 − |u′|2

)′

= b(x)
u√

1 + |u|2
+ S(u) + h(x), u(0) = u(T ), u′(0) = u′(T ) (6.3)

has at least one solution for all h ∈ Ln
∞ such that ‖h‖∞ < essinf b.

Indeed, F (x, u) = b(x)
√

1 + |u|2 + c(u) and, for a.e. x ∈ [0, T ] and all sufficiently

large |u|,

F (x, u) + 〈h(x), u〉 ≥ |u|

(
essinf b

2

√
1 + |u|−2 − n1/2|u|−1 − ‖h‖∞

)
.

The right-hand member tends to +∞ as |u| → ∞.

Example 6.3. Given any b ∈ Ln
∞ such that essinf b > 0, problem

(
u′√

1 − |u′|2

)′

= b(x)e|u|
2

u+ S(u) + h(x), u(0) = u(T ), u′(0) = u′(T ) (6.4)

has at least one solution for all h ∈ Ln
∞.
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Indeed, F (x, u) = b(x)
2
e|u|

2

+ c(u) and, for all sufficiently large |u|,

F (x, u) + 〈h(x), u〉 ≥
essinf b

4
e|u|

2

− (n1/2 + ‖h‖∞)|u|.

The right-hand member tends to +∞ as |u| → ∞.

7. NONLINEARITY WITH POLYNOMIAL GROWTH

Let us consider the case of problem (5.2) with a nonlinearity ∇uF having a

polynomial growth in u of power α ≥ 0, and a potential F satisfying a semi-coercivity

condition of the Ahmad-Lazer-Paul type [1]. For the classical problem (1.2) the case

where α = 0 was considered in [14], and the case where α ∈ [0, 1) in [20].

Define the mapping F : R
n → R by

F (u) =
1

T

∫ T

0

F (x, u) dx.

Theorem 7.1. Assume that Assumptions (HΦ), (HF ) hold, and that there exists

α ≥ 0, g, k ∈ L1 nonnegative such that, for a.e. x ∈ [0, T ] and all u ∈ R
n, one has

|∇uF (x, u)| ≤ g(x)|u|α + k(x). (7.1)

Then, for all h ∈ Ln
1 such that

|u|−α
[
F (u) − 〈h, u〉

]
→ +∞ as |u| → ∞, (7.2)

problem (5.2) has at least one solution minimizing I on K.

Proof. By Theorems 4.2 and 5.2, it suffices to prove that I admits a minimizing

sequence (uk) in K such that (uk) is bounded. Using the elementary inequality in R
n

|y + z|α ≤ 2α(|y|α + |z|α), we have, for all u ∈ K,

I(u) =

∫ T

0

[Φ(u′) + F (x, u) + F (x, u) − F (x, u) + 〈h(x), u〉] dx

≥ T min Φ +

∫ T

0

[F (x, u) + 〈h(x), u〉] dx

+

∫ T

0

〈

∫ 1

0

∇uF (x, u+ sũ) ds+ h̃(x), ũ〉 dx

≥ T min Φ + T [F (u) + 〈h, u〉]

−

∫ T

0

∫ 1

0

[g(x)|u+ sũ|α + k(x)] |ũ| ds dx− ‖h‖1‖ũ‖∞

≥ T min Φ + T [F (u) + 〈h, u〉]

− ‖g‖12
α[|u|α + (Ta)α]Ta− (‖k‖1 + ‖h‖1)Ta,

where we have used (4.1). Hence

I(u) ≥ T min Φ + |u|α
{
T |u|−α[F (u) + 〈h, u〉] − ‖g‖12

αTa
}

− [(2Ta)α‖g‖1 + ‖k‖1 + ‖h‖1]Ta (7.3)
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As Assumption (7.2) implies the existence of some ρ > 0 such that the second term

in the right-hand member of (7.3) is positive for |u| ≥ ρ, I is bounded from below on

K.

Let (uk) be a minimizing sequence of I inK. By Assumption (7.2), the right-hand

member of (7.3) tends to +∞ when |u| → ∞, so that (uk) is bounded.

Remark 7.2. In the classical case (1.2) [20], α ∈ [0, 1) in (7.1) and Assumption (7.2)

is replaced by the stronger condition

|u|−2α
[
F (u) − 〈h, u〉

]
→ +∞ as |u| → ∞.

Example 7.3. Given any b ∈ L1 such that b > 0, problem (6.3) has at least one

solution for all h ∈ Ln
1 such that |h| < b.

Indeed, we have in this case F (x, u) = b(x)
√

1 + |u|2 + c(u), α = 0, and, for any

v ∈ R
n \ {0},

b
√

1 + |v|2 + c(v) + 〈h, v〉 ≥ |v|
[
b
√

1 + |v|−2 − n1/2|v|−1 − |h|
]
,

with the right-hand member tending to +∞ when |v| → ∞. With respect to Example

6.2, the use of the boundedness condition allows weakening the conditions upon b and

h from essinf b > 0 and ‖h‖∞ < essinf b to b > 0 and |h| < b.

Remark 7.4. Anticoercive case. Using Rabinowitz’ saddle point theorem, it is proved

in [14] that the classical periodic problem (1.2) has at least one solution when Assump-

tion (7.1) with α = 0 holds and

F (u) + 〈h, u〉 → −∞ as |u| → ∞. (7.4)

It is an open problem to know if a corresponding result holds for problem (5.2).

Notice that in the case of (1.2), if we split (H1
#[0, T ])n as the direct sum of the

space H of constant mappings and the space H̃ of mappings with mean value zero,

the corresponding action integral is coercive on H̃ and anticoercive on H, giving

the saddle point structure. In the relativistic case,
∫ T

0
Φ(u′) dx is bounded on K so

that, when (7.4) holds, I is anticoercive. But the existence of a maximum on K

is not guaranteed, because I is not upper semi-continuous with respect to uniform

convergence.

8. CONVEX POTENTIAL

The polynomial growth condition upon ∇uF can be dropped and condition (7.2)

can be taken with α = 0 in the case of a potential F convex in u. The following

theorem extends to system (5.2) a result of [14] for the classical system (1.2).

Theorem 8.1. Assume that Assumptions (HΦ), (HF ) hold, and that F (x, ·) is convex

for a.e. x ∈ [0, T ].Then, for all h ∈ Ln
1 such that

F (u) + 〈h, u〉 → +∞ as |u| → ∞, (8.1)

problem (5.2) has at least one solution minimizing I on K.
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Proof. Again, by Theorems 4.2 and 5.2, it suffices to prove that I admits a minimizing

sequence (uk) in K such that (uk) is bounded. By Assumption (8.1), the real function

F + 〈h, ·〉 achieves a minimum at some point v ∈ R
n, for which

∇F (v) + h = 0. (8.2)

Now, by the convexity of F (x, ·),

I(u) =

∫ T

0

[Φ(u′) + F (x, v) + 〈h(x), v〉] dx

+

∫ T

0

[F (x, u) − F (x, v) + 〈h(x), u− v〉] dx

≥ T min Φ + T [F (v) + 〈h, v〉] +

∫ T

0

〈∇uF (x, v) + h(x), u− v〉 dx

= T min Φ + T [F (v) + 〈h, v〉] +

∫ T

0

〈∇uF (x, v) + h(x), ũ〉 dx

≥ T min Φ + T [F (v) + 〈h, v〉] − aT‖∇uF (·, v) + h‖1. (8.3)

Consequently, I is bounded from below on K.

Let (uk) be a minimizing sequence of I in K. Without loss of generality, we can

assume that

I(uk) ≤ inf
K

I + 1.

The convexity of F (x, ·) implies that, for a.e. x ∈ [0, T ] and all k ∈ N, one has

F [x, uk/2] = F [x, (1/2)(uk(x) − ũk(x))] ≤
1

2
F [x, uk(x)] +

1

2
F [x,−ũk(x)].

Hence, using (4.1),

1 + inf
K

I ≥ I(uk) ≥ T min Φ + 2

∫ T

0

[F (x, uk/2) + 〈h(x), uk/2〉] dx

−

∫ T

0

[F (x,−ũk) − 〈h(x), ũk〉] dx

≥ 2T [F (uk/2) + 〈h, uk/2〉] + T min Φ

− max
|v|≤Ta

∫ T

0

[F (x, v) + 〈h(x), v〉] dx.

Condition (8.1) implies that (uk) is bounded.

Example 8.2. Given any b ∈ L1 such that b(x) ≥ 0 for a.e. x ∈ [0, T ] and b > 0,

problem
(

u′√
1 − |u′|2

)′

= b(x)e|u|
2

u+ h(x), u(0) = u(T ), u′(0) = u′(T )

has at least one solution for all h ∈ Ln
1 .
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Indeed, F (x, u) = b(x)
2
e|u|

2

is convex in u for a.e. x ∈ [0, T ],

F (u) + 〈h, u〉 ≥
b

2
e|u|

2

− |h||u|,

and the right-hand member tends to +∞ as |u| → ∞.

With respect to Example 6.3, the use of the convexity of F allows to replace the

assumption essinf b > 0 by the weaker one b(x) ≥ 0 and b > 0. But the oscillatory

term S(u) has to be dropped.

Remark 8.3. More general classes of potentials than convex ones have been consid-

ered, like ones involving γ-quasisubadditive [17] or (λ, µ)-subconvex potentials [27], or

potentials subquadratic in Rabinowitz sense [22]. We will not consider those classes

here.

Remark 8.4. An easy consequence of Theorem 8.1 is that, for any b > 0 and h ∈ Ln
1 ,

problem (3.6) has a unique solution, which minimizes over K the functional

Ip(u) =

∫ T

0

[Φ(u′) + b
|u|p

p
+ 〈h(x), u〉] dx.

Indeed, F (x, u) = b |u|
p

p
is strictly convex and

b
|u|p

p
− 〈h, u〉 → +∞ as |u| → ∞.

The uniqueness follows from the fact that Ip is strictly convex.

On the other hand, Theorem 3.2 implies also the existence of a solution of problem

(3.6) for any b < 0 and h ∈ Ln
1 . It is an open problem to find a variational proof of

this result. In the classical case, the proof uses the dual least action principle [13].

9. PERIODIC POTENTIAL

We now consider the case of a potential F periodic with respect to each variable

uj and extend to system (5.2) a result of [13] (see also [14]) for the classical system

(1.2), and a result of [6] for the scalar relativistic case.

Let ei ∈ R
n be defined by (ei)j = δij (i, j = 1, . . . , n).

Theorem 9.1. Assume that Assumptions (HΦ), (HF ) hold, and that there exists

Ti > 0 such that

F (x, u+ Tiei) = F (x, u) (i = 1, . . . , n) (9.1)

for a.e. x ∈ [0, T ] and all u ∈ R
n. Then, for all h ∈ Ln

1 such that

h = 0, (9.2)

problem (5.2) has at least one solution minimizing I on K.
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Proof. Conditions (9.1) and (9.2) imply that, for any u ∈ K, and 1 ≤ i ≤ n, one has

I(u+ Tiei) =

∫ T

0

[Φ(u′) + F (x, u) + 〈h, u〉] dx+ T 〈h, Tiei〉 = I(u).

Hence it is equivalent to minimize I over

K̂ := {u ∈ K : 0 ≤ ui ≤ Ti (i = 1, . . . , n)}.

One shows, like in the proof of Theorem 7.1 that I is bounded from below over K̂.

Any minimizing sequence (uk) in K̂ is obviously such that (uk) is bounded.

Example 9.2. Given any A ∈ R, problem
(

u′√
1 − |u′|2

)′

+ AS(u) = h(x), u(0) = u(T ), u′(0) = u′(T )

has at least one solution for all h ∈ Ln
1 such that h = 0.

This corresponds to F (x, u) = −Ac(u), so that F (x, u + 2πei) = F (x, u) for all

x ∈ [0, T ], u ∈ R
n and 1 ≤ i ≤ n.

Remark 9.3. It has been proved independently in [7, 11, 15] (see also [14]), using

Lusternik-Schnirelman arguments, that when Assumptions (HF ), (9.1) and (9.2)

hold, the classical problem (1.2) has at least n+1 geometrically distinct solutions, i.e.

solutions whose ith component do not differ by a multiple of Ti (i = 1, . . . , n). It is

an open problem to know if such a result holds for (5.2).
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