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ABSTRACT. In this paper we establish the existence and uniqueness of a positive and nonde-

creasing solution to a singular boundary value problem of a class of nonlinear fractional differential

equations. Our analysis relies on a fixed point theorem in partially ordered sets.
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1. INTRODUCTION

Many papers and books on fractional differential equations have appeared re-

cently. Most of them are devoted to the solvability of the linear fractional equation

in terms of a special function (see, for example [3, 12]) and to problems of analyticity

in the complex domain [11]. Moreover, Delbosco and Rodino [7] considered the exis-

tence of a solution for the nonlinear fractional differential equation Dα
0+u = f(t, u),

where 0 < α < 1 and f : [0, a] × R → R, 0 < a ≤ +∞ is a given continuous func-

tion in (0, a)× R. They obtained existence results by using the Schauder fixed point

theorem and the Banach contraction principle. Recently, Zhang [19] considered the

existence of a positive solution for the equation Dα
0+u = f(t, u), where 0 < α < 1

and f : [0, 1] × [0,∞) → [0,∞) is a given continuous function by using the sub and

super-solution method.

In this paper, we discuss the existence and uniqueness of a positive and nonde-

creasing solution to the boundary value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(1.1)
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where 2 < α ≤ 3, Dα
0+ is the Caputo’s differentiation and f : (0, 1] × [0,∞) → [0,∞)

with limt→0+ f(t, ·) = ∞ (that is f is singular at t = 0). Note that this problem was

considered in [17], where the authors proved the existence of one positive solution

for (1.1) by using Krasnoselskii’s fixed point theorem and a nonlinear alternative of

Leray-Schauder type in a cone and assuming certain hypotheses on the function f . In

[17] the nondecreasing character and the uniqueness of the solution is not treated. In

this paper we will prove the existence and uniqueness of a positive and nondecreasing

solution for the Problem (1.1) by using a fixed point theorem in partially ordered

sets. In [9], the authors study Problem (1.1) using a different fixed point theorem

that the one used in this paper. Existence of fixed points in partially ordered sets has

been considered recently in [6, 8, 13, 14, 15, 16]. This work is inspired in the papers

[1, 9, 17]. For existence theorems for fractional differential equation and applications,

we refer to the survey [10]. Concerning the definitions and basic properties we refer

the reader to [18]. Recently, some existence results for fractional boundary value

problems have appeared in the literature (see, for example [2, 4, 5]).

2. PRELIMINARIES AND PREVIOUS RESULTS

For the convenience of the reader, we present here some notations and lemmas

that will be used in the proofs of our main results.

Definition 2.1. The Caputo fractional derivative of order α > 0 of a continuous

function f : (0,∞) → R is given by

Dα
0+f(t) =

1

Γ(n − α)

∫ t

0

f (n)(s)

(t − s)α−n+1
ds,

where n−1 < α ≤ n, provide that the right-hand side is pointwise defined on (0,∞).

The following lemmas appear in [17].

Lemma 2.2. Given f : [0, 1] → R continuous and 2 < α ≤ 3, the unique solution of

Dα
0+u(t) + f(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,

is given by

u(t) =

∫ 1

0

G(t, s)f(s)ds,

where

G(t, s) =















(α − 1)t(1 − s)α−2 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

t(1 − s)α−2

Γ(α − 1)
, 0 ≤ t ≤ s ≤ 1.

Remark 2.3. Note that G(t, s) > 0 for t ∈ (0, 1), G(0, s) = 0 and G(t, 1) = 0 (see

[17]).
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Lemma 2.4. Let 0 < σ < 1, 2 < α ≤ 3 and F : (0, 1] → R is a continuous function

with limt→0+ F (t) = ∞. Suppose that tσF (t) is a continuous function on [0, 1]. Then

the function defined by

H(t) =

∫ 1

0

G(t, s)F (s)ds

is continuous on [0, 1], where G(t, s) is the Green function defined in Lemma 2.2.

Now, we present the fixed point theorem which we will use later. This result

appears in [1]. Let S denote the class of those functions β : [0,∞) → [0, 1) satisfying

β(tn) → 1 implies tn → 0 .

Theorem 2.5 (Theorem 2.1 of [1]). Let (X,≤) be a partially ordered set and suppose

that there exists a metric d in X such that (X, d) is a complete metric space. Let

T : X → X be a nondecreasing mapping such that there exists an element x0 ∈ X

with x0 ≤ T (x0). Suppose that there exists β ∈ S such that

d(Tx, Ty) ≤ β
(

d(x, y)
)

· d(x, y) for each x, y ∈ X with x ≥ y. (2.1)

Assume that either T is continuous or X is such that

if
(

xn

)

is a nondecreasing sequence with xn → x in X, then xn ≤ x, ∀n ∈ N. (2.2)

Besides, if

for x, y ∈ X there exists z ∈ X which is comparable to x and y, (2.3)

then T has an unique fixed point.

In our considerations, we will work in the Banach space

C[0, 1] = {x : [0, 1] → R, continuous} ,

with the standard norm ‖x‖ = max0≤t≤1 |x(t)|. Note that this space can be equipped

with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

In [14] it is proved that (C[0, 1],≤) with the distance induced by the norm

d(x, y) = max
0≤t≤1

{|x(t) − y(t)|},

satisfies condition (2.2) of Theorem 2.5. Moreover, for x, y ∈ C[0, 1], as the function

max{x, y} is continuous in [0, 1], (C[0, 1],≤) satisfies condition (2.3).
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3. MAIN RESULT

Let A denote the class of those functions φ : [0,∞) → [0,∞) satisfying the follo-

wing conditions:

(i) φ is nondecreasing.

(ii) For any x > 0, φ(x) < x.

(iii)
φ(x)

x
∈ S, where S is the class of functions appearing in Section 2.

For example, the functions φ(t) = µ t with 0 ≤ µ < 1, φ(t) = t
1+t

and φ(t) = ln(1+ t)

belong to A. In what follows, we formulate our main result.

Theorem 3.1. Let 0 < σ < 1, 2 < α ≤ 3, f : (0, 1] × [0,∞) → [0,∞) is continuous,

limt→0+ f(t, ·) = ∞ and tσf(t, y) is a continuous function on [0, 1] × [0,∞). Assume

that there exists 0 < λ ≤ Γ(α−σ)
Γ(1−σ)

and φ ∈ A such that,

0 ≤ tσ(f(t, y) − f(t, x)) ≤ λ · φ(y − x) (3.1)

for x, y ∈ [0,∞) with y ≥ x and t ∈ [0, 1]. Then Problem (1.1) has a unique nonneg-

ative solution.

Proof. Consider the cone

P = {u ∈ C[0, 1] : u(t) ≥ 0}.

Note that, as P is a closed set of C[0, 1], P is a complete metric space with the above

mentioned distance in C[0, 1]. Now, for u ∈ P we define the operator T by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

By Lemma 2.4, Tu ∈ C[0, 1]. Moreover, taking into account Remark 2.3 and, as

tσf(t, y) ≥ 0 for (t, y) ∈ [0, 1] × [0,∞) by hypothesis, we get

(Tu)(t) =

∫ 1

0

G(t, s)s−σsσf(s, u(s))ds ≥ 0.

Hence, T (P ) ⊂ P . In what follows, we check that the hypotheses in Theorem 2.5

are satisfied. Firstly, the operator T is nondecreasing. In fact, taking into account

assumption (3.1), for u ≥ v we obtain

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

=

∫ 1

0

G(t, s)s−σsσf(s, u(s))ds

≥
∫ 1

0

G(t, s)s−σsσf(s, v(s))ds = (Tv)(t).
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Besides, for u ≥ v and u 6= v

d(Tu, Tv) = max
t∈[0,1]

|(Tu)(t) − (Tv)(t)|

= max
t∈[0,1]

((Tu)(t) − (Tv)(t)) = max
t∈[0,1]

[
∫ 1

0

G(t, s)(f(s, u(s))− f(s, v(s)))ds

]

= max
t∈[0,1]

[
∫ 1

0

G(t, s)s−σsσ(f(s, u(s))− f(s, v(s)))ds

]

≤ max
t∈[0,1]

[
∫ 1

0

G(t, s)s−σλ · φ
(

u(s) − v(s)
)

ds

]

.

The nondecreasing character of φ gives us

d(Tu, Tv) ≤ λ · φ
(

‖u − v‖
)

max
t∈[0,1]

[
∫ 1

0

G(t, s)s−σds

]

= λ · φ
(

d(u, v)
)

·

max
t∈[0,1]

[
∫ t

0

(α − 1)t(1 − s)α−2 − (t − s)α−1

Γ(α)
s−σds +

∫ 1

t

t(1 − s)α−2

Γ(α − 1)
s−σds

]

≤ λ · φ
(

d(u, v)
)

·

max
t∈[0,1]

[
∫ t

0

(α − 1)t(1 − s)α−2

Γ(α)
s−σds +

∫ 1

t

t(1 − s)α−2 · s−σ

Γ(α − 1)
ds

]

≤ λ · φ
(

d(u, v)
)

·

max
t∈[0,1]

[
∫ t

0

(α − 1)(1 − s)α−2

Γ(α)
s−σds +

∫ 1

t

(1 − s)α−2 · s−σ

Γ(α − 1)
ds

]

=
λ · φ

(

d(u, v)
)

Γ(α − 1)
·
∫ 1

0

(1 − s)α−2 · s−σds

=
λ · φ

(

d(u, v)
)

Γ(α − 1)
· Γ(1 − σ) · Γ(α − 1)

Γ(α − σ)

= λ · φ
(

d(u, v)
)

· Γ(1 − σ)

Γ(α − σ)

≤ Γ(α − σ)

Γ(1 − σ)
· φ

(

d(u, v)
)

· Γ(1 − σ)

Γ(α − σ)

= φ
(

d(u, v)
)

=
φ
(

d(u, v)
)

d(u, v)
· d(u, v).

Thus, for u ≥ v and u 6= v

d(Tu, Tv) ≤ β
(

d(u, v)
)

· d(u, v),

where β(x) = φ(x)
x

. Obviously, the last inequality is satisfied for u = v. Thus,

condition (2.1) in Theorem 2.5 holds with β(x) = φ(x)
x

. Finally, take into account that

the zero function satisfies 0 ≤ T0, and, obviously, as (P,≤) satisfies condition (2.3),

Theorem 2.5 says us that, Problem (1.1) has an unique nonnegative solution.
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Remark 3.2. We point out that in [17] the authors need to show that P is completely

continuous in order to apply Krasnoselskii’s fixed point theorem in a cone. However,

our reasoning does not need that. On the other hand, we are able to guarantee the

uniqueness of one positive solution to Problem (1.1)

In the sequel, we present an example which illustrates Theorem 3.1.

Example 3.3. Consider the fractional differential equation

D
5

2

0+u(t) +
(t − 1

2
)2u(t)√

t
(

1 + u(t)
) = 0, 0 < t < 1 ,

u(0) = u′(1) = u′′(0) = 0.

(3.2)

In this case, f(t, u) =
(t − 1

2
)2u√

t
(

1 + u
) for (t, u) ∈ (0, 1]×[0,∞). Obviously, f is continuous

in (0, 1] × [0,∞) and limt→0+ f(t, ·) = ∞. Moreover, for u ≥ v and t ∈ [0, 1] we have

0 ≤
√

t
(

f(t, u) − f(t, v)
)

=

(

t − 1

2

)2 (

u

1 + u
− v

1 + v

)

,

because g(x) = x
1+x

is nondecreasing on [0,∞)

(

g′(x) =
1

(1 + x)2

)

. Besides, for

u ≥ v and t ∈ [0, 1], we obtain

√
t
(

f(t, u) − f(t, v)
)

=

(

t − 1

2

)2 (

u

1 + u
− v

1 + v

)

=

(

t − 1

2

)2 [

u − v

(1 + u)(1 + v)

]

≤
(

t − 1

2

)2 [

u − v

1 + (u − v)

]

≤ 1

4

[

u − v

1 + (u − v)

]

,

and, it is easily proved that φ(x) = x
1+x

belongs to the class A. As
Γ(α − σ)

Γ(1 − σ)
=

Γ(5
2
− 1

2
)

Γ(1 − 1
2
)

=
Γ(2)

Γ(1
2
)

=
1√
π
≥ 1

4
, Theorem 3.1 says us that Problem (3.2) has an unique

nonnegative solution.

Remark 3.4. In Remark 3.5 of [9] it is proved that the Green’s function G(t, s) is

strictly increasing in the first variable in the interval (0, 1) and we omit the proof.

Remark 3.4 gives us the following theorem which is a better result than Theorem

3.3 of [17] because the solution of our Problem (1.1) is positive in (0, 1) and strictly

increasing. The proof of Theorem 3.5 is similar to the proof of Theorem 3.6 of [9]

and we omit it.

Theorem 3.5. Under assumptions of Theorem 3.1, our Problem (1.1) has an unique

nonnegative and strictly increasing solution.
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Remark 3.6. Theorem 3.5 gives us an unique positive and strictly increasing solution

to Problem (3.2) of Example 1. On the other hand, this fact cannot be deduced by

the results of [17].

Remark 3.7. Denote by M the class of functions φ : [0,∞) → [0,∞) continuous

and such that if ϕ(x) = x − φ(x) then

(i) ϕ : [0,∞) → [0,∞) and it is nondecreasing.

(ii) ϕ(0) = 0.

(iii) ϕ is positive in (0,∞).

In [9] we prove Theorem 3.1 using functions belonging to the class M. The following

example proves that the class A contains functions which are not in M. This example

appears in [1]. Let φ0 : [0,∞) → [0,∞) be defined as

φ0(t) =



































0 , 0 ≤ t ≤ 2

2 t − 4 , 2 < t ≤ 3

2

3
t , 3 < t.

It is easily proved that φ0 ∈ A. On the other hand, it is easily seen that ϕ(t) = t−φ0(t)

is not increasing and, consequently, φ0 6∈ M. The following example proves that there

exist functions belonging to the class M which are not in A. In fact, we consider

φ : [0,∞) → [0,∞) given by

φ(x) = x − arctanx.

It is easily seen that φ ∈ M. On the other hand, φ 6∈ A because β(x) =
φ(x)

x
=

1 − arctanx

x
and β(tn) → 1 when tn → ∞. Therefore, the classes A and M are not

comparable. This means that the results of this paper cover cases which cannot be

treated by the results of [9] and viceversa.
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[4] M. Belmekki; J.J. Nieto; R. Rodŕıguez-López, Existence of Periodic Solutions for a Nonlinear

Fractional Differential Equation, Boundary Value Problems, vol. 2009, Article ID 324561,

(2009).

[5] Y.K. Chang; J.J. Nieto, Some new existence results for fractional differential inclusions with

boundary conditions, Mathematical and Computer Modelling, 49 (2009), 605-609.
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[14] J.J. Nieto; R. Rodŕıguez-López, Contractive mapping theorems in partially ordered sets and

applications to ordinary differential equations, Order 22, (2005), 223-239.
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