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ABSTRACT. We review some recent results concerning nonlinear eigenvalue problems of the form

(∗)Au + ǫB(u) = δu, where A is a linear Fredholm operator of index zero (with nontrivial kernel

KerA) acting in a real Banach space X , and B : X → X is a (possibly) nonlinear perturbation

term. We seek solutions u of (∗) in the unit sphere S of X , and the emphasis is put on the existence

- under appropriate conditions on B - of points u0 ∈ S ∩ KerA (thus satisfying (∗) for ǫ = δ = 0)

which either can be continued as solutions of (∗) for ǫ 6= 0 or - more generally - are bifurcation points

for solutions of that kind.

AMS (MOS) Subject Classification. 47A55, 47J05, 47J10, 47J15, 47J30

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let T be a bounded linear operator acting in a real Banach space X and let S

be the unit sphere in X. Suppose that u0 is a unit eigenvector of T , that is u0 ∈ S

and Tu0 = λ0u0 for some λ0 ∈ R; we say in this case that u0 is a unit λ0-eigenvector

of T . Also let B : U → X be a (possibly nonlinear) continuous operator defined on a

neighborhood U of S and for ǫ small consider the perturbed “eigenvalue” problem

Tu + ǫB(u) = λu, u ∈ S. (1.1)

Definition 1.1. Let u0 be a unit λ0-eigenvector of T . We say that u0 is continuable

as a unit eigenvector of T + ǫB (ǫ 6= 0) if there exists a continuous function ǫ 7→
(λ(ǫ), u(ǫ)) of an interval (−ǫ0, ǫ0) into R × S such that Tu(ǫ) + ǫB(u(ǫ)) = λ(ǫ)u(ǫ)

for |ǫ| < ǫ0 and (λ(0), u(0)) = (λ0, u0).
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For example, u0 is continuable if it is an “eigenvector” of B too: for if B(u0) =

µu0 for some µ ∈ R, then putting (λ(ǫ), u(ǫ)) = (λ0 + ǫµ, u0) for ǫ ∈ R yields the

required continuous family. On the other hand, putting X = R
2, T the zero operator,

B(x, y) = (−y, x) for (x, y) ∈ R
2, we see that no unit 0-eigenvector of T is continuable,

for the perturbed linear operator T + ǫB has no (real) eigenvalue for ǫ 6= 0.

Assuming that λ0 be an isolated eigenvalue of finite (geometric and algebraic)

multiplicity, we have discussed in [2] and [4] conditions for the continuability of a unit

λ0-eigenvector of T . In particular, in [2] (see also [3]) it was essentially shown that

when λ0 is a simple eigenvalue - that is, λ0 has geometric and algebraic multiplicity

equal to one - then if B is Lipschitz continuous, each of the two unit λ0-eigenvectors

is continuable (in a Lipschitz continuous fashion): see Theorem 2 and Remark 2.1 of

[2]. While in [4], we have considered the case in which λ0 has geometric multiplicity

greater than one, and have given - for B of class C2 - necessary as well as sufficient

conditions for continuability of a given unit eigenvector in the C1 sense: see Theorem

2.2 and Remark 3.6 of [4].

To obtain further information about the solutions of (1.1) it is useful to introduce

a second concept, which relaxes the requirements in Definition 1.1.

Definition 1.2. Let u0 be a unit λ0-eigenvector of T . We say that u0 is a bifurcation

point for the unit eigenvectors of T + ǫB (ǫ 6= 0) - or simply a bifurcation point for

(1.1) - if any neighborhood of (0, λ0, u0) in R × R ×X contains a solution (ǫ, λ, u) of

(1.1) with ǫ 6= 0.

Definition 1.2 expresses the property for a unit eigenvector of T of being persistent

under sufficiently small perturbations of T , and can be equivalently formulated as

follows: there exists a sequence
{

(ǫn, λn, un)
}

in R \ {0} × R × S which converges to

(0, λ0, u0) and such that Tun + ǫnB(un) = λnun, ∀n ∈ N. To appreciate better this

Definition, it is useful to adopt as in [4] the general point of view in bifurcation theory

introduced in [9]. A solution of (1.1) is a point p = (ǫ, λ, u) ∈ R × R × X such that

F (p) = 0, where F is the map of R × R × X into X × R defined via

F (ǫ, λ, u) = (Tu + ǫB(u) − λu, ‖u‖2 − 1) (1.2)

(‖.‖ is the norm in X). Put

S0 ≡ S ∩ Ker(T − λ0I) (1.3)

where I denotes the identity in X, and consider the subset

M ≡ {0} × {λ0} × S0 (1.4)

of R×R×X as the set of trivial solutions of (1.1), or the trivial zeroes of F . Assuming

that λ0 be an isolated eigenvalue, and considering solutions of (1.1) with λ near λ0,

we see that M is precisely the set of triples (ǫ, λ, u) ∈ R × R × X solving (1.1) for

ǫ = 0. Solutions (ǫ, λ, u) with ǫ 6= 0 are therefore the nontrivial solutions of (1.1), and
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Definition 1.2 expresses - identifying u0 with p0 ≡ (0, λ0, u0) and using the terminology

of [9] - that p0 ∈ M is a bifurcation point (from M) for the equation F (p) = 0.

Very recently, we have proved the existence of at least one bifurcation point

for the unit eigenvectors of T + ǫB under the assumptions that T is a self-adjoint

operator in a Hilbert space (in which case the algebraic and geometric multiplicity of

λ0 coincide, and therefore we merely speak of multiplicity), that B is of class C1 and

that one of the following conditions is satisfied:

• the multiplicity of λ0 is odd;

• B is a gradient operator.

Our aim in the present paper is to explain these results - proved in [5] and [6]

respectively - also in connection with the older ones [4], and in particular to make

available the main idea followed in the (yet unpublished) paper [6] to deal with the

variational case.

We first set our problem in the context of perturbations of (linear) Fredholm

operators of index zero: this turns out to be a sufficiently general framework in order

to state our results on a common ground, compare their strength and appreciate the

different assumptions. We also indicate the main points of the proofs. This is done in

Section 2, while Section 3 is addressed to exhibit some simple examples of our problem

in the Euclidean space R
3. Working in this context - and even with a linear B - gives

some concrete evidence of the conditions involved on T and B, and may thus help

for a better understanding of the ideas previously expressed in infinite-dimensional

Banach spaces.

2. FINITE-DIMENSIONAL REDUCTION. NECESSARY

CONDITIONS AND SUFFICIENT CONDITIONS FOR

BIFURCATION

Consider equation (1.1) for a bounded linear operator T : X → X, X a real

Banach space. We suppose in the sequel that:

• λ0 is an isolated eigenvalue of T .

As already said, this ensures that for ǫ = 0 and λ near λ0, the only solutions of (1.1)

are those with λ = λ0, that is the trivial ones. Now set

A = T − λ0I, δ = λ − λ0

and write the equation in (1.1) as

Au + ǫB(u) = δu. (2.1)

We assume the following hypotheses upon A.

HA1) A is a Fredholm operator of index zero, that is,

• Ker A = {u ∈ X : Au = 0} is of finite dimension; in words, λ0 is an eigenvalue

of finite geometric multiplicity;
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• Im A = {Au : u ∈ X} is closed and of finite codimension;

• dim Ker A = codim Im A.

HA2) Ker A ∩ Im A = {0}.
It follows from HA1) and HA2) that

E = Ker A ⊕ Im A (2.2)

and that the corresponding projections P and Q = I − P onto Ker A and Im A are

bounded.

It is useful to recall two typical situations in which the above assumptions are

satisfied:

• T : X → X is compact, λ0 6= 0 (ensuring HA1)) and Ker A = Ker A2 (ensuring

HA2). The last condition also implies that Ker An = Ker An+1 for all n ∈ N, and

therefore that the geometric multiplicity of λ0 equals its algebraic multiplicity

dim
⋃

∞

n=1
Ker An.

• X = H , a Hilbert space, T : H → H is self-adjoint (that is, 〈Tx, y〉 = 〈x, Ty〉 for

all x, y ∈ H , 〈., .〉 denoting the scalar product in H) and dim KerA < ∞. Indeed

self-adjointness of T implies that Ker A = Im A⊥ ≡ {x ∈ H : 〈x, y〉 = 0, ∀y ∈
Im A}, and it follows that H = KerA ⊕ Im A, where the sum is orthogonal.

However as λ0 is isolated by assumption, Im A is closed (see e.g. [8, pg. 1395]) and

therefore H = KerA⊕ Im A. Self-adjointness also implies that KerA = KerA2,

so that the geometric and algebraic multiplicity of λ0 always coincide in this

case.

Writing u = Pu + Qu ≡ v + w according to (2.2) and applying in turn P, Q to both

members of (2.1), we see that the latter equation is equivalent to the following two:

ǫPB(v + w) = δv (2.3)

Aw + ǫQB(v + w) = δw. (2.4)

This decomposition (the so-called Lyapounov-Schmidt method) reveals easily a

necessary condition for bifurcation, provided that B satisfies the following “minimal”

regularity assumption:

HB0) B is continuous in a neighborhood of S.

Proposition 2.1. Suppose that HA1), HA2) and HB0) are satisfied. If v0 ∈ S0 =

S ∩ Ker(T − λ0I) is a bifurcation point for (1.1), then there exists µ0 ∈ R such that

PB(v0) = µ0v0. (2.5)

Proof. If v0 ∈ S0 is a bifurcation point, there exists by definition a sequence

(δn, ǫn, un) ∈ R×R×S, with ǫn 6= 0 for each n ∈ N, such that (δn, ǫn, un) → (0, 0, v0)

as n → ∞ and

Aun + ǫnB(un) = δnun, ∀n ∈ N. (2.6)
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Then putting vn = Pun, wn = Qun we have vn → Pv0 = v0, wn → Qv0 = 0 and

moreover from (2.3)

PB(vn + wn) =
δn

ǫn

vn.

We claim that the sequence (δn/ǫn) is bounded. For otherwise, since ‖vn‖ → ‖v0‖ = 1,

it would follow (passing if necessary to a subsequence) that ‖ δn

ǫn

vn‖ → +∞, contra-

dicting the boundedness of the sequence PB(vn + wn) which in fact converges to

PB(v0). Hence we can assume (again through a subsequence) that (δn/ǫn) converges

to some µ0, so that in the limit we obtain (2.5).

Remark 2.2. For B of class C1, the above condition was proved in [4].

It is not difficult to show (see, for instance, Example 3.5) that this necessary

condition is not sufficient for bifurcation. In order to discuss sufficient conditions, we

shall henceforth strengthen HB0) as follows:

HB1) B is of class C1 in a neighborhood of S.

Indeed put

N = Ker A, W = Im A

and identify X with N × W . Then HB1) guarantees, via the Implicit Function

Theorem, that given any v0 ∈ S0 ⊂ N , equation (2.4) - the so-called complementary

equation - can be solved uniquely w.r.t. w for each given (δ, ǫ, v) in a neighborhood

U0 ⊂ R×R×N of (0, 0, v0). Moreover if w(δ, ǫ, v) denotes the solution corresponding

to (δ, ǫ, v) ∈ U0, then w(0, 0, v) = 0 for any v and the mapping (δ, ǫ, v) → w(δ, ǫ, v) of

U0 into W is of class C1 in U0. Therefore by definition

Aw(δ, ǫ, v) + ǫQB(v + w(δ, ǫ, v)) = δw(δ, ǫ, v) (2.7)

for any (δ, ǫ, v) ∈ U0; and we see from (2.3) that in order to solve our problem

(1.1), it is enough to find (δ, ǫ, v) ∈ U0 satisfying the finite-dimensional equation (the

bifurcation equation)

ǫPB(v + w(δ, ǫ, v)) = δv (2.8)

and the additional normalization constraint

v + w(δ, ǫ, v) ∈ S. (2.9)

At this stage, in order to prove that a given v0 ∈ S0 - satisfying (2.5) - is indeed a

bifurcation point, we need find a sequence (δn, ǫn, vn) of solutions of the above system

(2.8)–(2.9), with ǫn 6= 0 for each n ∈ N, such that (δn, ǫn, vn) → (0, 0, v0) as n → ∞.

While if for each sufficiently small ǫ we find δ(ǫ), v(ǫ) - depending continuously upon

ǫ - such that (δ(0), v(0)) = (0, v0) and (δ(ǫ), ǫ, v(ǫ)) solves (2.8)–(2.9), then so much

the better as v0 will be continuable by means of the equation

u(ǫ) = v(ǫ) + w(δ(ǫ), ǫ, v(ǫ)). (2.10)

When B and the space X (that is, its norm) are sufficiently smooth, the Implicit

Function Theorem can be further employed to perform such construction and yield a

sufficient condition for continuation.
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Theorem 2.3. For x ∈ X, put g(x) = ‖x‖2 − 1. Suppose that B and g are of class

C2 in an open neighborhood of S = g−1(0) and that HA1) and HA2) are satisfied. Let

v0 ∈ S0 be such that PB(v0) = µ0v0, put V = {h ∈ X : g′(v0)h = 0} and let π be a

linear projection of N onto N ∩ V such that π(v0) = 0. If v0 satisfies the condition

h ∈ N ∩ V, πPB′(v0)h = µ0h ⇒ h = 0, (2.11)

then v0 is continuable.

Remark 2.4. One has g′(v)v = 2 6= 0 for all v ∈ g−1(0). This implies in particular

that 0 ∈ R is a regular value for the restriction of g to N and, consequently, N ∩V is

the tangent space to S0 = N ∩S at v0. The condition (2.11) means that the operator

πPB′(v0)−µ0I, restricted to N ∩ V , is an isomorphism of N ∩ V onto iself. Thus, in

the special and interesting case in which B is linear, this condition indicates that µ0

is a simple eigenvalue of PB, regarded as an operator of N into itself. In fact, in this

linear case, (2.11) implies that, in the space N , Ker(PB − µ0I) is one dimensional

and N = Ker(PB − µ0I) ⊕ Im(PB − µ0I).

Theorem 2.1 ia a special case of Theorem 3.4 in [4], where it is shown that similar

results hold when the operators involved act between different Banach spaces, and

when the unit sphere S is replaced by more general manifolds M = g−1(0) given

as level sets of a C2 functional g. In turn, Theorem 3.4 of [4] is an application

to Banach space operator equations of results formulated in [9] in the context of

general bifurcation theory. This considers a C1 map f defined in an open set U of a

Banach space E and with values in a Banach space F . Given a differentiable manifold

M ⊆ f−1(0), regard M as the set of trivial solutions of the equation f(u) = 0, so

that f−1(0) \ M represents the set of nontrivial solutions. An element p ∈ M is a

bifurcation point (from M) of f(u) = 0 if any neighborhood of p contains elements

of f−1(0) \M . Necessary as well as sufficient conditions for bifurcation are proved in

[9] in essentially geometrical terms, starting from the observation that the condition

M ⊆ f−1(0) implies that, for any u ∈ M , the tangent space TuM of M at u is

contained in the kernel of f ′(u).

In particular when f is a C2 Fredholm map of index 1, and p ∈ M is such that

dim Ker f ′(p) = dim TpM + 1, then a sufficient “transversality” condition for p ∈ M

to be a bifurcation point is provided in [9], which extends that contained in the

Crandall–Rabinowitz Bifurcation Theorem [7], in which dimM = 1. For these general

conditions see, for instance, Theorem 2.2 of [4] and the comments accompanying it.

Moreover in [4], the results about (1.1) are applied to show the existence of 2π-

periodic solutions of the differential equation

x′′ + x + ǫ(tx + x2) = λx

normalized by
1

π

∫ π

−π

x2(t) dt = 1,
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and in particular to study the continuability of a given trivial (i.e., obtained for

ǫ = λ = 0) normalized solution: that is, of a solution of the type x(t) = c sin t+d cos t,

with c2 + d2 = 1.

Proposition 2.1 and Theorem 2.1 are results of local nature, as they give conditions

upon an individual point v0 ∈ S0 to be a bifurcation point for (1.1). A related question

is: under which conditions (on A, B, etc.) does S0 possess at least one bifurcation

point? We are able to give some partial answer to this problem in the special case

that X = H , a Hilbert space, and T : H → H is self-adjoint.

Recall that in this case the assumptions HA1) and HA2) about the linear part

A = T − λ0I of our equation are satisfied - provided of course that λ0 is isolated and

of finite multiplicity, as we have always assumed. Here is our first result [5]:

Theorem 2.5. Consider the problem (1.1) where T is a bounded self-adjoint operator

acting in a real Hilbert space and B satisfies the assumption HB1). If λ0 is an isolated

eigenvalue of T of odd multiplicity, then S0 = S∩Ker(T −λ0I) possesses at least one

bifurcation point.

Sketch of the proof. The proof of Theorem 2.5 relies on the fact that the

Euler–Poincaré characteristic of the even dimensional sphere S0 is nonzero, and this

implies that any self-map of this sphere has a fixed point if it is homotopic to the

identity: for this matter see, for instance, [1] or [10]. Therefore, the methods employed

are of topological nature, and quite different from those used in [2] and [4], which rely

almost entirely upon the Implicit Function Theorem.

Nevertheless, it is precisely with a strengthened version of this Theorem that we

start our work in [5], to the aim of solving the complementary equation globally with

respect to S0. Indeed for η > 0, consider the (compact) neighborhood of S0

M =
{

v ∈ N :
∣

∣‖v‖ − 1
∣

∣ ≤ η
}

where we recall that N is Ker A (and W is Im A). Taking η > 0 small, we can assume

that B is of class C1 in an open neighborhood of M × {0} ⊂ N × W , and then it

follows from Lemma 2.2 of [5] that the function w = w(δ, ǫ, v) obtained solving (2.4)

is defined and of class C1 in an open neighborhood U1 of {0}×{0}×M ⊂ R×R×N .

Once this is done, a further reduction can be made on “eliminating δ” from our

equations. Indeed in the present Hilbert space context, taking the scalar product in

(2.8) we get

〈ǫPB(v + w(δ, ǫ, v)), v〉 = δ‖v‖2. (2.12)

Dividing both members of (2.12) by ‖v‖2 and applying again Lemma 2.2 of [5] to

the resulting equation, we see that δ can be written as a C1 function δ(ǫ, v) of (ǫ, v),

defined on an open subset V of R × (N \ {0}) containing {0} × M and such that

δ(0, v) = 0 for any v, and (δ(ǫ, v), ǫ, v) ∈ U1 for (ǫ, v) ∈ V .

For convenience put φ(ǫ, v) ≡ w(δ(ǫ, v), ǫ, v). Then we see - from (2.8) and

the normalization condition (2.9) - that in order to solve (1.1) it is enough to find
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(ǫ, v) ∈ V such that

ǫPB(v + φ(ǫ, v)) = δ(ǫ, v)v (2.13)

and

‖v + φ(ǫ, v)‖2 = ‖v‖2 + ‖φ(ǫ, v)‖2 = 1. (2.14)

Under the assumptions of Theorem 2.2, we show that a stronger result holds:

namely, for any sufficiently small ǫ there exists vǫ ∈ M such that (ǫ, vǫ) satisfies

(2.13) and (2.14). To this purpose, assume for simplicity that λ0 = 1. Then adding

v to both sides of (2.13) and putting h(ǫ, v) = 1 + δ(ǫ, v) we get

v + ǫPB(v + φ(ǫ, v)) = h(ǫ, v)v. (2.15)

Fix ǫ 6= 0 and let σ be the radial projection of N \{0} onto its unit sphere S0, defined

putting σ(v) = v/‖v‖ for v ∈ N, v 6= 0. Then looking for solutions v ∈ M of (2.15) is

equivalent to finding v ∈ M such that

σ(v + ǫPB(v + φ(ǫ, v))) =
v

‖v‖ . (2.16)

On the other hand, using (2.14) this last equation becomes

fǫ(v) ≡
√

1 − ‖φ(ǫ, v)‖2σ(v + ǫPB(v + φ(ǫ, v))) = v, (2.17)

which is a fixed point equation for the map fǫ : M → M . The Lefschetz number of

fǫ equals the Euler–Poincaré characteristic of S0 [5], and thus is not zero since S0 is

even dimensional. By the Lefschetz fixed point theorem [1], there exists vǫ ∈ M such

that fǫ(vǫ) = vǫ.

Now fix a sequence (ǫn) with ǫn → 0 and ǫn 6= 0 for all n ∈ N and put vn ≡ vǫn
;

also let

δn ≡ δ(ǫn, vn), un ≡ vn + φ(ǫn, vn).

By the compactness of M we can assume - passing if necessary to a subsequence -

that vn → v0. It follows that φ(ǫn, vn) → φ(0, v0) = 0, which implies by (2.14) that

‖vn‖ → 1 and therefore that v0 ∈ S. Moreover since (δn, ǫn, un) solves (1.1) for any n

and un → v0, it follows that v0 ∈ S0 and is a bifurcation point for (1.1).

Let us now come to our most recent results [6], dealing with the case in which

(1.1) is a variational problem: we then prove that bifurcation from S0 takes place

irrespective of the multiplicity of λ0. To be precise, assume that

HBG) B is a gradient operator in neighborhood of S which means that there

exists a differentiable functional b defined on a open neighborhood U of S such that

〈B(x), y〉 = b′(x)y for all x ∈ U, y ∈ H. (2.18)

Here b′(x) denotes the (Fréchet) derivative of b at the point x ∈ U .

Theorem 2.6. Suppose that T : H → H is a bounded self-adjoint operator, and

suppose that B satisfies HB1) and HBG). If λ0 is an isolated eigenvalue of T of finite

multiplicity, then S0 possesses at least one bifurcation point.
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Sketch of the proof. For the proof of this result it is useful to put (in addition

to the notations used before)

Fǫ(u) ≡ Au + ǫB(u), δǫ(v) ≡ δ(ǫ, v), φǫ(v) ≡ φ(ǫ, v)

so that the system (2.13)-(2.14) in the unknowns ǫ and v can be written

PFǫ(v + φǫ(v)) = δǫ(v)v, ‖v + φǫ(v)‖2 = 1. (2.19)

Under the assumptions of Theorem 2.6 we show that for any ǫ small there exist

(at least) two distinct solutions v = vǫ, z = zǫ of (2.19). To this aim, let B = ∇b -

that is, suppose that (2.18) holds; then Fǫ = ∇fǫ with

fǫ(u) =
1

2
〈Au, u〉+ ǫb(u).

We follow an idea of Stuart [12] to show that for fixed ǫ, the solutions v of (2.19) are

precisely the critical points of the functional αǫ defined by

αǫ(v) = fǫ(v + φǫ(v)) =
1

2
〈Aφǫ(v), φǫ(v)〉 + ǫb(v + φǫ(v)) (2.20)

over the manifold defined by the norm constraint, that is

Mǫ = {v ∈ N : ‖v + φǫ(v)‖2 = 1}. (2.21)

Once this is done, the compactness of Mǫ implies the existence of vǫ, zǫ ∈ Mǫ such

that

αǫ(vǫ) = min
v∈Mǫ

αǫ(v), αǫ(zǫ) = max
v∈Mǫ

αǫ(v). (2.22)

and therefore implies that (for each ǫ), vǫ and zǫ solve (2.19).

Using for instance vǫ and reasoning as in the proof of Theorem 2.2, we can then

construct a sequence (δn, ǫn, un) of solutions to (1.1), with un converging to some

v0 ∈ S0 which is therefore a bifurcation point.

Remark 2.7. It would be interesting to establish conditions guaranteeing that there

are (at least) two different bifurcation points.

3. EXAMPLES IN R
3

In this Section we consider (2.1) in the very special case that X = R
3 and that

(besides A) also the perturbing term B is linear. Moreover we keep fixed a very simple

A, namely - writing u = (x, y, z) for u ∈ R
3 - the projection onto the z-axis:

A(x, y, z) = (0, 0, z).

Thus, A can be represented, in the canonical basis, by of the following matrix:

A =







0 0 0

0 0 0

0 0 1






. (3.1)
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Consider at first a generic B:

B =







a b m

c d n

p q r






. (3.2)

Then (2.1) is










ǫ(ax + by + mz) = δx,

ǫ(cx + dy + nz) = δy,

z + ǫ(px + qy + rz) = δz.

(3.3)

The last equation can be solved for z to yield

z = z(δ, ǫ, x, y) =
ǫ

δ − (1 + ǫr)
(px + qy) (3.4)

and we are thus reduced to solve the system (in the unknowns δ, ǫ, x, y)
{

ax + by + mz(δ, ǫ, x, y) = (δ/ǫ)x,

cx + dy + nz(δ, ǫ, x, y)) = (δ/ǫ)y.
(3.5)

Example 3.1. Consider

B =







a b m

c d n

0 0 r






, (3.6)

that is,

B(x, y, z) = (ax + by + mz, cx + dy + nz, rz).

We see from (3.4) that in this case z(δ, ǫ, x, y) ≡ 0, so that the bifurcation system

reduces to
{

ax + by = (δ/ǫ)x,

cx + dy = (δ/ǫ)y.
(3.7)

The solutions (x, y) 6= (0, 0) of this system - if any - are the eigenvectors of the reduced

2 × 2 matrix

B̂ ≡
(

a b

c d

)

(3.8)

corresponding to real eigenvalues. Suppose first that B̂ has two real eigenvalues µ1, µ2

with µ1 6= µ2. If v1, v2 are corresponding normalized eigenvectors, then the bifurcation

branches defined putting

δi(ǫ) = ǫµi, ui(ǫ) = vi (i = 1, 2) (3.9)

provide a (trivial) continuation of vi as solution of (1.1) for ǫ 6= 0; the same clearly

holds for −vi. Thus each eigenvector of B̂ is continuable as a unit eigenvector of

A + ǫB.

The same conclusion holds true when µ1 = µ2 ≡ µ0, save that either the geometric

multiplicity of µ0 is two - in which case all vectors of R
2 are eigenvectors of B̂ - or it

is one, and there is (modulo reflections) just one normalized eigenvector v0 of B̂.
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Remark 3.2. If B̂ has no real eigenvalue there cannot be bifurcation points. On the

grounds of Proposition 2.1, this holds for any B (and not only for B as in (3.6)).

Example 3.3. Consider

B =







a b 0

c d 0

p q r






, (3.10)

that is,

B(x, y, z) = (ax + by, cx + dy, px + qy + rz).

This time z(δ, ǫ, x, y) is given by its general expression (3.4), however since m =

n = 0 this does not affect the bifurcation system - which maintains its reduced

form (3.7) - nor the conclusion that each eigenvector of B̂ is a bifurcation point.

The difference with Ex.1.1 is that here the solutions of the full system (3.3) have a

nonzero z−component, and consequently the bifurcation branch continuing a given

eigenvector v0 = (x0, y0) of B̂ corresponding to the eigenvalue µ0 is less trivial and is

given by the equations

δ(ǫ) = ǫµ0, u(ǫ) =
(

x0, y0, z(ǫµ0, ǫ, x0, y0)
)

. (3.11)

Remark 3.4. The above examples can be clearly seen in the context of Equation

(2.1). We keep the notations used in Section 2 for N = Ker A, W = Im A as well

as for the projections P, Q onto these subspaces. Pick a v0 ∈ S0 and consider the

complementary equation (2.4) with v = v0:

Aw + ǫQB(v0 + w) = δw. (3.12)

If we suppose that

QB(v0) = 0, (3.13)

then w = 0 solves (3.12); by uniqueness, it follows that w(δ, ǫ, v0) = 0 for any δ and

ǫ. The bifurcation equation (2.8) thus reduces (for v = v0) to

ǫPB(v0) = δv0, (3.14)

which is precisely - taking µ0 = δ/ǫ - the necessary condition (2.5). This remark

is not new, for (3.13) and (2.5) are equivalent to saying that B(v0) = µ0v0 and in

this case, as already noted in the Introduction, we can immediately solve (2.1) for

all ǫ. Perhaps more interesting is to observe that requiring the condition (3.13) for

all v0 ∈ S0 amounts to requiring that B map S0 into N and therefore - when B is

linear, of course - that B map N into itself, i.e., that N be an invariant subspace for

B. Indeed, this is what happens in Example 1.1.

Consider instead the dual situation in which W , rather than N , is an invariant

subspace for B; the B in Example 1.2 is chosen to enjoy this property. This is

expressed by the condition that PB(w) = 0 for any w ∈ W ; so that if we pick a

v0 ∈ S0 satisfying the necessary condition (2.5), then we have in particular

ǫPB(v0 + w(ǫµ0, ǫ, v0)) = ǫPB(v0) = ǫµ0v0 (3.15)
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for any ǫ. This shows that (ǫµ0, ǫ, v0) is a solution of (2.8) for any ǫ, implying that v0

is continuable via the equations

δ(ǫ) = ǫµ0, u(ǫ) = v0 + w(ǫµ0, ǫ, v0). (3.16)

Of course, in order to have unit eigenvectors we shall take U(ǫ) ≡ u(ǫ)/‖u(ǫ)‖ rather

than u(ǫ) itself and use the linearity of the equation.

Example 3.5. Here we consider the case

B =







0 b 0

c 0 1

1 0 0






. (3.17)

For such a B, (3.4) becomes

z = z(δ, ǫ, x, y) =
ǫ

δ − 1
x (3.18)

and the bifurcation system (3.5) is
{

by = (δ/ǫ)x,

cx + ǫ
δ−1

x = (δ/ǫ)y.
(3.19)

We have to distiguish the following cases:

• bc > 0

• b > 0 (or b < 0) and c = 0

• b = c = 0

• bc < 0.

The last case is not of interest, for the reduced matrix

B̂ ≡
(

0 b

c 0

)

(3.20)

has no real eigenvalue.

• Case bc > 0:

The first equation in (3.19) yields

y =
δ

ǫb
x, (3.21)

so that the solutions u = (x, y, z) of the full system (3.3) have the form

u = x(1,
δ

ǫb
,

ǫ

δ − 1
). (3.22)

Moreover replacing ( 3.21) in the second equation of the system (3.19) gives the

condition

c +
ǫ

δ − 1
=

δ2

ǫ2b
(3.23)

provided that x 6= 0; however, (3.22) implies that u = 0 if x = 0, and we look for

solutions u 6= 0. (Note that the above equations make sense whenever b 6= 0, however

since the l.h.s. of (3.23) has - for ǫ small and c 6= 0 - the sign of c, it follows that b
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and c must have the same sign in order that (real) solutions to (3.23) exist). Now the

latter equation - expressing the eigenvalues as a function of the parameter ǫ - can be

written equivalently as

(δ − 1)(δ2 − ǫ2bc) = ǫ3b, (3.24)

and by direct inspection we then find that it has for each ǫ three real solutions

δi(ǫ), 1 ≤ i ≤ 3, with the property

δi(ǫ) → 0, i = 1, 2; δ3(ǫ) → 1 (ǫ → 0). (3.25)

Therefore, using (3.23) in (3.22), we see that the eigenvectors of interest are given by

the formula

u(ǫ) = x(1,
δ

ǫb
,

δ2

ǫ2b
− c) (x 6= 0) (3.26)

where δ = δi(ǫ), i = 1, 2. Equation (3.26) shows that the ratio δ/ǫ is the significant

parameter here. Now since ǫ/(δ − 1) approaches zero as ǫ → 0, it follows from (3.23)

that δ2/(ǫ2b) → c as ǫ → 0, and therefore

δ

ǫ
→ ±

√
bc ≡ ±µ0 (ǫ → 0). (3.27)

Thus if we let in (3.26) x = 1 and δ = δi(ǫ) (i = 1, 2), and denote with ui(ǫ) the

corresponding vector, then as ǫ → 0

ui(ǫ) = (1,
δi(ǫ)

ǫb
,
δ2
i (ǫ)

ǫ2b
− c) → (1,±µ0

b
, 0) ≡ u± (3.28)

where the signs + and − refer to i = 1 and i = 2 respectively. It follows that if Ui(ǫ),

U± denote the normalized vectors corresponding respectively to ui(ǫ) and u±, then

U1(ǫ) → U+, U2(ǫ) → U− (ǫ → 0), (3.29)

and this finally shows that U± (together of course with their opposites −U±) are the

bifurcation points in this case. Since µ0 =
√

bc > 0, we conclude that there are

precisely four bifurcation points. Note that ±µ0 are the eigenvalues of the matrix in

(3.20) and U± (together with their opposites −U±) the corresponding unit eigenvec-

tors. Thus also in this case (as in the Examples 1.1 and 1.2), every v0 ∈ S0 satisfying

the necessary condition (2.5) is in fact a bifurcation point.

• Case b > 0 (or b < 0) and c = 0:

The previous analysis remains true save that in this case µ0 = 0. Therefore,

U± = (1, 0, 0) ≡ e1

is the only bifurcation point (modulo reflections). However, it is important to note

that there exist two distinct bifurcation branches bifurcating from e1: indeed it is

easily seen from (3.24) that δ1(ǫ) 6= δ2(ǫ) for each ǫ 6= 0, and this shows - via the

formula (3.28) - that u1(ǫ) 6= u2(ǫ) for ǫ 6= 0.

• Case b = c = 0:
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The situation is quite different in this case, for the bifurcation system (3.19)

reduces to
{

0 = δx
ǫ2

δ−1
x = δy.

(3.30)

Solutions (x, y) 6= (0, 0) of (3.30) exist only for δ = 0, in which case they are (for

ǫ 6= 0)

(0, y), y 6= 0.

Thus, the only nontrivial normalized solution of the full system (3.3) are (for any

ǫ 6= 0)

(0,±1, 0) ≡ ±e2.

This shows that ±e2 are also the only bifurcation points of the system in this case

(and we have the trivial bifurcation branch δ(ǫ) = 0, Uǫ = ±e2). On the other hand,

as B̂ = 0, any v = (x, y) ∈ N = R
2 satisfies the necessary condition with µ0 = 0.
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