
Communications in Applied Analysis 15 (200x), no. 2, 3 and 4, 325–340

THE MONGE PROBLEM IN R
d: VARIATIONS ON A THEME II

LUIGI DE PASCALE1

1Dipartimento di Matematica Applicata “U. Dini”

Università di Pisa
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ABSTRACT. In some recent papers [11, 12] it is proved that, under natural assumptions on the

first marginal, the Monge problem in the metric space R
d equipped with a general norm admits a

solution. Although the basic idea of the solution is simple the proof involves some very complex

technical results. Here we will report a proof of the result in the simpler case of uniformly convex

norms. Uniform convexity allow us to reduce the technical burdens while still giving the main ideas

of the general proof. The proof of the density of the transport set given in this paper is original.

AMS (MOS) Subject Classification. 49Q20, 49K30, 49J4

1. INTRODUCTION

The Monge problem has origin in the Mémoire sur la théorie des déblais et rem-

blais written by G. Monge [18]. The problem was stated, more or less, as follows:

given a sand pile and an embankment with the same volume as the sand pile is there

a way to transport the sand in the embankment which minimizes the work? We con-

sider the closure Ω of an open, bounded and convex subset of R
d as ambient space

for the model. Then, if we use a probability measure µ to model the sand pile and a

probability measure ν to model the embankment, a transport map T from µ to ν will

be a Borel map such that T♯µ = ν (i.e. ν(B) = µ(T−1(B)) for all Borel sets B ⊂ Ω).

If we denote by T (µ, ν) the set of transport maps of µ to ν then the problem will

take the form

inf

{
∫

Ω

|x − T (x)|dµ(x) : T ∈ T (µ, ν)

}

. (1.1)
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The natural appeal of the problem and the many applications attracted the in-

terest to a generalization in which one consider a general norm

inf

{
∫

Ω

||x − T (x)||dµ(x) : T ∈ T (µ, ν)

}

, (1.2)

A first strategy to solve the problem was devised by Sudakov in [23]. The basic

idea in that paper was to reduce the problem to lower dimensional affine regions. This

is quite natural as we will explain in Section 2. Reducing the problem to lower dimen-

sional affine spaces requires to consider the restrictions (or conditional probability)

of µ and ν to the regions of interest. However this method involved a crucial step

on the disintegration of a measure which was not completed correctly at that time,

and has recently been justified in the case of a strictly convex norm by Caravenna

[10]. Meanwhile, the problem (1.1) has been solved by Evans et al. [14] with the ad-

ditional regularity assumption that µ and ν have Lipschitz-continuous densities with

respect to Ld, and then by Ambrosio [2] and Trudinger et al. [24] for µ and ν with

integrable density. The more general problem (1.2) for C2 uniformly convex norms

has been solved by Caffarelli et al. [9] and Ambrosio et al. [5], and for crystalline

norms in R
d and general norms in R

2 by Ambrosio et al. [4]. The original proof of

Sudakov was based on the reduction of the transport problems to affine regions of

smaller dimension, and all the proofs we listed above are based on the reduction of

the problem to a 1-dimensional problem via a change of variable or area-formula. In

[11, 12], we introduced a different method which does not require the reduction to

1-dimensional settings.

This paper. The aim of this paper is mainly expository. We will focus on the

particular case of uniformly convex norms to illustrate the strategy underlying the

proofs of [11, 12]. The uniform convexity assumption

c ≤
∂2

∂ξ∂ξ
‖ · ‖2 ≤ C for all ξ ∈ S1 and for some 0 < c ≤ C. (1.3)

will considerably reduce the technical burdens of the proof while leaving intact the

main ideas.

One of the main steps in [11, 12] is the proof of the density of the transport set

(see definition below) which involves some constants depending on the dimension of

the ambient space. In particular the constants vanish when the dimension d → ∞

thus preventing finite dimensional approximation in the spirit of [15]. As a minor

original contribution we will revisit the proof of the density of the transport set first

obtaining an estimate of the density instead of the lower density and then obtaining

estimates which do not depends on the dimension. We hope that this paper will make

the problem accessible to a non-specialist audience.
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2. THE MAIN PLAYERS AND THEIR BASIC PROPERTIES

The first step consists in suitably relaxing the problem. This was done by Kan-

torovich [16, 17] who introduced the set

Π(µ, ν) = {γ ∈ P(Ω × Ω) : π1
♯ γ = µ, π2

♯ γ = ν},

and the cost
∫

Ω×Ω

‖x − y‖dγ.

The elements of Π(µ, ν) are called transport plans and as tools to transport µ to

ν they allow the mass sitting at a point x to be split among many point y while

a transport map T move all of the mass sitting at x to T (x). There is a natural

embedding of T (µ, ν) in Π(µ, ν) which associates to a transport map T the transport

plan γT = (id × T )♯µ, which has the same cost
∫

Ω×Ω

‖x − y‖dγT =

∫

Ω

‖x − T (x)‖dµ.

Then the new problem is

min
Π(µ,ν)

∫

Ω×Ω

‖x − y‖dγ. (2.1)

The inescapable question is whether

inf
T (µ,ν)

∫

Ω

||x − T (x)||dµ(x) = min
Π(µ,ν)

∫

Ω×Ω

‖x − y‖dγ.

Since we will prove that if µ is absolutely continuous with respect to Ld then some

of the optimal transport plans are induced by optimal transport maps, the equality

will follow. However it can be proved the more general result

Theorem 2.1. If µ has no atoms then

inf
T (µ,ν)

∫

Ω

||x − T (x)||dµ(x) = min
Π(µ,ν)

∫

Ω×Ω

‖x − y‖dγ.

For a proof of Theorem 2.1 in wide generality we refer to [19] and reference

therein.

The assumption that µ is non atomic cannot be removed since in that case the

set T (µ, ν) may be empty.

Example 2.2. In R consider µ := δ0 and ν := 1
2
(δ1+δ−1). In this case the set T (µ, ν)

is easily seen to be empty. In general it may happens that T (µ, ν) is non empty but

the left-hand-side is an inf while the right-hand-side (under the current assumptions)

is always a minimum.

Example 2.3. In R
2 let S0 = {(0, t) : t ∈ [0, 1]}, S1 = {(1, t) : t ∈ [0, 1]} and

S−1 = {(−1, t) : t ∈ [0, 1]}. Let µ := H1⌊S0 and ν := 1
2
(H1⌊S1 + H1⌊S−1) where

by H1 we denote the one-dimensional Hausdorff measure. In this case the optimal
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transport plan will move half of the mass horizontally to the right and the other half

horizontally to the left. This cannot be achieved by any transport map.

A natural (although technical) question is whether a transport plan supported on

a graph is induced by a transport map or not. The answer is relevant for this paper

and is the topic of Lemma 3.1 in [1] . Since the aim of this paper is partly expository

we report the proof below.

Lemma 2.4 ([1]). Let X and Y be subsets of complete separable metric spaces, and

γ ≥ 0 a σ-finite Borel measure on the product space X × Y . Denote the X-marginal

of γ by µ. If γ vanishes outside the graph of T : X → Y (in the sense that the outer

measure of (X × Y ) \ Graph(T ) = 0) , then T is µ measurable and γ = (id × T )♯µ.

Proof. To start let us assume that X and Y are closed (and then complete and

separable). In this case γ is a regular measure since it is σ-finite and Borel on a

complete and separable metric space. Then, since γ(X × T \ (Graph(T ))) = 0, there

exists an increasing sequence of compact sets Ki ⊂ Ki+1 ⊂ · · · ⊂ Graph(T ) such that

K∞ ⊂ Graph(T ) has full measure or equivalently γ(X × Y \ K∞) = 0. Since Ki is

compact the restriction of T to the compact set πX(Ki) is continuous and then the

restriction T∞ of T to πX(K∞) is a Borel map. We will now show that γ = (id×T∞)♯µ.

Let U × V be any Borel “rectangle” then

γ(U × V ) = γ(U ∩ T−1
∞ (V ) × Y )

= µ(U ∩ T−1
∞ (V ))

= (id × T∞)♯µ(U × V ).

And this implies the thesis. To conclude we show that the closure assumption on X

and Y do not hurt the generality. Indeed we may consider X and Y and extend γ to

γ by setting γ(B) = γ(B ∩ (X × Y )). Clearly γ vanishes outside the graph of T and

if the statement holds for γ then necessarily holds for γ too.

Remark 2.5. In the original papers [11, 12] we used Proposition 2.1 of [2] instead

of Lemma 2.4 above. Although the two are equivalent the formulation of Lemma

2.4 is more convenient. In fact Proposition 2.1 of [2] requires that the graph of T is

γ-measurable. Checking this measurability may be technically non trivial.

Problem (2.1) is a linear minimization problem with convex constraints and then

it allows the use of duality theory. The dual problem takes the following form

max
u∈Lip1(Ω)

∫

Ω

u(x)dµ −

∫

Ω

u(y)dν. (2.2)

Theorem 2.6. Under the current assumptions

min
Π(µ,ν)

∫

Ω×Ω

‖x − y‖dγ = max{

∫

Ω

u(x)dµ −

∫

Ω

u(y)dν | u(x) − u(y) ≤ ‖x − y‖}.
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Moreover if u is a maximizer for the right-hand-side then γ is optimal for the left-

hand-side if and only if u(x) − u(y) = ‖x − y‖ γ-a.e.

Proof. We first notice that the existence of a maximizer for the right hand side is

easily obtained by the direct method of the Calculus of Variations. In fact, after

observing that adding a constant to an admissible u does not change the value of

the functional, one can apply the Ascoli-Arzelà theorem to a bounded, maximizing

sequence.

To prove the equality between the extremal values we use the convex duality

theory. We first rewrite the right-hand-side as follows

sup

{
∫

Ω

u dµ +

∫

Ω

v dν : ∀x, y, u(x) + v(y) ≤ ‖x − y‖

}

. (2.3)

It is indeed clear that the right-hand-side is lower than the sup in (2.3). The proof

of the reverse inequality is as follows: if one associates to a function u the function

ũ : y 7→ infx{‖x−y‖−u(x)}, then the sup of the right hand side of (2.3) is also realized

with couples of functions of the form (u, ũ), and then of the form (˜̃u, ũ) = (−ũ, ũ),

from which the reverse inequality follows.

Then we consider p ∈ C(Ω × Ω) and we perturb the problem (2.3) as follows:

h(p) = inf{−

∫

Ω

u dµ−

∫

Ω

v dν : u(x) + v(y) + p(x, y) ≤ ‖x − y‖}.

Notice in particular that h(0) = −(2.3). Moreover the function h is convex. Let us

compute the Moreau-Fenchel conjugate h∗(γ) for γ ∈ M+(Ω × Ω) (we notice that

h∗(γ) = +∞ if the negative part γ− of the measure γ is not 0):

h∗(γ) = sup
p

{〈γ, p〉 − h(p)}

= sup
u,v,p

{

〈γ, p〉 +

∫

Ω

u dµ +

∫

Ω

vdν : u(x) + v(y) + p(x, y) ≤ ‖x − y‖

}

= sup
u,v

{
∫

Ω×Ω

‖x − y‖dγ + 〈γ,−u − v〉 +

∫

Ω

u dµ +

∫

Ω

vdν

}

=







∫

Ω×Ω

‖x − y‖dγ if γ ∈ Π(µ, ν),

+∞ otherwise.

Then

h∗∗(0) = − min
γ∈Π(µ,ν)

∫

Ω×Ω

‖x − y‖dγ = −min (2.1).

We just need to prove that h is lower semicontinuous at 0 and it will follow that

h∗∗(0) = h(0). Since Ω is compact, then h is bounded in a neighborhood of 0 for the

uniform convergence: since h is also convex, it follows that it is Lipschitz continuous

in a neighborhood of 0. The equality between the extremal values of (2.1) and (2.2)

follows.
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To prove the last part of the statement, take a maximizer u for (2.2) and γ ∈

Π(µ, ν) optimal for (2.1). Since u(x) − u(y) ≤ ‖x − y‖ for all x and y then, by

definition of marginal measures, the equality
∫

Ω

u(x)dµ −

∫

Ω

u(y)dν =

∫

Ω×Ω

‖x − y‖dγ

holds if and only if u(x) − u(y) = ‖x − y‖ for γ-a.e (x, y). A final remark is that by

continuity of u this last equality is also satisfied on the support of γ.

Remark 2.7. The optimality for the Kantorovich problem has a remarkable conse-

quence on the structure of the support of an optimal measure γ which we may call

2-points cyclical monotonicity i.e. for any couple of points (x1, y1), (x2, y2) ∈ spt(γ)

then

‖x1 − y1‖ + ‖x2 − y2‖ ≤ ‖x1 − y2‖ + ‖x2 − y1‖.

Infact, by the previous theorem,

‖x1 − y1‖ + ‖x2 − y2‖ = u(x1) − u(y1) + u(x2) − u(y2) ≤ ‖x1 − y2‖ + ‖x2 − y1‖.

The monotonicity property illustrated in the previous remark is a particular case

of the so called cyclical monotonicity. Here we will not discuss cyclical monotonicity

in its full generality. It is worth to note that in a quite general setting cyclical

monotonicity characterizes the optimality of γ (see [8, 20, 21]).

The duality theorem above brings us to introduce a relevant set which is called

transport set. The transport set is the set in which the transport actually happens.

We will now introduce two notions of transport set and transport rays one associated

to a transport potential and the other to a transport plan. We will then make the

natural comparison between the two.

Definition 2.8. Let u ∈ Lip1(Ω), an open segment ]x, y[ is called transport ray if it

is a maximal, open, oriented segment whose end points satisfy the condition

u(x) − u(y) = ‖x − y‖. (2.4)

The transport set Tu is the union of all transport rays. The union T e
u (e stands for

end-points) of all the closed transport rays will also play a role.

Definition 2.9. The transport set associated to a set Γ ∈ Ω×Ω is defined as the set

T (Γ) = {(1 − t)x + ty | (x, y) ∈ Γ and t ∈ (0, 1)}.

Remark 2.10. Let γ be an optimal plan of transport, by theorem 2.6 for any subset

R ⊂ spt(γ) and any Kantorovich potential u

T (R) \ ∆ ⊂ Tu.
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In the equation above ∆ denotes the diagonal of the product space. This set has

to be considered separatelly since we defined transport rays as open segments which

requires distinct end-points.

In everything we said up to this point the properties of the norm did not play

role. In what follows we will need some definition and elementary properties. Let ‖ ·‖

be a norm in R
d, the dual norm ‖ · ‖∗ is defined as follows

‖p‖∗ := max{〈p, x〉 : ‖x‖ = 1}. (2.5)

Since the function maximized on the right-hand-side of (2.5) is linear, whenever the

norm ‖ · ‖ is strictly convex, for p 6= 0 the maximum is achieved at a unique point

which we denote by p∗. The map which associate

p 7→ p∗, (for p 6= 0)

is called duality map. If the norm ‖ · ‖ satisfies the estimate below in 1.3 then the

duality map is Lipschitz on the set {p : ‖p‖∗ = 1}.

The transport potential u is affine on the transport rays and the following lemma

holds.

Lemma 2.11. Let u ∈ Lip1(Ω), if u is differentiable at a point z ∈ Tu then ‖∇u‖∗ = 1

and the vector −∇u(z)∗ is parallel to the transport ray containing z.

Proof. First we remark that since u is 1−Lipschitz we have ‖∇u‖∗ ≤ 1. Since z ∈ Tu

let us denote by (x, y) the extremes of the transport ray to which z belongs. For

every s ∈ (−‖x − z‖, ‖z − y‖) we have that u(z) = u(z + s y−x

‖y−x‖
) + s then

lim
s→0

u(z + s y−x

‖y−x‖
) − u(z)

s
= ∇u(z) ·

y − x

‖y − x‖
= −1

which is, by definition, equivalent to the thesis.

Another property which follows from the strict convexity of the norm is the so

called “no-crossing” property, i.e. different transport rays do not cross. We discuss

this property and a consequence in the following remark.

Remark 2.12. Let ]x1, y1[ and ]x2, y2[ be two transport rays. Then either

]x1, y1[ ∩ ]x2, y2[= ∅

or

]x1, y1[ = ]x2, y2[.

In fact if z ∈]x1, y1[ ∩ ]x2, y2[ then u(x1)−u(z) = ‖x1−z‖ and u(z)−u(y2) = ‖z−y2‖

and this, together with the Lipschitz property of u implies

‖x1 − z‖ + ‖z − y2‖ = u(x1) − u(y2) ≤ ‖x1 − y2‖.
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By the strict convexity of the norm x1, z and y2 are on the same line and then by the

maximality of the transport rays ]x1, y1[=]x2, y2[.

A consequence of this property and of lemma 2.11 is the following. Let z1 and

z2 be two different elements of the transport set Tu, assume that u is differentiable

at both points and let t ∈ R be sufficiently small, so that for i = 1, 2 zi − t∇u(zi)
∗

belongs to the same transport ray as zi. Then

z1 − t∇u(z1)
∗ 6= z2 − t∇u(z2)

∗. (2.6)

In fact if the two transport rays are different they cannot intersect. If both z1 and

z2 belongs to the transport ray ]x, y[ then ∇u(z1)
∗ = ∇u(z2)

∗ and since z1 6= z2 (2.6)

holds

Remark 2.13. Theorem 2.6 and Lemma 2.11 indicate that in the case of a uniformly

convex norm the transport happens along lines of maximal slope for a transport

potential u. This is at the root of the 1−dimensional decomposition strategies followed

by other authors and cited in the introduction. When the norm is not strictly convex

one need to consider the regions on which the transport potential u is affine and these

regions may be higher dimensional affine submanifolds of R
d.

Since one of the main ideas here is to select a “better” transport plan let us

introduce the tools to achieve this aim.

We denote by O1(µ, ν) the set of optimal transport plans for (2.1), and consider

the auxiliary problem:

min

{
∫

Ω×Ω

|y − x|2dγ(x, y) : γ ∈ O1(µ, ν)

}

, (2.7)

where we remark the fact that the cost considered in (2.7) involves the Euclidean

norm | · | of R
d. This procedure of choosing particular minimizers is the root of the

idea of asymptotic development by Γ-convergence (see [6] and [7]) .

Finally, since an element of O2(µ, ν) is a solution of (2.7), it enjoys a cyclical

monotonicity property inherited from the cost (x, y) 7→ |y − x|2 (see remark 2.15

below), stated in the following proposition, whose proof may be derived from that of

Lemma 4.1 in [4] and is given in [11] (see Proposition 3.2 therein).

Proposition 2.14. Let γ be a solution of (2.7), then γ is concentrated on a σ-compact

set Γ with the following property:

∀(x, y), (x′, y′) ∈ Γ, x ∈ [x′, y′] ⇒ (x − x′) · (y − y′) ≥ 0, (2.8)

where · denotes the usual scalar product on R
d.

Remark 2.15. To explain condition (2.8) above we recall that if γ is a minimizer for

min

{
∫

Ω×Ω

|y − x|2dγ(x, y) : γ ∈ Π(µ, ν)

}

(2.9)
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then spt(γ) satisfies a 2-points cyclical monotonicity condition related to the cost

|x − y|2 which says that for any couple of points (x1, y1), (x2, y2) ∈ spt(γ) then

|x1 − y1|
2 + |x2 − y2|

2 ≤ |x1 − y2|
2 + |x2 − y1|

2

which is equivalent to

(x2 − x1) · (y2 − y1) ≥ 0.

The measure γ involved in Proposition 2.14 is a minimizer for a the constrained version

(2.7) of (2.9) and infact the additional request x ∈ [x′, y′] in (2.8) is a consequence of

the constraint γ ∈ O1(µ, ν) .

3. FINER PROPERTIES AND PROOF OF THE MAIN THEOREM

Beside the “functional analytic” properties studied in the previous section, op-

timal transport plans and Kantorovich potentials enjoy some finer properties which

belong to the realm of Geometric Measure Theory. The properties of the transport

plan we introduce below were first applied in [13] to deal with some optimal trans-

port problem with cost in non integral form. When considered as multivalued maps,

transport plans (not necessarily optimal) are measurable, then one expect some ap-

proximate continuity property to hold. And in fact this is the content of the next

proposition. First we introduce some basic definition.

Definition 3.1. Let γ ∈ Π(µ, ν) be a transport plan. For y ∈ Ω and r > 0 we define

γ−1(B(y, r)) := π1(spt(γ) ∩ (Ω × B(y, r))).

In other words γ−1(B(y, r)) is the set of those points whose mass (with respect to

µ) is partially or completely transported to B(y, r) by γ. We may justify this slight

abuse of notations by the fact that γ should be thought of as a device that transports

mass.

Since this notion is important in the sequel, we recall that when A is Ld-measurable,

one has

lim
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall call such a point x a Lebesgue point of A, this

terminology deriving from the fact that such a point may also be considered as a

Lebesgue point of χA. In the following, we shall denote by Leb(A) the set of points

x ∈ A which are Lebesgue points of A. We also define the lower density of A at x as:

θ∗(A, x) := lim inf
r→0

Ld(A ∩ B(x, r))

Ld(B(x, r))
.

The following Lemma details the meaning of approximate continuity for a trans-

port plan. Its statement and proof are simplifications of that of Lemma 5.2 from [13]

and we report it for the convenience of the reader.
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Lemma 3.2. Let γ ∈ Π(µ, ν). If µ ≪ Ld, then γ is concentrated on a set R(γ) such

that for all (x, y) ∈ R(γ) the point x is a Lebesgue point of γ−1(B(y, r)) for all r > 0.

Proof. Let

A := {(x, y) ∈ spt(γ) : x /∈ Leb(γ−1(B(y, r))) for some r > 0};

we intend to show that γ(A) = 0. To this end, for each positive integer n we consider

a finite covering Ω ⊂
⋃

i∈I(n)

B(yn
i , rn) by balls of radius rn := 1

2n
. We notice that if

(x, y) ∈ spt(γ) and x is not a Lebesgue point of γ−1(B(y, r)) for some r > 0, then

for any n ≥ 1
r

and yn
i such that |yn

i − y| < rn the point x belongs to γ−1(B(yn
i , rn))

but is not a Lebesgue point of this set. Then

π1(A) ⊂
⋃

n≥1

⋃

i∈I(n)

(

γ−1(B(yn
i , rn)) \ Leb(γ−1(B(yn

i , rn)))
)

.

Notice that the set on the right hand side has Lebesgue measure 0, and thus µ-

measure 0. It follows that γ(A) ≤ γ(π1(A) × Ω) = µ(π1(A)) = 0. In conclusion the

set R(γ) = spt(γ) \ A has the desired property.

The above Lemma yields us to introduce the following notion:

Definition 3.3. The couple (x, y) ∈ spt(γ) is a γ-regular point if x is a Lebesgue

point of γ−1(B(y, r)) for any positive r.

Notice that any element of the set R(γ) of Lemma 3.2 is a γ-regular point. Lemma

3.2 above therefore states that any transport plan γ is concentrated on a Borel set

consisting of regular points: this regularity property turns out to be a powerful tool

in the study of the support of optimal transport plans for problem (2.1), as the proof

of Proposition 3.6 below illustrates.

Also the direction of transport (which is individuated as −∇u(z)∗) by Lemma

2.11 enjoys an additional regularity property. Let us first introduce the notion of

countable Lipschitz property.

Definition 3.4. Let S ⊂ Ω be measurable, we say that a function v : S → R
n has the

countable Lipschitz property if there exists a sequence {Sk}k of measurable subsets

of S such that Ld(S \
⋃

k Sk) = 0 and the restriction of v to each Sk is Lipschitz.

The countable Lipschitz property is related to the concept of “approximate dif-

ferentiability” and it is, in particular enjoyed by BV functions (see, for example, th.

5.34 of [3]).

The proof follows [5].
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Proposition 3.5. Let u be a Kantorovich potential then there exists a sequence of

Borel sets Fk such that Ld(T e
u \

⋃

k Fk) = 0 and such that the map x 7→ ∇u(x)∗

restricted to Fk is Lipschitz.

Proof. Let ξ ∈ Sd−1 be a direction and a ∈ R. Let R be the union of half closed

transport rays [x, y[ and Rξ,a the union of half closed transport rays [x, y[ whose

direction satisfies 〈ξ, y−x

‖y−x‖
〉 > 0 and which ends above the hyperplane individuated

by ξ and a, i.e. 〈ξ, y〉 ≥ a. We first prove that ∇u has the countable Lipschitz

property claimed by the statement on the set Sξ,a = Rξ,a ∩ {x : 〈ξ, x〉 < a}. Since

BVloc functions have the countable Lipschitz property, to prove this one can show that

∇u coincide a.e. on Sξ,a with a function v ∈ BVloc({x : 〈ξ, x〉 < a}, Rd). Consider

the set Yξ,a of right-ends of transport rays involved in Rξ,a and the function

ũ(x) := min
y∈Yξ,a

u(y) + ‖x − y‖.

Since u and ũ coincide on Yξ,a and ũ is the bigger 1−Lipschitz extension of u|Yξ,a

ũ ≥ u

on the other hand by definition of transport ray

u = ũ on Sξ,a.

For b < a, thanks to the control above in (1.3), there exists a constant C(b) such that

ũ − C(b)|x|2

is concave in {x : 〈ξ, x〉 < b}. Indeed in for every x ∈ {x : 〈ξ, x〉 < b} and y ∈ Yξ,a,

we have ‖x − y‖ ≥ a − b and then for all y ∈ Yξ,a the function

x 7→ u(y) + ‖x − y‖ − C(b)|x|2

is concave in {x : 〈ξ, x〉 < b}. Since gradients of concave functions are BVloc we

obtain that

v := ∇ũ = ∇(ũ − C(b)|x|2) + 2C(b)x

is BVloc and then it enjoys the countable Lipschitz property in {x : 〈ξ, x〉 < b}

and, as consequence in Sξ,a ∩ {x : 〈ξ, x〉 < b}. Consider a sequence bn → a−

since Sξ,a = ∪n(Sξ,a ∩ {x : 〈ξ, x〉 < b} we conclude that ∇u has the countable

Lipschitz property in Sξ,a. Considering countable and dense sets of directions ξn and

real numbers an one obtain that ∇u has the countable Lipschitz property in R which

includes the open transport set and only the starting points of transport rays. In order

to include also the final points of transport rays, we make a similar construction using

the lower Lipschitz extension and we conclude that ∇u has the countable Lipschitz

property in T e
u . Finally it is enough to recall that, thanks to the control from below

in (1.3), the duality map which associate to a unit vector L ∈ (Rd)∗ the unique
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unit vector L∗ ∈ R
d such that L(L∗) = 1 is Lipschitz and then also ∇u∗ enjoy the

countable Lipschitz property.

In the next proposition we prove that (γ-essentially) if x0 is partly moved to

y0 the transport set from a neighborhood of x0 to a neighborhood of y0has positive

density at x0. Since the definition of transport ray and Proposition 3.5 require that

x 6= y we will need to assume this in the proposition.

Proposition 3.6. Let γ ∈ O1(µ, ν), let u be a Kantorovich potential and let {Fk}k

be the sets associated to the countable Lipschitz property of ∇u∗. Let (x0, y0) ∈ R(γ)

with x0 6= y0 and x0 ∈ Leb(Fk) (for some k) then for all s > 0

θ∗(T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩ B(x0, s), y ∈ B(y0, s)}), x0) = 1.

Then x0 is a Lebesgue point for the transport set.

Proof. We need to estimate from below the

lim inf
r→0

Ld(T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩ B(x0, s), y ∈ B(y0, s)}) ∩ B(x0, r))

Ld(B(x0, r))
,

then without loss of generality we may assume r < s and B(x0, s)∩B(y0, s) = ∅. For

any t such that 0 < t ≪ ‖x0 −y0‖ and any (x, y) ∈ spt(γ) such that x ∈ Fk ∩B(x0, s)

and y ∈ B(y0, s) we have that

x − t∇u(x)∗ ∈ T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩ B(x0, s), y ∈ B(y0, s)}).

If moreover, for some positive integer n, t <
r

n
and x ∈ B(x0,

(n − 1)r

n
) then x −

t∇u(x)∗ ∈ B(x0, r). Since x0 is a Lebesgue point for both Fk and γ−1(B(y0, s)) it is

also a Lebesgue point for the intersection

Pk := Fk

⋂

γ−1(B(y0, s)).

Summing up the last three observations we obtain that for r sufficiently small and

for any t <
r

n

Ld({x − t∇u(x)∗ : x ∈ Pk ∩ B(x0,
(n − 1)r

n
)}) ≤

Ld(T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩ B(x0, s), y ∈ B(y0, s)}) ∩ B(x0, r))

Since on Fk the map −∇u∗ coincide with a Lipschitz map Gk of Lipschitz constant

Lk we also have that for any t the map x − t∇u∗(x) coincide with the Lipschitz

map Id + tGk on Fk. Moreover we may choose t sufficiently small so that
n − 1

n
≤
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|det(Id+ tDGk)| then by the area formula (applied to the Lipschitz function Id+ tGk

which is, by equation (2.6), injective in Pk thanks to the cyclical monotonicity)

n − 1

n
Ld(Pk ∩ B(x0,

(n − 1)r

n
)) ≤

∫

Pk∩B(x0,
(n−1)r

n
)

|det(Id + tDGk)|dx =

Ld({x − t∇u(x)∗ : x ∈ Pk ∩ B(x0,
(n − 1)r

n
)}).

Now we can estimate

lim infr→0
Ld(T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩ B(x0, s), y ∈ B(y0, s)}) ∩ B(x0, r))

Ld(B(x0, r))

≥ lim infr→0

Ld({x − t∇u∗(x) : x ∈ Pk ∩ B(x0,
(n − 1)r

n
)} ∩ B(x0, r))

Ld(B(x0, r))

≥ limr→0(
n − 1

n
)
Ld(Pk ∩ B(x0,

(n−1)r
n

))

Ld(B(x0, r))
= (

n − 1

n
)d+1.

The conclusion follows since n can be chosen arbitrarily big.

Definition 3.7. Let γ ∈ O1(µ, ν) and let u be a Kantorovich potential. Denote by

F = ∪kLeb(Fk) where the sets Fk are the sets which appear in the countable Lipschitz

property of ∇u∗. We will denote by

D(γ, u) = R(γ) ∩ {(x, y) : x ∈ F}

Notice that D(γ, u) adds a constraint only on the first coordinate of points in

R(γ).

Proposition 3.8. Assume that µ ≪ Ld. Then every γ ∈ O2(µ, ν) is induced by a

transport map Tγ, i.e. γ = (id × Tγ)♯µ.

Proof. Let γ ∈ O2(µ, ν), by Lemma 2.4 it is enough to prove that γ is supported on

a graph. Fix a Kantorovich potential u. We show that if (x0, y0) and (x0, y1) both

belong to D(γ, u) then y0 = y1. By contradiction assume that y0 6= y1. Then one

either has (y1−y0) ·(y0−x0) < 0 or (y0−y1) ·(y1−x0) < 0. Without loss of generality,

we assume that

(y0 − y1) · (y1 − x0) < 0, (3.1)

which in particular implies y1 6= x0.

We fix s > 0 small enough so that

∀x ∈ B(x0, s), ∀y ∈ B(y0, s), ∀y′ ∈ B(y1, s), (y − y′) · (y′ − x) < 0. (3.2)

Since, by definition of R(γ), the sets γ−1(B(y0, s)) and γ−1(B(y1, s)) both have

density 1 at x0 and, by Proposition 3.6, the set T ({(x, y) ∈ spt(γ) : x ∈ Fk ∩

B(x0, s), y ∈ B(y1, s)}) has also density 1 at x0 we infer that for r small enough

there exist x̃ ∈ B(x0, r) which belongs to the intersection of the three sets. In other
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words there exists (x, y1), (x̃, ỹ0), (x̃, ỹ1) ∈ support(γ) such that x ∈ Fk ∩ B(x0, s),

y1 ∈ B(y1, s) x̃ = x + t(y1 − x) for some t ∈ (0, 1), ỹ0 ∈ B(y0, s) and ỹ1 ∈ B(y1, s).

Since x̃ lies on the segment between x and y1, it follows from (2.8) applied to (x, y1)

and (x̃, ỹ0) that

(ỹ0 − y1) · (x̃ − x) ≥ 0

but since x̃ − x = t(y1 − x) this contradicts (3.2). Now we consider the set

B = {(x, y) ∈ R(γ) : 1 < ♯({x} × R
d ∩ R(γ)), x 6∈ F}.

We prove that γ(B) = 0. In fact γ(B) ≤ µ(π1(B)) and if (x, y) ∈ B then there exists

at least one y1 6= x such that (x, y1) ∈ R(γ) and then x ∈ T e
u but, by definition x 6∈ F

and since µ is absolutely continuous, using the countable Lipschitz property of ∇u∗,

we obtain µ(T e
u \F ) = 0. It remains to remark that γ is supported on R(γ) and then

to decompose first

R(γ) = D(γ, u) ∪ [R(γ) \ D(γ, u)],

and then

R(γ) \ D(γ, u) = [(R(γ) \ D(γ, u)) ∩ B] ∪ [(R(γ) \ D(γ, u)) \ B].

We already proved that D(γ, u) is contained in a graph and since, as we already

observed, a point in D(γ, u) and a point R(γ) \ D(γ, u)) cannot have the same first

coordinate it is enough that now we study R(γ) \ D(γ, u)). We divided this last set

in two parts, for the first

γ((R(γ) \ D(γ, u)) ∩ B) = 0

since it is a subset of B, the second (R(γ) \ D(γ, u)) \ B is contained in a graph by

definition of B. This concludes the proof of the fact that any element γ ∈ O2(µ, ν) is

induced by a transport map Tγ ∈ T (µ, ν).

Finally we prove by a standard method that under the assumptions of the theorem

above O2(µ, ν) has only one element.

Proposition 3.9. Assume that µ ≪ Ld. Then there is only one γ ∈ Π(µ, ν) ∩

O2(µ, ν).

Proof. The uniqueness of γ ∈ Π(µ, ν)∩O2(µ, ν) is obtained as in Step 5 of the proof of

Theorem B in [4]: if γ1 and γ2 are two such transport plans, then γ1+γ2

2
also belongs

to Π(µ, ν) ∩ O2(µ, ν). It follows from the Proposition 3.8 that these plans are all

induced by transport maps, which then coincide µ almost everywhere.
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