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ABSTRACT. Recent work concerning the representation of compact linear operators acting be-

tween Banach spaces is discussed. The abstract results are applied to establish the existence of

an infinite sequence of certain types of eigenfunctions and associated eigenvalues of the Dirichlet

problem for the p−Laplacian; comparison is made with the corresponding quantities obtained by

the Lusternik-Schnirelmann procedure.
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1. INTRODUCTION

That linear analysis can help in the study of nonlinear problems will hardly strike

anyone as a novel or even interesting observation, but the value of nonlinear techniques

in linear questions may seem less obvious. Here we aim to illustrate this usefulness

by reporting on recent work on the representation of compact linear operators acting

between Banach spaces. In [5] we showed that if T : X → Y is a compact linear

map, where X and Y are real, reflexive Banach spaces with strictly convex duals,

there exist a sequence of closed subspaces Xn of X and unit vectors xn ∈ Xn which

are eigenvectors corresponding to eigenvalues λn := ‖Txn‖X = ‖Tn‖ of the nonlinear

equation

T ∗

n J̃Yn
Tnxn = λnJ̃Xn

xn,

where J̃Zz denotes the Gateaux derivative of the norm ‖·‖Z on the Banach space Z at

z, Tn is the restriction of T to Xn and the Yn are closed subspaces of Y containing TXn.

Since the xn have certain orthogonality properties (in the sense of James), we refer to
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them and the corresponding λn as j-eigenvectors and j-eigenvalues respectively.There

follows a representation of T in terms of these j-eigenvectors xn which in the case

of X, Y being Hilbert spaces is the celebrated Erhard Schmidt representation of T,

namely

Tx =

∞∑

n=1

λn(x, xn)Xyn, yn = λ−1
n Txn.

In this case, T ∗Txn = λ2
nxn so that λn is a singular value of T , with corresponding

eigenvector xn. For Banach spaces X, Y, Theorem 21 in [5] is of the form

Tx = lim
n→∞

(I − Qn)

n−1∑

i=1

λiξi(x)yi + Q∞Tx, (1.1)

where Qn, Q∞ are (generally nonlinear) projections of Y onto Yn, Y∞ :=
⋂

n∈N
Yn,

respectively, and the ξi(x) may be thought of as analogues of Fourier coefficients and

are calculable by means of a recursive formula. Furthermore, in Theorem 17 in [5] it

is shown that

x = lim
n→∞

(I − Pn)
n−1∑

i=1

ξixi + P∞x, (1.2)

where Pn, P∞ are the projections of X onto Xn, X∞ :=
⋂

n∈N
Xn, respectively. In

[5], Corollary 22 and Remark 18, it is shown that if Y is a Hilbert space, then, with

Snx :=
∑n−1

i=1 ξixi, QnTSnx = 0, while if X is a Hilbert space PnSnx = 0. For general

Banach spaces X, Y, if the sequence (Snx)n∈N, can be shown to be bounded in X (as

is the case if X is a Hilbert space) then (1.1) can be proved to yield the Schmidt-type

representation,

Tx =
∞∑

n=1

λiξi(x)yn, (1.3)

and (1.2) becomes

x =

∞∑

i=1

ξi(x)xi + P∞x. (1.4)

In this case (xi) is a Schauder basis of X/X∞, and of X if T has trivial kernel, since

X∞ ⊆ kerT. To determine whether or not (Snx)n∈N is bounded in X has proved to

be intractable so far. It is therefore natural to ask if a topology can be imposed on

X with respect to which (Snx)n∈N is bounded. The projective limit fulfills this role,

being the coarsest topology on X compatible with the algebraic structure of X under

which the maps Sn are continuous; it is a locally convex topology; see [6], Remark

8. In the Banach space case the fact that the λn are norms of restrictions of T

rather than eigenvalues of linear operators related to T may perhaps be regarded as a

disadvantage: we advance the point of view that, in this general context, these norms

of restrictions are entirely natural objects, and that a preoccupation with eigenvalues,

addictive though it may be, is not always desirable.

Here we outline the method of proof of these assertions and give some of the

properties of the xn and ξn. The final section is devoted to the Dirichlet problem for the



COMPACT LINEAR OPERATORS VIA NONLINEAR ANALYSIS 355

p-Laplacian, special attention being paid to the situation when the underlying space

domain is a bounded interval in R, so there is a naturally associated Hardy operator

T . For this map the Lusternik-Schnirelmann eigenvectors can be found explicitly, but

as numerical evidence suggests that they do not have the j-orthogonality property, it

appears that they are distinct from the j-eigenfunctions.

2. BASIC RESULTS

Throughout the paper we shall suppose that X and Y are real, reflexive, infinite-

dimensional Banach spaces with norms ‖·‖X , ‖·‖Y and duals X∗, Y ∗; the closed unit

ball in X is denoted by BX and the family of all bounded linear maps from X to Y by

B(X, Y ). The hypotheses that the spaces are real and of infinite-dimension are there

just to make the presentation simpler. We denote the value of x∗ ∈ X∗ at x ∈ X

by 〈x, x∗〉X , and given any closed linear subspaces M, N of X, X∗ respectively, their

polar sets are written as M0, 0N ; thus,

M0 = {x∗ ∈ X∗ : 〈x, x∗〉X = 0 for all x ∈ M}

and
0N = {x ∈ X : 〈x, x∗〉X = 0 for all x∗ ∈ N}.

It is well known that the polar set M0 of a closed linear subspace M of X is isomet-

rically isomorphic to (X/M)∗.

Next, recall that X is called strictly convex if whenever x, y ∈ X are such that

x 6= y, ‖x‖X = ‖y‖X = 1 and λ ∈ (0, 1), then ‖λx + (1 − λ)y‖X < 1; equivalently,

no sphere in X contains a line segment. An important result is that X∗ is strictly

convex if and only if ‖·‖X is Gâteaux differentiable on X\{0}; the Gâteaux derivative

J̃X(x) := grad ‖x‖X of ‖x‖X at x ∈ X\{0} is the unique element of X∗ such that
∥∥∥J̃X(x)

∥∥∥
X∗

= 1 and
〈
x, J̃X(x)

〉
X

= ‖x‖X .

In this case the semi-inner product (x, h)X of x and h is defined by

(x, h)X = ‖x‖ 〈h, grad ‖x‖〉X when x, h ∈ X, x 6= 0;

(0, h)X is defined to be 0 for all h ∈ X. An element x of X is said to be orthogonal

to h ∈ X in the James sense (or j-orthogonal to h), written x ⊥ h, if (x, h)X = 0.

Henceforth we shall assume, in addition to the standing hypotheses mentioned

earlier, that X∗ and Y ∗ are strictly convex. A gauge function is a map µ : [0,∞) →

[0,∞) that is continuous, strictly increasing and such that µ(0) = 0 and limt→∞ µ(t) =

∞; the map JX : X → X∗ defined by

JX(x) = µ (‖x‖X) J̃X(x) (x ∈ X\{0}), JX(0) = 0,

is called a duality map on X with gauge function µ. It has the properties that for all

x ∈ X,

〈x, JX(x)〉X = ‖JX‖X∗ ‖x‖X , ‖JX‖X∗ = µ (‖x‖X) .
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From now on we shall assume that X and Y are equipped with duality maps corre-

sponding to gauge functions µX , µY respectively, normalised so that µX(1) = µY (1) =

1. Let M be a closed linear subspace of X. Then if X is strictly convex, so are M and

X\M ; if X∗ is strictly convex, so are (X\M)∗ and M0.

To quantify the degree of strict convexity of X its modulus of convexity δX :

[0, 2] → [0, 1] is introduced: it is defined by

δX(ε) = inf {1 − ‖x + y‖X /2 : x, y ∈ X; ‖x‖X , ‖y‖X ≤ 1, ‖x − y‖X ≥ ε} .

The space X is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Every uniformly

convex space is strictly convex; the converse is false. If M is a closed linear subspace

of a uniformly convex space X, then both M and X\M are uniformly convex. We

say that X is uniformly smooth if its modulus of smoothness ρX : (0,∞) → [0,∞),

defined by

ρX(ε) = sup

{
‖x + y‖X + ‖x − y‖X

2
− 1 : ‖x‖X = 1, ‖y‖X = ε

}
,

has the property that

lim
ε→0

ρX(ε)/ε = 0.

It turns out that X is uniformly convex (respectively, uniformly smooth) if and only

if X∗ is uniformly smooth (respectively, uniformly convex). If X is uniformly convex,

it is reflexive and has the following useful property: if (xn) is a sequence in X that

converges weakly to x ∈ X (written xn ⇀ x) and ‖xn‖X → ‖x‖X , then ‖xn − x‖X →

0. We refer to [9] II, Chapter 1 for further details and proofs of these claims.

Now we sketch the arguments given in [5] that lead to the representation of the

action of a compact map. In addition to the standing hypotheses already made we

shall assume that X and Y have strictly convex duals; T : X → Y is supposed to be

linear and compact. The starting point is the elementary assertion that there exists

x1 ∈ X, with ‖x1‖X = 1, such that ‖T‖ = ‖Tx1‖Y , and that x1 satisfies the equation

T ∗J̃Y Tx1 = νJ̃Xx1, ν = ‖T‖ ,

or equivalently,

T ∗JY Tx1 = ν1JXx1, ν1 = ‖T‖µY (‖T‖) . (2.1)

Motivated by the Hilbert space procedure, we set X1 = X, M1 = sp {JXx1} (where

sp denotes the linear span), X2 = 0M1, N1 = sp {JY Tx1}, Y2 = 0N1 and λ1 = ‖T‖ .

Since X2 and Y2 are closed subspaces of reflexive spaces they are reflexive. Also,

X∗
2 = (0M1)

∗
is isometrically isomorphic to X∗

1/M1, from which it follows that X∗
2 is

strictly convex; the same argument applies to Y ∗
2 . Because

〈Tx, JY Tx1〉Y = ν1 〈x, JXx1〉X for all x ∈ X,

we see that T maps X2 to Y2. The restriction T2 of T to X2 is thus a compact

linear map from X2 to Y2, and if it is not the zero operator we can repeat the above
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argument: there exists x2 ∈ X2\{0} such that

〈T2x, JY2
T2x2〉Y2

= ν2 〈x, JX2
x2〉X2

for all x ∈ X2,

where ν2 = λ2µY (λ2), λ2 = ‖Tx2‖Y = ‖T2‖ . Evidently λ2 ≤ λ1 and ν2 ≤ ν1. Con-

tinuing in this way we obtain elements x1, ..., xn of X, all with unit norm, subspaces

M1, ..., Mn of X∗ and N1, ..., Nn of Y ∗, where

Mk = sp {JXx1, ..., JXxk} and Nk = sp {JY Tx1, ..., JY Txk}, k = 1, ..., n, (2.2)

and decreasing families X1, ..., Xn and Y1, ..., Yn of subspaces of X and Y respectively

given by

Xk = 0Mk−1, Yk = 0Nk−1, k = 2, ..., n. (2.3)

For each k ∈ {1, ..., n}, T maps Xk into Yk, xk ∈ Xk and, with Tk the restriction of

T to Xk, λk(T ) = λk = ‖Tk‖ , νk = λkµ(λk), we have

〈Tkx, JYk
Tkxk〉Yk

= νk 〈x, JXk
xk〉Xk

for all x ∈ Xk, (2.4)

and so

T ∗

k JYk
Tkxk = νkJXk

xk. (2.5)

In fact, (2.4) is equivalent to

〈Tx, JY Txk〉Y = νk 〈x, JXxk〉X for all x ∈ Xk. (2.6)

Since Txk ∈ Yk = 0Nk−1, we have

〈Txk, JY Txl〉Y = 0 if l < k. (2.7)

The process stops with λn, xn and Xn+1 if and only if the restriction of T to Xn+1 is

the zero operator while Tn 6= 0. It turns out that xi ⊥ xk in the James sense whenever

i < k; and for this reason the sequences (λi) and (xi) are called j-eigenvalues and

j-eigenvectors respectively of T ∗JY Tx = νJXx, νi = λiµY (λi); and (xi) is said to be

j-orthogonal.

If the rank of T is infinite, then the sequence (λn) is infinite and converges to 0.

For then, since Txn ∈ 0Nn−1,
〈
Txn, J̃Y Txm

〉

Y
= 0 if m < n. (2.8)

Thus if m < n,

lim
k→∞

λk ≤ ‖Txm‖Y =
〈
Txm, J̃Y Txm

〉
Y

=
〈
Txm − Txn, J̃Y Txm

〉
Y

≤ ‖Txm − Txn‖Y

∥∥∥J̃Y Txm

∥∥∥
Y ∗

= ‖Txm − Txn‖Y .

Since (xn) is bounded and T is compact, some subsequence of (Txn) must converge

and hence the assertion follows. Moreover, if x ∈ ∩n∈NXn, then for all n ∈ N, ‖Tx‖Y ≤

λn ‖x‖X → 0 as n → ∞ : hence

X∞ := ∩n∈NXn ⊂ ker (T ). (2.9)
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Next, we introduce the family of maps

Sk : X → M
′

k−1 := sp {x1, ..., xk−1} (k ≥ 2) (2.10)

determined by the condition that x− Skx ∈ Xk for all x ∈ X. It turns out that Sk is

uniquely given by

Skx :=

k−1∑

j=1

ξj(x)xj , (2.11)

where

ξj(x) =

〈
x −

j−1∑

i=1

ξi(x)xi, JXxj

〉

X

for j ≥ 2, and ξ1(x) = 〈x, JXx1〉X . (2.12)

From the uniqueness it follows that S2
k = Sk : Sk is a linear projection of X onto

M
′

k−1 and, for each k ≥ 2, X and X∗ have the direct sum decompositions

X = Xk ⊕M
′

k−1, X∗ = Mk−1 ⊕
(
M

′

k−1

)0

.

The following results are established in [5].

Theorem 2.1. Let X be uniformly convex and X∗ strictly convex, and let Pk, P∞

denote the projections of X onto Xk, X∞ :=
⋂

k∈N
Xk, respectively. Then for all

x ∈ X,

x = lim
k→∞

(I − Pk)

k−1∑

i=1

ξi(x)xi + P∞x.

Theorem 2.2. Let Y be uniformly convex and Y ∗ strictly convex, and let Qk, Q∞

denote the projections of Y onto Yk, Y∞ :=
⋂

k∈N
Yk, respectively. Then

Tx = lim
k→∞

(I − Qk)
k−1∑

i=1

λiξi(x)yi + Q∞x, yi = Txi/‖Txi‖Y .

3. EIGENVALUES OF THE p-LAPLACIAN

Let ν1 be a j-eigenvalue with corresponding j-eigenfunction x: thus ‖x‖X =

1, ‖T‖ = ‖Tx‖Y and

T ∗JY Tx = ν1JXx, ν1 = ‖T‖µY (‖T‖). (3.1)

On setting x∗ := J−1
X x, (3.1) can be written in the form

T ∗JY TJ−1
X x∗ = ν1x

∗, ν1 = ‖T‖µY (‖T‖) (3.2)

so that ν1 is an eigenvalue of the nonlinear operator T ∗JY TJ−1
X : X∗ → X∗, with cor-

responding eigenvector x∗. In the case when X and Y are Hilbert spaces, the natural

gauge functions are µX(t) = µX(t) = t, so that ν1 = ‖T‖2 is an eigenvalue of T ∗T

and hence ‖T‖ is a singular value of T . We now examine the natural (Carathéodory)

and variational ways of defining eigenvalues in examples involving the p-Laplacian,

and then compare them with the j-eigenvalues.
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Let Ω be a bounded open subset of R
n, let 1 < p < ∞ and let W 1

p (Ω) be

the Sobolev space of all real-valued functions u ∈ Lp(Ω) all of whose first-order

distributional derivatives Dju also belong to Lp(Ω). The norm on W 1
p (Ω) is defined

to be (∫

Ω

{
|u|p +

n∑

j=1

|Dju|
p

}
dx

)1/p

.

We take X to be
0

W 1
p(Ω), the closure in W 1

p (Ω) of the set C∞
0 (Ω) of all infinitely

differentiable functions with compact support in Ω, and define the norm on X by

‖u‖X =

(∫

Ω

n∑

j=1

|Dju|
p dx

)1/p

. (3.3)

Because of the Friedrichs inequality (see [4], Theorem V.3.22), this norm is equivalent

to the norm on X inherited from W 1
p (Ω). Let Y = Lp(Ω), T = id: X → Y ; id is

compact. It is plain that both X and Y are reflexive and strictly convex. Obviously

Y ∗ is strictly convex; that the same holds for X∗ follows from the observation that

‖·‖X is Gâteaux-differentiable on X\{0}. Direct verification shows that

J̃Y u = ‖u‖−(p−1)
p |u|p−2 u, (3.4)

where ‖·‖p is the usual norm on Lp(Ω). As for J̃X , we claim that

J̃Xu = −‖u‖
−(p−1)
X ∆pu in the sense of distributions, (3.5)

where

∆pu =

n∑

j=1

Dj

(
|Dju|

p−2 Dju
)
, (3.6)

corresponding to a version of the p-Laplacian. To verify this, note that for all u ∈ X,
〈
u,−‖u‖

−(p−1)
X ∆pu

〉

X
= −‖u‖

−(p−1)
X 〈u, ∆pu〉X

= ‖u‖
−(p−1)
X

∫

Ω

n∑

j=1

Dju. |Dju|
p−2 Djudx

= ‖u‖X .

With µX(t) = µY (t) = tp−1, the corresponding duality maps JX , JY are given by

JX(u) = −∆pu, JY (u) = |u|p−2u

and in (3.2), ν1 = λp
1 where λ1 = ‖T‖. The Euler equation T ∗JY Tu1 = ν1JXu1, is

equivalent to
∫

Ω

φ |u1|
p−2 u1dx = λp

1

∫

Ω

n∑

j=1

(Djφ) |Dju1|
p−2 Dju1dx, (∀φ ∈

0

W 1
p(Ω)) (3.7)

so that u1 is a weak solution of the Dirichlet eigenvalue problem

−∆pu1 = λ−p
1 |u1|

p−2 u1, u1 = 0 on ∂Ω. (3.8)
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In one dimension, with Ω = (a, b), λ := λ−p
1 , and using the notation [x]α :=

x|x|α−1, this is of the form

−
(
[u′

1]
p−1
)′

= λ[u1]
p−1. (3.9)

with Dirichlet boundary conditions

u1(a) = u1(b) = 0. (3.10)

If (3.9) and (3.10) are satisfied for some non-zero u1 which is such that u1 and

[u′
1]

p−1 are absolutely continuous on (a, b), then λ is said to be an eigenvalue in

the Carathéodory sense with eigenvector u1.

The kth Lusternik-Schnirelmann eigenvalue µk of (3.9) and (3.10) is defined in

the following variational sense. Let

M := {u ∈
0

W 1
p(Ω) : ‖u‖Lp(a,b) = 1.}

Then

µk = inf
A∈Fk+1

sup
u∈A

{
‖u‖ 0

W 1
p(Ω)

}
, (3.11)

where

Fm := {A ∈ A : γ(A) ≥ m},

A is the set of all non-empty, compact and symmetric (i.e. A = −A) subsets of M

and γ(A) is the Krasnoselskij genus of A defined by

γ(A) := inf{j ∈ N : ∃ a continuous, odd function f : A → R
j \ {0}}.

In [2] it is shown that if λ is a Lusternik-Schnirelmann eigenvalue, there exists a

non-zero u ∈
0

W 1
p(Ω) satisfying the weak form of (3.9) and (3.10), namely,

∫ b

a

{[u′]p−1φ′ − λ[u]p−1φ}dt = 0, ∀φ ∈
0

W 1
p(a, b).

Since
0

W 1
p(a, b) is continuously embedded in C(Ω), it follows that u(a) = u(b) = 0.

Furthermore, u is absolutely continuous (see [4], Corollary V.3.12). On setting

v(t) = −λ

∫ t

0

[u]p−1dx.

we see that v is absolutely continuous, [u′]p−1 = v and (3.9) is satisfied. It follows that

λ is a Carathéodory eigenvalue and u is an associated eigenvector. In fact it is shown

in [2], Theorem 5.1, that the converse is also true, so that the Lusternik-Schnirelmann

and Carathéodory eigenvalues coincide.

Let a = 0, b = 1. Then, the eigenvalues and corresponding eigenvectors of (3.9)-

(3.10) are (see [3])

λn = (p − 1)(nπp)
p, un(t) = sinp(nπpt), (n ∈ N), (3.12)
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where

πp =
2π

p sinp(π/p)

and sinp is the function defined on [0, πp/2] to be the inverse of the function Fp :

[0, 1] → R given by

Fp(x) =

∫ x

0

(1 − tp)−1/pdt,

extended to [0, πp] so it is symmetric about πp/2 and then extended to the whole of

the real line in a natural way to be an odd, 2πp-periodic function.

It is natural to ask if the eigenvectors un in (3.12) (normalised in X =
0

W 1
p(0, 1))

coincide with the j-eigenfunctions xn arising in the general theory outlined in Section 2

above. This would mean that for all m ≤ n − 1,

0 = 〈un, JXum〉X

= 〈un,−∆pum〉X = λm〈un, [um]p−1〉X

= (p − 1)(mπp
p)

∫ 1

0

sinp(nπpt)[sinp mπpt]
p−1dt

= (p − 1)(mπp
p)

∫ 1

0

sinp(nπpt)| sinp(mπpt)|
p−2 sinp(mπpt)dt. (3.13)

Another example in which Lusternik-Schnirelmann and Carathéodory eigenfunc-

tions coincide is provided by the Hardy operator T : Lp(0, 1) → Lp(0, 1), 1 < p < ∞,

given by

Tf(x) :=

∫ x

0

f(t)dt, x ∈ (0, 1). (3.14)

This operator is compact and T ∗ is given by

T ∗g(x) =

∫ 1

x

g(t)dt, x ∈ (0, 1).

Consider now the equation

T ∗J̃Y Tx = νJ̃X , ν = ‖Tx‖Y , ‖x‖X = 1, (3.15)

which is the Euler equation for maximising ‖Tx‖Y under the restriction ‖x‖X = 1.

Then, with X = Y = Lp(0, 1) we have that for f ∈ Lp(0, 1), J̃X(f) = ‖f‖p−1|f |p−2f ,

J̃Y (Tf) = ‖Tf‖−(p−1)|Tf |p−2Tf , and, on setting g(t) = Tf(t) and ‖ · ‖p := ‖ · ‖X ,

(3.15) becomes ∫ 1

t

|g|p−2gds = ‖g‖p
p|g

′(t)|p−2g′(t),

whence

−([g′]p−1)′ = λ[g]p−1, λ = ‖g‖−p
Y

g(0) = g′(1) = 0; (3.16)

see [1], (1.3), where a more general form of (3.14) is considered.
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From [3] it follows that the eigenvalues and eigenfunctions of (3.16) are

λn = [(n− 1/2)πp]
p(p− 1), un(t) =

1

(n − 1/2)πp
sinp[(n− 1/2)πpt], n ∈ N. (3.17)

It is also proved in [1] and [7] that λ
−1/p
n is equal to the nth approximation number

of T. In fact, this result is established in [1] for the generalised Hardy operator

Tu,vf(x) := v(x)

∫ x

0

u(t)f(t)dt, f ∈ Lp(0, 1),

under the assumptions u ∈ Lp′(0, 1), v ∈ Lp(0, 1), which ensure that T is compact.

An asymptotic formula for the eigenvalues of Tu,v is also obtained in [1].

From [7], Theorem 5.2, it follows that the Lusternik-Schnirelmann and Carathéo-

dory eigenvalues of (3.16) coincide. Numerical computations given in [7] moreover

suggest that the Lusternik-Schnirelmann eigenfunctions of T do not have the j-

orthogonality property and so are distinct from the j-eigenfunctions.
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[3] Drábek, P. and Manásevich, R., On the closed solution to some nonhomogeneous eigenvalue

problems with p−Laplacian, J. Diff. Integral Equations 12 (1999), 773-788.

[4] Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators, Oxford University

Press, Oxford, 1987.

[5] Edmunds, D. E., Evans, W. D. and Harris, D. J., Representations of compact linear operators

in Banach spaces and nonlinear eigenvalue problems, J. London Math. Soc. 78 (2008), 65-84.

[6] Edmunds, D. E., Evans, W. D. and Harris, D. J., Representations of compact linear opera-

tors in Banach spaces and nonlinear eigenvalue problems II, to appear in the proceedings of

OTAMP2008, Birkhäuser-Verlag.
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