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ABSTRACT. In this paper, the notion of (a, q)-L-stably solvable maps, where L is a closed Fred-

holm operator of index zero, is introduced. Closely related to the spectrum of semilinear operators,

the class of (a, q)-L-stably solvable maps generalizes both (a, q)-stably solvable and the L-stably

solvable maps that were defined previously. We prove properties for the new class of operators

including the continuation principle and discuss eigenvalues. We also show its applications in the

study of solvability of a nonlinear system.
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1. INTRODUCTION

In the extensive development of nonlinear spectral analysis, a basic idea is to

define a nonlinear spectrum that shares the classical properties with the linear spec-

trum and has nontrivial applications [2, 3]. The spectrum of a closed linear operator

L defined on a Banach space is the set σ(L) of all scalar values not in the resolvent

set ρ(L). The resolvent set ρ(L) contains all λ such that the operator λI − L, where

I is the identity, satisfies the three conditions: it is surjective, the inverse (λI −L)−1

exists and is continuous. Following a similar approach, three requirements for the re-

solvent set of a nonlinear operator N , ρ(N), were given by Furi, Martelli and Vignoli

[11]. One of them requires that λI − N is stably-solvable, which corresponds to the

surjectivity condition of the linear spectrum [11].

The class of stably-solvable maps was first introduced in [10]. Later, the authors

also introduced the class of 0-epi maps in [12]. Closely related to stably-solvable maps,

the 0-epi maps are critical in the nonlinear spectrum of [9] and in the most recent

work on a locally defined nonlinear spectrum of continuous operators [5]. Stable
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solvability implies surjectivity. In addition to some good properties, the continuation

principle for stably-solvable operators can be used as a tool to study solvability of

operator equations, and further of particular classes of differential equations. In

the past decade, stably-solvable operators have been studied and applied in spectral

analysis. In particular, the concept of stably solvable map has been generalized in

two directions. On one hand, it was extended to the (a, q)-stably solvable maps by

Appell, Giorgieri and Väth [1], where a ≥ 0, q ≥ 0. As a bigger class, the (a, q)-stably

solvable maps share some similar properties as that of the stably-solvable maps. The

special case, (0, 0)-stably solvable maps reduce to the original definition. On the other

hand, the notion of L-stably solvable operators was introduced in [8]. The idea was

in the development of a spectrum for the semilinear operator λL − N , where L is a

closed Fredholm linear operator of index zero, N is nonlinear. Semilinear spectra were

also studied in [4, 6]. In [4], a semilinear spectrum that extends the Furi-Martelli-

Vignoli nonlinear spectrum [11] was introduced. The recent work [6] defines an A-

semilinear spectrum using the theory of A-proper maps. The L-stably solvable maps

are essential in studying semilinear spectra. L-stable solvability ensures surjectivity

of a semilinear operator. When L coincides with the identity I, the L-stably solvable

operators reduce to the stably-solvable operators.

In this paper, we combine both generalizations of the stably-solvable operators to

define a more general class of nonlinear maps, (a, q)-L-stably solvable maps. Both

the (a, q)-stably solvable maps and the L-stably solvable maps are subsets of the new

class corresponding to L = I and a = 0, q = 0 respectively. Some properties on (a, q)-

L-stably solvable maps are obtained. In particular, a new Continuation Principle is

proved. As application, existence of a solution for a nonlinear algebraic system is

studied.

2. PRELIMINARIES

First, we introduce the definitions and notations that will be used in the sequel.

Let X and Y be two Banach spaces. For a continuous operator F ∈ C(X, Y ), the

upper and lower measure of noncompactness are defined as the following [1]:

[F ]A = inf{k : α(F (M)) ≤ kα(M)},

[F ]a = inf{k : α(F (M)) ≥ kα(M)},

where α(M) denotes the (Kuratowski) measure of noncompactness of a bounded set

M ⊂ X [7] . The upper and lower quasi-norms:

[F ]Q = lim sup
‖x‖→∞

‖F (x)‖

‖x‖
,

[F ]q = lim inf
‖x‖→∞

‖F (x)‖

‖x‖
.
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The notion of stably-solvable operators is given in [10] and is basic in the definition

of asymptotic spectrum given [11].

Definition 2.1. An operator F : X → Y is called stably-solvable if and only if for

any given compact map h : X → Y with zero quasinorm ([h]Q = 0), the equation

F (x) = h(x) has a solution.

In [1], a generalization of the stably-solvable maps is given as below.

Definition 2.2. Given a ≥ 0 and q ≥ 0, a map F ∈ C(X, Y ) is called (a, q)-stably

solvable if for any G ∈ C(X, Y ) with [G]A ≤ a and [G]Q ≤ q, the equation

F (x) = G(x)

has a solution x ∈ X.

The (0, 0)-stably solvable maps are the stably-solvable as in Definition 2.1. It is

shown in [1] that the (a, q)-stably solvable maps share common properties as that of

the stably-solvable maps [11].

On the other hand, the concept of L-stably solvable operators is introduced in

[8] to define a spectrum for the semilinear operator L − N , where N : X → Y is a

nonlinear map and

L : dom(L) ⊂ X → Y

is a closed Fredholm operator of index zero, ker(L) 6= {0} and dom(L) dense in X.

The set up for the linear operator L is similar as that used for the coincidence degree

theory [13]. Following the notations of [13], let X = ker(L)⊕X1, Y = Y0⊕ im(L) and

P : X → ker(L), Q : Y → Y0 be the respective projections. Also, let Lp denote the

invertible operator L restricted to dom(L)∩X1 into im(L), write KP = L−1

P , KPQ =

KP (I −Q). Let Π : Y → Y/ im(L) be the quotient map. Let Λ : Y/ im(L) → ker(L)

be the linear isomorphism. For λ ∈ C, let fλ : X → X be defined as

fλ(x) = λ(I − P )x− (ΛΠ +KPQ)Nx. (2.1)

Definition 2.3. [13] Let Ω ⊂ X be an open bounded subset with Ω ∩ dom(L) 6= ∅.

A nonlinear map N : Ω → Y is said to be L-compact if it satisfies the following two

conditions:

a) ΠN : Ω → coker(L) is continuous and ΠN(Ω) is bounded.

b) KPQN : Ω → X is compact.

Definition 2.4. [8] λL−N is said to be L-stably solvable if the equation

λLx−Nx = h(x)

has a solution x ∈ dom(L) for every continuous bounded L-compact map h : X → Y

with quasinorm [h]Q = 0.
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The operator λL−N can be studied by converting to fλ, as shown by the following

lemma [8].

Lemma 2.1. Let y ∈ Y and λ ∈ C. Then

a) λLx−Nx = y if and only if fλ(x) = (ΛΠ +KPQ)y.

b) λL−N : dom(L) → Y is onto if and only if fλ : X → dom(L) is onto.

3. THE (a, q)-L-STABLY SOLVABLE MAP

The following definition generalizes both Definitions 2.2 and 2.4.

Definition 3.1. Given a ≥ 0, q ≥ 0, a map λL−N is called (a, q)-L-stably solvable

if for any h ∈ C(X, Y ) with [KPQh]A ≤ a and [h]Q ≤ q, the equation λL−N = h(x)

has a solution x ∈ X.

Theorems 3.3 and 3.4 show that the new class of operators share some common

properties as that of (a, q)-stably solvable and L-stably solvable operators. The proof

is based on the following lemma (Lemma 4.3, [8]).

Lemma 3.2. Let Φ : Y/ im(L) → Y0 be the natural linear isomorphism and J =

ΦΛ−1. Then ΛΠ + KPQ : Y → dom(L) is a linear isomorphism and L + JP :

dom(L) → Y is invertible with the continuous inverse (L+ JP )−1 = ΛΠ +KPQ.

Theorem 3.3. Let H = L + JP and fλ be defined by (2.1). If [fλ]q > 0, then the

following two statements are equivalent:

a) λLx − Nx = h(x) has a solution for any bounded continuous L-compact map

h : X → Y with bounded support.

b) λL−N is (0, q)-L-stably solvable for any q < [Hfλ]q.

Proof: b) obviously implies a). In the following, we show that a) also implies b).

Suppose h : X → Y is continuous, bounded L-compact map with [h]Q ≤ q. For

x ∈ X, let

σn(x) =

{

1 if ‖x‖ ≤ n,

0 if ‖x‖ > 2n,

then σn(n = 1, 2, . . . ) can be extended to continuous functionals defined on X with

0 ≤ σn ≤ 1. Let hn(x) = σn(x)h(x), hn(n = 1, 2, . . . ) are bounded L-compact maps

with bounded support. Assume xn (n = 1, 2, . . . ) are solutions of the equation

λL(x) −N(x) = hn(x),

then {xn} must be bounded. Otherwise, by Lemma 2.1 we can obtain

fλ(xn) = (ΛΠ +KPQ)σn(xn)h(xn).
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Hence

‖fλ(xn)‖

‖xn‖
= ‖σn(xn)H−1‖

‖h(xn)‖

‖xn‖

≤ q‖H−1‖ < [fλ]q.

Note that the last step uses the fact [Hfλ]q ≤
[fλ]q
‖H−1‖

. This contradiction shows that

{xn} is bounded. Assume that M > 0 such that ‖xn‖ < M for all n. For n > M ,

σn(xn) = 1, therefore (λL−N)(xn) = h(xn), λL−N is (0, q)-L-stably solvable.

Theorem 3.4. Assume a) or b) of Theorem 3.3 hold. In addition, assume that

[(λL − N)]a > 0. Then λL − N is (a, q)-L-stably salvable for any a < [(λL − N)]a

and q < [Hfλ]q.

The proof of Theorem 3.4 follows directly from Corollary 1 of [1] and Theorem

3.3. The following lemma [8] is essential for the proof of the Continuation Principle

given in Theorem 3.6.

Lemma 3.5. Let Br = {y ∈ Y : ‖y‖ ≤ r}, π be the radial retraction, π : Y → Br.

Let h : X → Y be a continuous L-compact map. Then πh : X → Y is L-compact.

Theorem 3.6. (Continuation Principle) Let λL − N : X → Y be (a, q)-L-stably

solvable, and suppose that h : X × [0, 1] → Y satisfies [h(x, 0)]q < 1 and

α(h(M × [0, 1])) ≤ aα(M), M ⊂ X bounded.

Let

S = {x : x ∈ X, λL(x) −N(x) = h(x, t), t ∈ [0, 1]},

and assume that (λL−N)(S) is bounded. Then the equation

λLx−Nx = h(x, 1) (3.1)

has a solution.

Proof: Suppose that r > 0 is such that (λL − N)(S) is contained in the interior of

Br. Let ϕ : Y → [0, 1] be continuous such that ϕ(y) = 1 for y ∈ (λL−N)(S) and

ϕ(y) = 0 for all ‖y‖ ≥ r. Let π : Y → Br be the radial retraction and denote

h1(x) = h(x, ϕ(λL−N)(x)).

Let Ω be an open bounded subset of X. By the assumption α(h(Ω× [0, 1])) ≤ aα(Ω)

and Lemma 3.5, we have

α(KPQπh1(Ω)) ≤ α(KPQh1(Ω)) ≤ aα(Ω).

So [KPQπh1]A ≤ a. Next, since

[πh1]Q = lim sup
‖x‖→∞

‖πh(x, ϕ(λL−N)(x))‖

‖x‖
= 0,
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there exists x0 such that

λLx0 −Nx0 = πh(x0, ϕ(λL−N)(x0)). (3.2)

If Lx0−Nx0 ≥ r, then ϕ(λL−N)(x0) = 0, ‖h(x0, 0)‖ < r, so ‖πh(x0, 0)‖ < r. Which

contradicts to (3.2). Hence, Lx0 −Nx0 < r and which implies

‖πh(x0, ϕ(λL−N)(x0))‖ < r.

Hence

πh(x0, ϕ(λL−N)(x0)) = h(x0, ϕ(λL−N)(x0)),

λLx0 −Nx0 = h(x0, ϕ(λL−N)(x0)). (3.3)

Equation (3.3) ensures that x0 ∈ S, so ϕ(λL−N)(x0) = 1. Therefore, we have

λLx0 −Nx0 = h(x0, 1).

The proof is completed.

4. APPLICATION TO A NONLINEAR ALGEBRAIC SYSTEM

The results of Section 3 can be applied to the study of the following nonlinear

algebraic system:

x = λAF (x), (4.1)

where λ > 0 is a parameter, x and F (x) denote the column vectors:

col (x1, x2, . . . , xn) and col (f1 (x1) , f2 (x2) , · · ·, fn (xn))

respectively with fk : R → R, k ∈ {1, 2, ..., n} = [1, n] and n is a positive integer.

A = (aij)n×n
is an n× n matrix and all its entries are positive numbers.

System (4.1) can be rewritten by a summability formula as the form

xi = λ

n
∑

j=1

aijfj (xj) , i ∈ [1, n] , (4.2)

which can be seen as the analogue of the Hammerstein integral equation:

ψ (x) = λ

∫

G

K (x, y) f (ψ (y)) dy. (4.3)

The importance of equation (4.3) is well known and it has been studied since 1930.

However, much less is known for the nonlinear problems (4.1) or (4.2). In fact, many

interesting problems in various areas such as difference equations, boundary value

problems, dynamical networks [14], stochastic process and numerical analysis etc.

can be converted to system (4.1) [15]. Applying the Continuation Principle for (a, q)-

L-stably solvable maps, we prove existence of a solution and surjectivity for system

(4.1). We will use r(A) to denote the spectral radius of the linear operator A.
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Theorem 4.7. Let λ <
1

r(A)[F ]Q
. Then the operator

x− λAF (x) : R
n → R

n

is onto. In particular, system (4.1) has a solution.

Proof: Let G = λAF , it can be seen that [G]A < 1 and [G]Q < 1. By Proposition 1

of [1], the map I −G is onto.

Theorem 4.8. For any λ <
1

‖A‖[F ]Q
, there exists a solution for system (4.1).

Proof: It is known that the identity map I in a Banach space is (a, q)-stably solvable

for a, q ∈ [0, 1) (Example 1, [1]). Let H(x, t) : Rn × [0, 1] → Rn be defined as

H(x, t) = λtAF (x),

then H(x, 0) = 0 for any M ⊂ Rn and α(H(M × [0, 1])) = 0. Let

S = {x : x ∈ R
n, x = λtAF (x), t ∈ [0, 1]}.

We claim that S is bounded. Otherwise there are xn ∈ Rn such that ‖xn‖ → ∞,

lim
n→∞

λtnAF (xn)

‖xn‖
≤ |λ|‖A‖ lim

n→∞

‖F (xn)‖

‖xn‖
≤ |λ|‖A‖[F ]Q < 1.

This contradicts with
λtnAF (xn)

‖xn‖
= 1. By Proposition 4 of [1] (which is a special

case of Theorem 3.6), the equation

x = H(x, 1) = λAF (x)

has a solution.

Theorem 4.9. Assume that r(A)[F ]q < 1 and

λ > max

{

1

r(A)[F ]q
,

1

1 − r(A)[F ]q

}

.

Then system (4.1) has a solution.

Proof: Let µ = 1

λ
, G(x) = µx and

H(x, t) = AF (x) + µ(1 − t)x.

Then G(x) is (µ, µ)-stably solvable and not (a, q)-stably solvable for any a, q > µ.

(Corollary 3, [1]). Since

H(x, 0) = AF (x) + µx

and

λ >
1

1 − r(A)[F ]q
,
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we have

[H(x, 0)]q ≤ r(A)[F ]q + µ < 1.

Also α(H(M × [0, 1])) = 0 for bounded M ⊂ R
n. Let

S = {x : G(x) = H(x, t)},

we show that S is bounded. In fact, assume that there exist {xn}
∞
n=1

, ‖xn‖ → ∞ as

n→ ∞ and tn ∈ [0, 1] such that

µxn = AF (xn) + µ(1 − tn)xn,

then

AF (xn) = µtnxn,

λ‖AF (xn)‖

‖xn‖
= tn → t0 ∈ [0, 1].

However, from the assumptions, we have

lim
n→∞

λ‖AF (xn)‖

‖xn‖
= λr(A) lim

n→∞

‖F (xn)‖

‖xn‖

≥ λr(A)[F ]q > 1,

which is a contradiction. So, S is bounded and the equation µx = AF (x), which is

equivalent to system (4.1), has a solution.
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