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Università degli Studi di Firenze,

Firenze, Via S. Marta 3, 50139, Italy E-mail: mpatrizia.pera@unifi.it

3Dipartimento di Matematica Applicata ‘G. Sansone’,
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ABSTRACT. Inspired by [1] and [10] we apply the topological tools of fixed point index and of

degree of a tangent vector field to the study of the set of harmonic solutions to periodic perturbations

of autonomous ODEs on (smooth) boundaryless differentiable manifolds, allowing the perturbation

to contain a distributed, possibly infinite, delay. In order to do so, we construct a Poincaré-type T -

translation operator on an appropriate function space and, in the unperturbed case, prove a formula

for its fixed point index in terms of the degree of the autonomous vector field.

AMS (MOS) Subject Classification. 34K13, 58F32, 34K18.

1. INTRODUCTION AND PRELIMINARIES

In this paper we study the set of harmonic solutions to periodic perturbations of

autonomous ODEs on (smooth) boundaryless differentiable manifolds, allowing the

perturbation to contain a distributed, possibly infinite, delay. Namely, given T > 0

and a boundaryless manifold M ⊆ Rk, we consider the T -periodic solutions to the

following parametrized Retarded Functional Differential Equation (RFDE) on M :

x′(t) = g
(
x(t)

)
+ λf(t, xt), λ ≥ 0, (1.1)

where g : M → Rk is a tangent vector field, in the sense that g(p) belongs to the

tangent space TpM of M at p for any p ∈ M , and f : R × BU
(
(−∞, 0],M

)
→ Rk
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is continuous, T -periodic in the first variable and such that f(t, ϕ) ∈ Tϕ(0)M for all

(t, ϕ) ∈ R × BU
(
(−∞, 0],M

)
. Here BU

(
(−∞, 0],M

)
denotes the metric subspace,

consisting of the M-valued functions, of the space of uniformly continuous bounded

functions from (−∞, 0] into Rk, with the supremum norm. As usual in the RFDE

context, given t ∈ R, xt ∈ BU
(
(−∞, 0],M

)
is the function θ 7→ x(t+ θ). A function

f as above is called a (retarded) functional (tangent vector) field.

Roughly speaking, we will give conditions ensuring the existence of a connected

component of pairs (λ, x), λ ≥ 0 and x a T -periodic solution to the above equation,

that emanates from the set of zeros of g and is not compact. In this paper we will

always suppose that f and g satisfy some regularity assumptions (see below). So, our

results generalize only partially those of [9] and [10], in which f and g are assumed

to be merely continuous.

In order to carry out this program, as in [10] we will use the topological tools of

fixed point index and degree (also called the rotation or characteristic) of a tangent

vector field, that shall be briefly recalled. In fact, in the case when the perturbation

is independent of the delay, as in [9], the existence of such a connected component

of T -periodic solutions is based on the computation of the fixed point index of the

T -translation operator associated to the unperturbed equation (see e.g. [8]). As in [9],

since in our case the perturbing term f is a functional field, the T -translation operator

P ought to be replaced by an appropriate infinite dimensional adaptation. However,

due to the possibly infinite delay, the construction of [9] would not work here directly.

In fact, the “natural” translation operator defined on the space BU
(
(−∞, 0],M

)
of

initial functions is not locally compact. What we actually do is to define a Poincaré-

type T -translation operator on C([−T, 0],M) whose fixed points are the restrictions

to [−T, 0] of the T -periodic solutions of (1.1).

Throughout this paper, we shall suppose that g is locally Lipschitz and that f

satisfies the following assumption:

(H) Given any compact subset Q of R × BU
(
(−∞, 0],M

)
, there exists L ≥ 0 such

that

|f(t, ϕ) − f(t, ψ)| ≤ L sup
t≤0

|ϕ(t) − ψ(t)|

for all (t, ϕ) , (t, ψ) ∈ Q.

We will say that condition (H) holds locally in R × BU
(
(−∞, 0],M

)
if for any

(τ, η) ∈ R × BU
(
(−∞, 0],M

)
there exists a neighborhood of (τ, η) in which (H)

holds. Actually, one could show that if (H) is satisfied locally, then it is also satisfied

globally. However, the local condition is easier to check. It holds, for instance, when

f is C1 or, more generally, locally Lipschitz in the second variable. Observe also that

if g : M → Rk is a locally Lipschitz tangent vector field, and f is a functional field

satisfying (H), then for any λ ∈ [0,+∞) the map of R×BU
(
(−∞, 0],M) in Rk, given
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by

(t, ϕ) 7→ g
(
ϕ(0)

)
+ λf(t, ϕ),

is a functional vector field that verifies (H) as well.

It can be proved (see e.g. [3]) that if a tangent functional field Φ satisfies (H)

locally, then two maximal solutions of equation x′(t) = Φ(t, xt) coinciding in the past

must coincide also in the future. Thus, if g is locally Lipschitz and f satisfies (H)

locally, then the initial value problem associated to (1.1) admits a unique solution.

It will be convenient to assume throughout the paper that the ambient manifold

M is a closed subset of Rk. In this way the space C
(
[−T, 0],M

)
turns out to be

complete. This assumption is not restrictive. In fact, as is well known, any differen-

tiable manifold can be diffeomorphically embedded as a closed submanifold of some

Euclidean space.

1.1. The fixed point index and the degree of a tangent vector field.

In this section we briefly recall the notions of fixed point index of a map and of

degree of a tangent vector field.

Let us begin with the fixed point index. We recall that a metrizable space E is an

absolute neighborhood retract (ANR) if, whenever it is homeomorphically embedded

as a closed subset C of a metric space X, there exists an open neighborhood U of

C in X and a retraction r : U → C (see e.g. [4, 12]). Polyhedra and differentiable

manifolds are examples of ANRs. Let us also recall that a continuous map between

topological spaces is called locally compact if it has the property that each point in

its domain has a neighborhood whose image is contained in a compact set.

Let E be an ANR and let ψ be a locally compact E-valued map defined (at

least) on an open subset U of E. If the set Fix (ψ, U) of the fixed points of ψ in U is

compact, then it is well defined an integer, ind(ψ, U), called the fixed point index of

ψ in U (see, e.g. [11, 12, 16]). Roughly speaking, ind(ψ, U) counts algebraically the

elements of Fix (ψ, U).

The fixed point index enjoys a number of useful properties. We list here a few of

them for the purpose of future reference.

Normalization.: Let ψ : E → E be constant. Then ind(ψ,E) = 1.

Additivity.: Given U open in E and a locally compact map ψ : U → E such

that Fix(ψ, U) is compact, if U1 and U2 are disjoint open subsets of U with

Fix(ψ, U) ⊆ U1 ∪ U2, then

ind(ψ, U) = ind(ψ, U1) + ind(ψ, U2).

Homotopy Invariance.: Given U open in E, assume that H : U × [0, 1] → E is

an admissible homotopy in U ; that is, H is locally compact and the set {(x, λ) ∈
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U × [0, 1] : H(x, λ) = x} is compact. Then

ind
(
H(·, 0), U

)
= ind

(
H(·, 1), U

)
.

Commutativity.: Let E1, E2 be ANRs and let U1 ⊆ E1 and U2 ⊆ E2 be open.

Suppose ψ1 : U1 → E2 and ψ2 : U2 → E1 are locally compact maps. If one of the

sets

{x ∈ ψ−1
1 (U2) : ψ2 ◦ ψ1(x) = x} or {y ∈ ψ−1

2 (U1) : ψ1 ◦ ψ2(y) = y}

is compact, then so is the other and

ind
(
ψ2 ◦ ψ1, ψ

−1
1 (U2)

)
= ind

(
ψ1 ◦ ψ2, ψ

−1
2 (U1)

)
.

It is easily shown that the Additivity Property implies the following two impor-

tant ones:

Solution.: Given U open in E, let ψ : U → E be locally compact with empty

Fix(ψ, U). Then ind(ψ, U) = 0.

Excision.: Let U be open in E. Given a locally compact map ψ : U → E with

Fix(ψ, U) compact, and an open subset V of U containing Fix(ψ, U), one has

ind(ψ, U) = ind(ψ, V ).

From the Homotopy Invariance and Excision properties one could deduce the

following property:

Generalized Homotopy Invariance.: Let W be open in E× [0, 1]. Assume that

H : W → E is locally compact and such that the set {(x, λ) ∈W : H(x, λ) = x}

is compact. Let Wλ denote the slice Wλ := {x ∈ E : (x, λ) ∈ W}. Then,

ind
(
H(·, λ),Wλ

)
does not depend on λ ∈ [0, 1].

It is worth mentioning that when E = Rn, U is bounded, ψ is defined on U and

fixed point free on ∂U , then ind(ψ, U) is just the Brouwer degree degB(I − ψ, U, 0),

where I denotes the identity on Rn.

We now briefly discuss the notion of degree of a tangent vector field on a differ-

entiable manifold. Let M ⊆ Rk be a differentiable manifold and let w : M → Rk be

a (continuous) tangent vector field on M ; meaning that, for all p ∈M , w(p) belongs

to the tangent space TpM of M at p. Let U be an open subset of M in which we

assume w admissible for the degree; that is, the set w−1(0) ∩ U compact. Then, one

can associate to the pair (w,U) an integer, deg(w,U), called the degree of the vector

field w in U (see e.g. [6, 14, 15] and references therein).

We recall that if w is C1 and if p ∈ M is such that w(p) = 0, then the Fréchet

derivative w′(p) : TpM → Rk maps TpM into itself (see e.g. [15]), so that the deter-

minant detw′(p) of w′(p) is defined. If, in addition, p is a nondegenerate zero (i.e.

w′(p) : TpM → Rk is injective) then p is an isolated zero and detw′(p) 6= 0. In this
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case, the degree of w in U is an algebraic count of its zeros in U , that is

deg(w,U) =
∑

q∈w−1(0)∩U

sign detw′(q).

When M = Rk, deg(w,U) is just the classical Brouwer degree, degB(w, V, 0),

where V is any bounded open neighborhood of w−1(0) ∩ U whose closure is in U .

Moreover, when M is a compact manifold, the celebrated Poincaré-Hopf Theorem

states that deg(w,M) coincides with the Euler-Poincaré characteristic χ(M) of M

and, therefore, is independent of w.

As in the case of the fixed point index, we list a few of the properties of the degree

of a tangent vector field for the purpose of future reference. In what follows U is an

open subset of a manifold M ⊆ Rk and w is a tangent vector field on M .

Additivity: Let w be admissible in U . If U1 and U2 are two disjoint open subsets

of U whose union contains w−1(0) ∩ U , then

deg(w,U) = deg(w,U1) + deg(w,U2).

Homotopy Invariance: Let h : M × [0, 1] → Rk be a homotopy of tangent vector

fields. Assume that h is admissible in an open subset U of M ; that is, h−1(0) ∩

(U × [0, 1]) is compact. Then deg
(
h(·, λ), U

)
is independent of λ.

Solution.: If w is admissible in U and deg(w,U) 6= 0, then w has a zero in U .

Excision: Let w be admissible in U . If V ⊆ U is open and contains w−1(0) ∩ U ,

then deg(w,U) = deg(w, V ).

2. POINCARÉ-TYPE TRANSLATION OPERATOR

Let M ⊆ Rk be a boundaryless differentiable manifold and assume that is a

closed subset of Rk. Let g : M → Rk be a tangent vector field on M and f : R ×

BU
(
(−∞, 0],M

)
→ Rk a functional field. Given T > 0, assume also that f is T -

periodic in the first variable. We are interested in the T -periodic solutions of equation

(1.1).

Let us introduce some notation. Given T > 0, and any X ⊆ Rk, X̃ denotes

the metric space C
(
[−T, 0], X) with the distance inherited from the Banach space

R̃k = C([−T, 0],Rk) with the usual supremum norm. Notice that X̃ is complete if

and only if X is closed in Rk.

We now define a Poincaré-type T -translation operator Qλ, λ ∈ [0,+∞), on M̃

whose fixed points are the restrictions to the interval [−T, 0] of the T -periodic so-

lutions of (1.1). For this purpose, given ψ ∈ M̃ , we construct a suitable backward

continuous extension ψ̂ of ψ (see Lemma 2.1 below).

Denote by C
=

the set
{
ψ ∈ M̃ : ψ(−T ) = ψ(0)

}
.
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Lemma 2.1. There exist an open neighborhood W of C
=

in M̃ and a continuous map

from W to BU
(
(−∞, 0],M

)
, ψ 7→ ψ̂, with the following properties:

1) ψ̂ is an extension of ψ;

2) ψ̂ is T -periodic on the interval (−∞,−T ];

3) ψ̂ is T -periodic on the interval (−∞, 0], provided that ψ ∈ C
=
.

Proof. Take any ψ ∈ M̃ and let ψ∼ : [−2T,−T ] → Rk be defined as ψ∼(s) = ψ(s +

T ) + a+ bs, where a = 2(ψ(−T )−ψ(0)) and b = (ψ(−T )−ψ(0))/T are the (unique)

constants such that ψ∼(−2T ) = ψ∼(−T ) = ψ(−T ). Observe that, given ψ ∈ C
=
, the

associated map ψ∼ may not be a curve in M . However, given a tubular neighborhood

U of M , there exists an open neighborhood W of C
=

in M̃ such that if ψ ∈ W ,

then ψ∼ takes values in U . Now, given ψ ∈ W , define ψ̂ : (−∞, 0] → M to be the

unique extension of ψ which is T -periodic on (−∞,−T ] and coincides with r ◦ ψ∼

in [−2T,−T ], where r denotes the canonical retraction associated with the tubular

neighborhood U . The defined map ψ̂ clearly belongs to BU
(
(−∞, 0],M

)
and satisfies

1)–3). Moreover, it is easy to verify that the correspondence ψ 7→ ψ̂ is continuous.

As above, assume that g is locally Lipschitz and that f satisfies (H), so that

uniqueness holds for the maximal solutions of initial value problems associated to

(1.1). Let W ⊆ M̃ be as in Lemma 2.1 and consider the map Qλ, λ ≥ 0, with domain

D(Qλ) ⊆W , taking values in M̃ defined by

Qλ(ψ)(θ) = x
(
λ, ψ̂, T + θ

)
, θ ∈ [−T, 0],

where ψ̂ denotes the backward extension of ψ as in Lemma 2.1, and x(λ, η, ·) is the

unique maximal solution of the initial value problem
{
x′(t) = g

(
x(t)

)
+ λf(t, xt), t > 0,

x(t) = η(t), t ≤ 0.
(2.1)

Notice that a function ψ ∈W lies in D(Qλ) if and only if t 7→ x(λ, ψ̂, t) is defined up

to T . Known properties of functional differential equations (see e.g. [3]) ensure that

Qλ is continuous and that D(Qλ) is an open subset of W , hence of C([−T, 0],Rk).

Also, it is not difficult to show that Qλ is a locally compact map due to Ascoli’s

Theorem.

Proposition 2.2 below asserts that the T -periodic solutions of (1.1) are in a one-

to-one correspondence with the fixed points of Qλ.

Proposition 2.2. A function ψ ∈ M̃ is a fixed point of Qλ if and only if it is the

restriction to [−T, 0] of a T -periodic solution of (1.1).

Proof. (if) Assume that t 7→ y(t) is a T -periodic solution of (1.1) and denote by ψ

its restriction to the interval [−T, 0]. Lemma 2.1 yields y(t) = ψ̂(t) for t ≤ 0. Thus,
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one gets y(t) = x(λ, ψ̂, t), for all t ∈ R. In particular, for −T ≤ t ≤ 0, we obtain

ψ(t) = y(t) = y(t+ T ) = x(λ, ψ̂, t+ T ) = Qλ(ψ)(t). That is, ψ = Qλ(ψ).

(only if) Let ψ be a fixed point of Qλ. This implies that the maximal solution

x(λ, ψ̂, ·) of (1.1) is defined (at least) up to T and ψ(t) = x(λ, ψ̂, t + T ) for all

t ∈ [−T, 0]. Thus, ψ(−T ) = x(λ, ψ̂, 0) = ψ̂(0) and, consequently, Lemma 2.1 yields

ψ(−T ) = ψ(0). It remains to prove that the T -periodic extension y : R → M of ψ is

a solution of (1.1). For t ∈ [0, T ] one has

y(t) = y(t− T ) = ψ(t− T ) = Qλ(ψ)(t− T ) = x(λ, ψ̂, t),

and Lemma 2.1 implies that y(t) = ψ̂(t) for t ≤ 0. Hence

y′(t) = g
(
y(t)

)
+ λf(t, yt)

for all t ∈ (0, T ]. The assertion now follows from the T -periodicity of y and the

T -periodicity in the first variable of the functional field f .

In what follows, the Poincaré-type T -translation operator Q0 : D(Q0) ⊆ M̃ → M̃ ,

regarding the unperturbed equation (1.1), will be simply denoted by Q.

We will prove a formula (Theorem 2.4 below) for the computation of the fixed

point index of Q in an open subset U of D(Q), when defined. Clearly, Q is strictly

related to the M-valued classical Poincaré map P , given by P (p) = x(0, p, T ), where

p ∈ C
(
(−∞, 0],M

)
is constantly equal to p, and whose domain is the open subset

D(P ) of M consisting of those points p such that x(0, p, ·) is defined up to T .

We shall need the following result of [8] about the fixed point index of P .

Theorem 2.3. Let g be as above and let V ⊆ M be open and such that ind(P, V ) is

defined. Then, deg(−g, V ) is defined as well and

ind(P, V ) = deg(−g, V ). (2.2)

Given any p ∈ M , denote by p# ∈ M̃ the constant function p#(t) ≡ p and,

for any U ⊆ M , define U# =
{
p# ∈ M̃ : p ∈ U

}
. Also, given V ⊆ M̃ , we put

V# =
{
p ∈ M : p# ∈ V

}
. Observe that, for any given U ⊆ M , one has U# ⊆ Ũ and

(Ũ)# = U . There is a simple relation between the domain D(Q) of Q and the domain

D(P ) of P . In fact D(Q) =
{
ϕ ∈ M̃ : ϕ(0) ∈ D(P )

}
. In particular, D̃(P ) ⊆ D(Q).

Observe also that P (p) = Q(p#)(0) for all p ∈ D(P ).

The following result is crucial for the next section. It can be regarded as an

infinite dimensional analogue of Theorem 2.3.

Theorem 2.4. Let g, T and Q be as above, and let U ⊆ M̃ be open. If the fixed

point index ind(Q,U) is defined, then so is the degree deg(−g, U#) and

ind(Q,U) = deg(−g, U#). (2.3)
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Proof. Let us assume that ind(Q,U) is defined. This means that U ⊆ D(Q) and that

Fix(Q,U) is compact. Let us show that deg(−g, U#) is defined too. We need to prove

that g−1(0) ∩ U# is compact. If p ∈ g−1(0) ∩ U#, then the constant function p# is a

fixed point of Q. Thus, given a sequence {pn}n∈N in g−1(0)∩U#, consider {p#
n }n∈N in

the compact set Fix(Q,U). By passing to a subsequence, if necessary, we can assume

that p#
n converges to some function ψ in Fix(Q,U) that, being p#

n constant, must be

constant as well. Hence, for some p ∈ M , ψ = p#. In particular, since p# ∈ U , we

have p ∈ U#. Clearly, pn → p, therefore p ∈ g−1(0)∩U#. This shows the compactness

of g−1(0) ∩ U#.

We now use the Commutativity Property of the fixed point index in order to

deduce (2.3) for the fixed point index of Q from the analogous formula (2.2) for

P . In order to do so, we define the maps h : D(P ) → M̃ and k : M̃ → M by

h(p)(θ) = x(0, p, θ+ T ) and k(ϕ) = ϕ(0), respectively. (Recall that, given q ∈M , we

denote by q the function of C
(
(−∞, 0],M

)
constantly equal to q.) Since Q stands

for Q0, one has Q(ϕ) = Q
(
ϕ(0)

)
. Thus, we have

(h ◦ k)(ϕ)(θ) = x
(
0, ϕ(0), θ + T

)
= Q(ϕ)(θ), ϕ ∈ D(Q), θ ∈ [−T, 0]. (2.4)

Moreover

(k ◦ h)(p) = x(0, p, T ) = P (p), p ∈ D(P ). (2.5)

Define γ = k|U . By the Commutativity Property of the fixed point index, one

has that ind
(
h ◦ γ, γ−1

(
D(P )

))
is defined if and only if so is ind

(
γ ◦h, h−1(U)

)
, and

ind
(
h ◦ γ, γ−1

(
D(P )

))
= ind

(
γ ◦ h, h−1(U)

)
. (2.6)

Since U ⊆ D(Q), then γ−1
(
D(P )

)
is the whole domain U of γ. Hence, from

formulas (2.4)–(2.5), it follows that

ind(Q,U) = ind
(
h ◦ γ, γ−1

(
D(P )

))
,

ind
(
P, h−1(U)

)
= ind

(
γ ◦ h, h−1(U)

)
.

Thus, by (2.6), we get

ind(Q,U) = ind
(
P, h−1(U)

)
. (2.7)

From (2.2) we obtain

ind
(
P, h−1(U)

)
= deg

(
− g, h−1(U)

)
. (2.8)

From the definition of h it follows immediately that

g−1(0) ∩ U# = g−1(0) ∩ h−1(U),
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even though the sets U# and h−1(U) can be different. Therefore, from the Excision

Property of the degree of a vector field, one has

deg
(
− g, h−1(U)

)
= deg(−g, U#), (2.9)

and the assertion follows from equations (2.7), (2.8) and (2.9).

Let U ⊆ D(Q) be open in M̃ . We point out that Theorems 2.3 and 2.4 imply

that the fixed point index of Q in U actually reduces to the fixed point index of the

finite dimensional operator P in U#. Namely,

ind(Q,U) = ind(P, U#). (2.10)

In fact, P is defined on U# and Fix(P, U#) can be regarded as a closed subset of

Fix(Q,U). Therefore, if Fix(Q,U) is compact, then so is Fix(P, U#).

Observe that the above formula (2.10) is more convenient than the reduction

formula (2.7) obtained in the proof of Theorem 2.4. In fact, unlike the set h−1(U)

that appears in (2.7), U# does not depend on the equation (1.1).

3. BRANCHES OF STARTING PAIRS

Any pair (λ, ϕ) ∈ [0,+∞) × M̃ is said to be a starting pair (for (1.1)) if the

following initial value problem has a T -periodic solution:
{
x′(t) = g

(
x(t)

)
+ λf(t, xt), t > 0,

x(t) = ϕ̂(t), t ≤ 0.
(3.1)

A pair of the type (0, p#) with g(p) = 0 is clearly a starting pair and will be called

a trivial starting pair. Also, we will denote by V the open set of all pairs (λ, ϕ) ∈

[0,+∞) × M̃ such that the corresponding solution of (3.1) is defined up to time T .

In the sequel, given A ⊆ R × M̃ and λ ∈ R, the symbol Aλ will denote the slice

{x ∈ M̃ : (λ, x) ∈ A}. Observe that (V0)# = D(P ), where P is the classical Poincaré

operator defined in the previous section.

We will need the following global connectivity result of [5].

Lemma 3.1. Let Y be a locally compact metric space and let Z be a compact subset

of Y . Assume that any compact subset of Y containing Z has nonempty boundary.

Then Y \ Z contains a connected set whose closure (in Y ) intersects Z and is not

compact.

Proposition 3.2. Assume that the vector field g is locally Lipschitz and that the

functional field f satisfies assumption (H). Let S be the set of all starting pairs for

(1.1). Given W ⊆ [0,+∞) × M̃ open, if deg
(
g, (W0)#

)
is (defined and) nonzero,

then the set

(S ∩W ) \
{
(0, p#) ∈W : g(p) = 0

}
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of nontrivial starting pairs in W admits a connected subset whose closure in S ∩W

meets
{
(0, p#) ∈W : g(p) = 0

}
and is not compact.

Proof. Let us define the open set U = W ∩ V. Since

g−1(0) ∩ (U0)# = g−1(0) ∩ (W0)#, (3.2)

and S ∩ U = S ∩W , we need to prove that the set of nontrivial starting pairs in U

admits a connected subset whose closure in S ∩ U meets
{
(0, p#) ∈ U : g(p) = 0

}

and is not compact.

Notice that because of Ascoli’s Theorem, S is locally totally bounded. Hence,

since M̃ is complete, S is locally compact. Thus, U being open, S ∩ U is locally

compact as well. Moreover the assumption that deg
(
g, (W0)#

)
is defined means that

the set
{
p ∈ (W0)# : g(p) = 0

}
is compact. Thus, by (3.2), so is {(0, p#) ∈ U : g(p) =

0} being homeomorphic to g−1(0) ∩ (U0)#.

The assertion follows applying Lemma 3.1 to the pair

(Y, Z) =
(
S ∩ U,

{
(0, p#) ∈ U : p ∈ g−1(0)

})
.

Assume, by contradiction, that there exists a compact subset C of the set S ∩U

containing
{
(0, p#) ∈ U : p ∈ g−1(0)

}
and with empty boundary in S ∩U . Thus C is

a relatively open subset of S∩U . As a consequence, (S∩U)\C is closed in S∩U . So

the distance, δ = dist
(
C, (S ∩U) \C

)
, between C and (S ∩U) \C is nonzero (recall

that C is compact). Consider the open set

A =
{
(λ, ϕ) ∈ U : dist

(
(λ, ϕ), C

)
< δ/2

}
,

which, clearly, does not meet (S ∩ U) \ C.

Since A is bounded, there exists λ > 0 such that Aλ = ∅. Moreover, because of

Proposition 2.2, the set {(λ, ϕ) ∈ A : Qλ(ϕ) = ϕ} coincides with C = S ∩ A which

is compact. Then, from the Generalized Homotopy Invariance Property of the fixed

point index,

0 = ind
(
Qλ, Aλ

)
= ind

(
Qλ, Aλ

)
,

for all λ ∈ [0, λ]. But, by (2.3) and by the Excision Property of the degree, we get

ind(Q,A0) = deg(−g, (A0)#) = deg(−g, (W0)#) 6= 0,

which contradicts the previous formula.

4. BRANCHES OF T -PERIODIC PAIRS

Let us introduce the function space where most of the work of this section is done.

We will denote by CT (M) the set of the T -periodic continuous maps from R into M .

This will be regarded as a metric subspace of the Banach space
(
CT (Rk) , ‖·‖

)
of the

T -periodic continuous maps from R into Rk with the usual supremum norm. Since

in this paper M is supposed closed in Rk, CT (M) is complete.
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For the sake of simplicity, we will identify M with its image in [0,+∞)×CT (M)

under the embedding which associates to any p ∈M the pair (0, p), p ∈ CT (M) being

the map constantly equal to p. According to this identification, if E is a subset of

[0,+∞)×CT (M), by E ∩M we mean the subset of M given by all p ∈M such that

the pair (0, p) belongs to E. Observe that if Ω ⊆ [0,+∞) × CT (M) is open, then so

is Ω ∩M .

A pair (λ, x) ∈ [0,+∞) × CT (M), where x is a solution of (1.1), is called a T -

periodic pair (for (1.1)). Those T -periodic pairs that are of the particular form (0, p)

are said to be trivial. Observe that (0, p) ∈ [0,+∞) × CT (M) is a trivial T -periodic

pair if and only if g(p) = 0. We point out that if x is a nonconstant T -periodic

solution of the unperturbed equation x′(t) = g
(
x(t)

)
, then (0, x) is a nontrivial T -

periodic pair.

Theorem 4.1. Let g : M → Rk be a locally Lipschitz tangent vector field on M and

f : R×BU
(
(−∞, 0],M

)
→ Rk a functional field T -periodic in the first variable satis-

fying (H). Let Ω be an open subset of [0,+∞)×CT (M), and assume that deg(g,Ω∩M)

is defined and nonzero. Then Ω contains a connected set of nontrivial T -periodic pairs

whose closure in Ω is not compact and meets the set {(0, p) ∈ Ω : g(p) = 0}. In partic-

ular, the set of T -periodic pairs for (1.1) contains a connected component that meets

{(0, p) ∈ Ω : g(p) = 0} and whose intersection with Ω is not compact.

Proof. Denote by X the set of T -periodic pairs of (1.1) and by S the set of starting

pairs of the same equation.

Define the map h : X → S by h(λ, x) =
(
λ, x|[−T,0]

)
and observe that h is contin-

uous, onto and, since the functional field

(t, ϕ) 7→ g
(
ϕ(0)

)
+ λf(t, ϕ)

satisfies (H), it is also one to one. Furthermore, by the continuous dependence on

data, h is actually a homeomorphism. Thus, h(Ω ∩ X) is an open subset of S and,

consequently, we can find an open subset W of [0,+∞) × M̃ such that S ∩ W =

h(Ω ∩X). This implies

{
p ∈ (W0)# : g(p) = 0

}
=

{
p ∈M : (0, p#) ∈W, g(p) = 0

}

=
{
p ∈M : (0, p) ∈ Ω, g(p) = 0

}
=

{
p ∈ Ω ∩M : g(p) = 0

}
.

Thus, by excision, one has deg(g, (W0)#) = deg(g,Ω∩M) 6= 0. Applying Proposition

3.2, we get the existence of a connected set

Σ ⊆ (S ∩W ) \
{
(0, p#) ∈W : g(p) = 0

}

whose closure in S ∩W meets
{
(0, p#) ∈W : g(p) = 0

}
and is not compact.

Observe that the trivial T -periodic pairs correspond to the trivial starting pairs

under the homeomorphism h. Thus, Ξ = h−1(Σ) ⊆ X ∩ Ω is a connected set of
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nontrivial T -periodic pairs whose closure in X ∩Ω is not compact and meets {(0, p) ∈

Ω : g(p) = 0}. Since X is closed in [0,+∞)×CT (M), the closures of Ξ in X ∩Ω and

in Ω coincide. This proves that Ξ satisfies the requirements of the first part of the

assertion.

Let us prove the last part of the assertion. Consider the connected component Γ

of X that contains the connected set Ξ. We shall now show that Γ has the required

properties. Clearly, Γ meets the set
{
(0, p) ∈ Ω : g(p) = 0

}
because the closure of Ξ

in Ω does. Moreover, Γ ∩ Ω cannot be compact, since it contains the closure of Ξ in

Ω which is not compact.

Remark 4.2. Let Ω be as in Theorem 4.1, and assume that Γ is a connected com-

ponent of T -periodic pairs of (1.1) that meets {(0, p) ∈ Ω : g(p) = 0} and whose

intersection with Ω is not compact. Ascoli’s Theorem implies that any bounded set

of T -periodic pairs is relatively compact. Then, the closed set Γ cannot be both

bounded and contained in Ω. In particular, if Ω is bounded, then Γ ∩ ∂Ω 6= ∅.

To better understand the meaning of Theorem 4.1, consider for example the

case when M = Rm. If g−1(0) is compact and deg(g,Rm) 6= 0, then there exists

an unbounded connected set of T -periodic pairs in [0,+∞) × CT (Rm) which meets

the set {(0, p) ∈ [0,+∞) × CT (M) : g(p) = 0}, that can be identified with g−1(0).

The existence of this unbounded connected set cannot be destroyed by a particular

choice of f . However it is possibly “completely vertical”, i.e. contained in the slice

{0} × CT (M). This peculiarity is exhibited, for instance, by the set of T -periodic

pairs of the equation {
x′ = y,

y′ = −x+ λ sin t,

where M = R2 and T = 2π.

A somewhat opposite behavior is shown by the set X of T -periodic pairs for (1.1)

in the “degenerate” situation when f(t, ϕ) ≡ 0. In this case, X consists of the pairs

(λ, x), where λ ≥ 0 and x is a T -periodic solution to x′ = g(x). In particular, the

“horizontal” set (0,+∞) × {p} satisfies the requirement of Theorem 4.1.

The following corollary, in the case of a compact boundaryless manifolds, is in

the spirit of a result of [1] in which g is identically zero.

Corollary 4.3. Let f and g be as in Theorem 4.1 and let M ⊆ Rk be compact

with nonzero Euler-Poincaré characteristic χ(M). Then, there exists an unbounded

connected set of nontrivial T -periodic pairs whose closure meets {(0, p) ∈ [0,+∞) ×

CT (M) : g(p) = 0}. In particular, equation (1.1) has a T -periodic solution for any

λ ≥ 0.

Proof. The Poincaré-Hopf Theorem yields deg(g,M) = χ(M) 6= 0. Thus, Theorem

4.1 and Remark 4.2 imply the existence of an unbounded connected set Γ of nontrivial
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T -periodic pairs whose closure in [0,+∞)×CT (M) meets {(0, p) ∈ [0,+∞)×CT (M) :

g(p) = 0}. The last assertion follows from the fact that CT (M) is bounded while Γ

is unbounded.

The following corollary ensures the existence of a Rabinowitz-type branch of T -

periodic pairs.

Corollary 4.4. Let f and g be as in Theorem 4.1. Let U ⊆ M be open and assume

that deg(g, U) is well defined and nonzero. Then, there exists a connected component

Γ of T -periodic pairs of (1.1) that meets the set
{
(0, p) ∈ [0,+∞) × CT (M) : p ∈ U, g(p) = 0

}

and is either unbounded or meets
{
(0, p) ∈ [0,+∞) × CT (M) : p ∈M \ U, g(p) = 0

}
.

Proof. Consider the open subset Ω of [0,+∞) × CT (M) given by

Ω =
(
[0,+∞) × CT (M)

)
\

{
(0, p) ∈ [0,+∞) × CT (M) : p ∈M \ U, g(p) = 0

}
.

Clearly, we have Ω ∩ M = U . Hence deg(g,Ω ∩ M) 6= 0. Theorem 4.1 implies

the existence of a connected component Γ of T -periodic pairs of (1.1) that meets

{(0, p) ∈ Ω : g(p) = 0} and whose intersection with Ω is not compact. Because of

Remark 4.2, if Γ is bounded, then it meets

∂Ω =
{
(0, p) ∈ [0,+∞) × CT (M) : p ∈M \ U, g(p) = 0

}
,

as claimed.

Example 4.5. Consider a simple pendulum lying in a vertical plane and acted on by

a bounded, continuous, T -periodic force λf , λ ≥ 0, depending possibly on the whole

history of the pendulum’s motion. The behavior of this pendulum is described by a

second order RFDE on the unit circle S1 or, equivalently, by a first order one on the

tangent bundle TS1 ≃ S1 × R.

The unperturbed pendulum (i.e. corresponding to λ = 0) has just two equilibria:

the upper one, denoted by N, which is unstable, and the lower one, S, which is stable.

These points can be identified with the sole two trivial T -periodic pairs (0;N, 0) and

(0;S, 0) in [0,+∞) × CT (S1 × R). Considerations analogous to those in the proof

of Corollary 4.4 show that there exist connected components CN, CS of T -periodic

pairs for the first order RFDE, containing N and S, respectively, that either coincide

or are both unbounded. Since the force acting on the pendulum is bounded by

assumption, an argument as in Theorem 4.1 in [9], based on the local constance of

the winding number, allows us to conclude that any forced oscillation corresponding

to a T -periodic pair belonging to CN or CS must have a speed that is bounded by a

function of λ growing at most linearly. This shows that, actually, at least one of the

following two possibilities must happen:



394 M. FURI, M. P. PERA, AND M. SPADINI

1. CN = CS;

2. There are at least two forced oscillations for each λ ≥ 0.

If for some λ ≥ 0 there are no forced oscillations, then CN coincides with CS and the

same argument based on the winding number yields that this branch is bounded. In

any case, arguing as in Corollary 4.2 of [9], for sufficiently small λ ≥ 0 there are at

least two forced oscillations.
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