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ABSTRACT. For the second order differential equation, y′′ = f(t, y, y′), where f(t, r1, r2) is

Lipschitz continuous in terms of r1 and r2, we obtain optimal bounds on the length of intervals on

which there exist unique solutions of certain nonlocal three point boundary value problems. These

bounds are obtained through an application of the Pontryagin Maximum Principle from the theory

of optimal control.
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1. INTRODUCTION

In this paper, we shall be concerned with the second order differential equation,

y′′ = f(t, y, y′), a < t < b, (1.1)

for which the assumptions in the following hypothesis hold throughout.

Hypothesis. f(t, r1, r2) : (a, b) × R
2 → R is continuous, and for nonnegative con-

stants k1 and k2, satisfies the Lipschitz condition,

|f(t, r1, r2) − f(t, s1, s2)| ≤ k1|r1 − s1| + k2|r2 − s2|, (1.2)

for each (t, r1, r2), (t, s1, s2) ∈ (a, b) × R
2.

In terms of the Lipschitz coefficients k1 and k2, we characterize the optimal length

for subintervals of (a, b) on which there exist unique solutions of (1.1) satisfying the

nonlocal three point boundary conditions,

y(t1) = y1, y(t2) − y(t3) = y2, (1.3)

where a < t1 < t2 < t3 < b, and y1, y2 ∈ R.
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More precisely, we characterize optimal length for subintervals of (a, b) on which

solutions (1.1), (1.3) are unique. Existence of solutions follows as a consequence of

“uniqueness implies existence” results for (1.1), (1.3) established by Henderson et al.

[17, 18]. We state this “uniqueness implies existence” result as it appears in [17].

Theorem 1.1. If solutions for the boundary value problem (1.1), (1.3) are unique,

when they exist on (a, b), then solutions for the boundary value problem (1.1), (1.3)

exist on (a, b).

Because of a close relationship between the boundary value problem (1.1), (1.3)

and right focal boundary value problems for (1.1), we will ultimately establish that it

suffices for us to characterize optimal length subintervals of (a, b) on which solutions

are unique for (1.1) satisfying the right focal boundary conditions,

y(t1) = y1, y′(t2) = y2, (1.4)

where a < t1 < t2 < b, and y1, y2 ∈ R. The connection between this characterization

and the characterization for our three point nonlocal problems is through a simple

application of the Mean Value Theorem to Theorem 1.1.

Theorem 1.2. If solutions for (1.1), (1.4) are unique, when they exist on (a, b), then

solutions for (1.1), (1.3) are unique, when they exist on (a, b).

Thus, in view of Theorem 1.2, conditions sufficient to provide uniqueness of

solutions, when they exist on (a, b), for two point right focal boundary value problems

(1.1), (1.4), are sufficient to provide uniqueness of solutions, when they exist on (a, b)

for three point nonlocal boundary value problems (1.1), (1.3).

Much of our process will involve developing a scenario in which the Pontryagin

Maximum Principle can be applied. The manner in which we do this has an extensive

history, with first motivation found in the papers by Melentsova [29] and Melentsova

and Mil’shtein [30, 31]. Those papers were subsequently adapted to the context of

several types of boundary value problems by Jackson [22, 23], Eloe and Henderson

[6], Hankerson and Henderson [14] and Henderson et al. [5, 15, 16, 19].

Nonlocal boundary value problems have also been of tremendous interest both in

application and theory, as can be seen in this list of papers and the references therein:

[1]–[4], [7, 8], [10]–[13], [20, 21], [24, 25], [27, 28], [32]–[40].

2. OPTIMAL INTERVALS FOR UNIQUENESS OF SOLUTIONS

In this section, we apply the Pontryagin Maximum Principle to obtain a char-

acterization, in terms of the Lipschitz constants k1 and k2, for the optimal length of

subintervals of (a, b) on which solutions are unique, when they exist for the right focal

boundary value problem (1.1), (1.4). This length, it will be argued, is optimal for
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uniqueness of solutions for the three point nonlocal boundary value problem (1.1),

(1.3).

We begin with a set of vector-valued control functions

U := {v(t) = (v1(t), v2(t))
T ∈ R

2 | v1(t) and v2(t) are Lebesgue

measurable and |vi(t)| ≤ ki on (a, b), i = 1, 2}.

We will be concerned with boundary value problems associated with linear differential

equations of the form

x′′ = u1(t)x + u2(t)x
′, (2.1)

where u(t) = (u1(t), u2(t))
T ∈ U .

If y(t) and z(t) are distinct solutions of (1.1), (1.4), then their difference x(t) :=

y(t) − z(t) satisfies

x(t1) = x′(t2) = 0, (2.2)

for some a < t1 < t2 < b, and if

u1(t) :=

{

f(t,y(t),y′(t))−f(t,z(t),y′(t))
y(t)−z(t)

, y(t) 6= z(t),

0, y(t) = z(t),

and

u2(t) :=

{

f(t,z(t),y′(t))−f(t,z(t),z′(t))
y′(t)−z′(t)

, y′(t) 6= z′(t),

0, y′(t) = z′(t),

then u1(t) and u2(t) are Lebesgue measurable, and |ui(t)| ≤ ki, i = 1, 2, so that

u(t) = (u1(t), u2(t))
T ∈ U , and x(t) is a nontrivial solution of the boundary value

problem (2.1), (2.2). It follows from optimal control theory (cf. Gamkrelidze [9,

p. 147] and Lee and Markus [26, p. 259]), there is a boundary value problem in the

class (2.1), (2.2), which has a nontrivial time optimal solution; that is, there exists at

least one nontrivial u∗ ∈ U and points t1 ≤ c < d ≤ t2 such that

x′′ = u∗

1(t)x + u∗

2(t)x
′, (2.3)

x(c) = x′(d) = 0, (2.4)

has a nontrivial solution, x0(t), and d − c is a minimum over all such solutions. For

this time optimal solution, x0(t), we set x0(t) = (x0(t), x
′
0(t))

T . Then x0(t) ∈ U is a

solution of a first order system,

r′ = A[u∗(t)]r.

By the Pontryagin Maximum Principle, the adjoint system, whose form is given by

x′ = −AT [u∗(t)]x, a < t < b, (2.5)

has a nontrivial solution, x∗(t) = (x∗
1(t), x

∗
2(t))

T such that, for a. e. t ∈ [c, d],

(i) x′
0(t)x

∗
1(t) + x′′

0(t)x
∗
2(t) = 〈x′

0
(t),x∗(t)〉 = maxu∈U{〈A[u(t)]x0(t),x

∗(t)〉},

(ii) 〈x′
0
(t),x∗(t)〉 is a nonnegative constant,
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(iii) x∗
2(c) = x∗

1(d) = 0.

The maximum condition in (i) can be rewritten as

x∗

2(t)[u
∗

1(t)x0(t) + u∗

2(t)x
′

0(t)] = max
u∈U

{

x∗

2(t)[u1(t)x0(t) + u2(t)x
′

0(t)]
}

, (2.6)

for a. e. t ∈ [c, d].

By its time optimality and Rolle’s Theorem, x0(t) 6= 0, t ∈ (c, d]. We may assume

without loss of generality that x0(t) > 0 on (c, d]. If x∗
2(t) has no zeros on (c, d), then

we can use (2.6) to determine an optimal control u∗(t), for a. e. t ∈ [c, d]. We now

consider the single signature of x∗
2(t) on (c, d).

To that end, if u ∈ U is such that the boundary value problem given by (2.1)

and (2.2), for some a < t1 < t2 < b, has a nontrivial solution, then the adjoint system

α′ = −AT [u(t)]α, t ∈ (a, b), (2.7)

α2(t1) = α1(t2) = 0, (2.8)

also has a nontrivial solution, and conversely. Hence, the Pontryagin Maximum Prin-

ciple associates with a time optimal solution of boundary value problem (2.1), (2.2) a

time optimal solution of boundary value problem (2.7), (2.8), and conversely. Hence,

it follows by its own time optimality that x∗
2(t) does not vanish on (c, d).

Now, x0(t) > 0 on (c, d], and so we have from (2.6) that, if x∗
2(t) < 0 on (c, d),

then the time optimal solution x0(t) is a solution of

x′′ = −k1x − k2|x
′| (2.9)

on [c, d], while if x∗
2(t) > 0 on (c, d), then the time optimal solution x0(t) is a solution

of

x′′ = k1x + k2|x
′| (2.10)

on [c, d].

Now, we may assume without loss of generality that x′
0(c) > 0 so that, indeed,

x0(t) > 0 on (c, d]. If x∗(t) = (x∗
1(t), x

∗
2(t))

T is a nontrivial solution of the ad-

joint system (2.5) associated with x0(t), then by the Pontryagin Maximum Principle,

x∗
2(c) = x∗

1(d) = 0, and by its own time optimality, x∗
2(t) 6= 0 on (c, d). From the

nature of equations (2.9) or (2.10), x′′
0(t) is of one sign on (c, d), and so x′

0(t) is strictly

monotone on [c, d]. From the assumption that x′
0(c) > 0 and the boundary conditions

x0(c) = x′
0(d) = 0, it follows that x′′

0(t) < 0 on (c, d), that x′
0(t) > 0 on [c, d), and

that x0(t) is a solution of (2.9) on [c, d], and moreover, (2.9) now takes the form

x′′ = −k1x − k2x
′. (2.11)

Our discussion thus far is based on the premise that (1.1) has distinct solutions

whose difference satisfies (2.2). Moreover, if the appropriate sign conditions are sat-

isfied by the optimal solution x0(t) of the boundary value problem (2.1), (2.2) and
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by the component x∗
2(t) of the solution of the associated adjoint system (2.5), then

optimal intervals can be determined on which only trivial solutions exist for bound-

ary value problems (2.9), (2.2) or (2.10), (2.2). Further detailed sign analysis led to

determination of optimal intervals on which only trivial solutions exist for only the

boundary value problem (2.11), (2.2). As a consequence, solutions of the boundary

value problem (1.1), (1.4) will be unique on such subintervals.

Theorem 2.1. If there is a vector-valued u(t) ∈ U for all a < t < b, for which the

boundary value problem (2.1), (2.2) has a nontrivial solution for some a < t1 < t2 < b,

and if x0(t) is a time optimal solution satisfing (2.4), where d−c is a minimum, then

x0(t) is a solution of (2.11) on [c, d].

Theorem 2.2. Let ℓ = ℓ(k1, k2) > 0 be the smallest positive number such that there

exists a solution x(t) of the boundary value problem for (2.11) satisfying

x(0) = x′(ℓ) = 0, (2.12)

with x(t) > 0 on (0, ℓ], or ℓ = ∞ if no such solution exists. If y(t) and z(t) are

solutions of the boundary value problem (1.1), (1.4), for some a < t1 < t2 < b, and if

t2 − t1 < ℓ, it follows that y(t) ≡ z(t) on [t1, t2], and this is best possible for the class

of all differential equations satisfying the Lipschitz condition (1.2).

Proof. Since equation (2.11) is autonomous, translations of solutions are again solu-

tions of (2.11). Hence, it suffices to apply Theorem 2.1 with respect to the boundary

conditions at 0 and ℓ.

Now, if y(t) and z(t) are distinct solutions of (1.1) whose difference w(t) :=

y(t) − z(t) satisfies (2.2), where t2 − t1 < ℓ, then w(t) is a nontrivial solution of the

boundary value problem (2.1), (2.2), for appropriately defined u ∈ U . Then, from the

discussion and Theorem 2.1, equation (2.11) has a nontrivial solution on a subinterval

of length less than ℓ. But, by the minimality of ℓ, such a boundary value problem

can have only the trivial solution; this is a contradiction. Therefore, solutions of the

boundary value problem (1.1), (1.4) are unique, whenever t2 − t1 < ℓ.

This is best possible from the fact that (2.11) satisfies the Lipschitz condition

(1.2), and if ℓ 6= ∞, then x(t) is a nontrivial solution of (2.11) and (2.2) on [0, ℓ]. The

boundary value problem also has the trivial solution.

Because of the uniqueness relations stated in Theorem 1.2, we can apply Theo-

rem 2.2 to obtain optimal intervals for uniqueness of solutions of the boundary value

problem (1.1), (1.3).

Theorem 2.3. Let ℓ be as in Theorem 2.2. If y(t) and z(t) are solutions of the

boundary value problem (1.1), (1.3), for some a < t1 < t2 < t3 < b, and if t3 − t1 ≤ ℓ,
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it follows that y(t) ≡ z(t) on [t1, t3], and this is best possible for the class of all

differential equations satisfying the Lipschitz condition (1.2).

Proof. In view of Theorem 1.2 and Theorem 2.2, solutions of the boundary value

problem (1.1), (1.3) are unique, when t3 − t1 ≤ ℓ. To see again that this is best

possible, consider the solution x(t) in Theorem 2.2. This is a nontrivial solution of

(2.11) and (2.12).

Let ǫ > 0 be sufficiently small that x(t) is a solution of (2.11) on [0, ℓ + ǫ]. Now,

x′′(t) < 0 on [0, ℓ + ǫ]. From (2.12), x′(ℓ) = 0, and since x′′(ℓ) < 0, we have that

x(t) has a positive maximum at ℓ. So, there exist 0 < τ1 < ℓ < τ2 < ℓ + ǫ such

that x(t) is a nontrivial solution of (2.11) satisfying x(0) = x(τ1) − x(τ2) = 0. This

boundary value problem also has the trivial solution. Since ǫ > 0 was arbitrary, the

“best possible” statement follows for uniqueness of solutions of the boundary value

problem (1.1), (1.3).

3. OPTIMAL INTERVALS FOR EXISTENCE OF SOLUTIONS

In this section, we make an immediate application of Theorem 2.3 in conjunction

with the uniqueness implies existence result for nonlocal boundary value problems

stated in Theorem 1.1.

Theorem 3.1. Let ℓ be as in Theorem 2.3. Then, the boundary value problem (1.1),

(1.3) has a unique solution, provided t3 − t1 < ℓ. Moreover, this result is best pos-

sible for the class of second order ordinary differential equations (1.1) satisfying the

Lipschitz condition (1.2).

Example. In this example, for a few values of k1 and k2, we compute the optimal

interval length ℓ for which there exist unique solutions for the boundary value problem

(1.1), (1.3) on subintervals whose length is no more than ℓ.

In particular, let x(t) be the solution of (2.11) satisfying the initial conditions

x(0) = 0, x′(0) = 1,

and let η > 0 be the first positive number such that x′(η) = 0. Then, η = ℓ of

Theorem 2.3, and we find by elementary methods that,

(i) if k1 = 1 and k2 = 2, then η = ℓ = 1,

(ii) if k1 = 1 and k2 = 0, then η = ℓ = π
2
,

(iii) if k1 = 0 and k2 = 1, then η = ℓ = ∞.
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